1
|
Gao S, Li J, Wang W, Wang Y, Shan Y, Tan H. Rabdosia rubescens (Hemsl.) H. Hara: A potent anti-tumor herbal remedy - Botany, phytochemistry, and clinical applications and insights. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119200. [PMID: 39631716 DOI: 10.1016/j.jep.2024.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicine has unique advantages as anti-cancer drugs and adjuvant therapies. Rabdosia rubescens (Hemsl.) H. Hara (R. rubescens) is a traditional medicinal plant known for its anti-inflammatory, antioxidant, antibacterial, anti-angiogenic and antitumor properties. The antitumor activity of R. rubescens is widely recognized among the folk communities in Henan Province, China. AIM OF THE STUDY This study reviews the botany, ethnopharmacology, phytochemistry, anti-tumor active ingredients, mechanisms, and clinical applications of R. rubescens, aiming to provide a comprehensive understanding for its use as an anti-cancer drug and adjuvant therapy. MATERIALS AND METHODS We systematically searched the literature in PubMed, Web of Science, and CNKI using the following keywords: "Rabdosia rubescens", "Isodon rubescens", "traditional application", "anti-tumor", "phytochemistry", "anti-tumor active compounds", "oridonin" and "clinical application". The search covered publications from 1997 to 2024. Inclusion criteria included original studies or reviews focusing on the anti-tumor properties of R. rubescens or its active components. Exclusion criteria included studies related to non-R. rubescens applications. RESULTS R. rubescens is a perennial herbaceous plant in the family Lamiaceae, mainly found in central and southern China. Historically, it has been used to treat conditions such as sore throat, cough, and excess phlegm. The plant contains various compounds, including diterpenes, triterpenes, steroids, flavonoids, phenolic acids, essential oils, amino acids, alkaloids, and polysaccharides, with diterpenes, triterpenes, flavonoids, and phenolic acids being the most active. This review identifies 50 compounds with anti-tumor properties, comprising 34 diterpenes, 2 triterpenes, 7 flavonoids, and 7 phenolic acids. Notably, besides oridonin and ponicidin, the ent-kaurane diterpenoids (20S)-11β,14β,20-trihydroxy-7α,20-epoxy-ent-kaur-16-en15-one and (20S)-11β,14β-dihydroxy-20-ethoxy7α,20-epoxy-ent-kaur-16-en-15-one demonstrate significant anti-tumor activity, attributed to their carbonyl group at C-15, hydroxyl group at C-1, and OEt group at C-20. Mechanistically, R. rubescens combats tumors by blocking the tumor cell cycle, promoting apoptosis, inhibiting cell migration and angiogenesis, inducing ferroptosis, reversing drug resistance, and enhancing radiosensitivity in tumor cells. Clinically, R. rubescens is available in various forms, including tablets, drops, syrups, capsules, and lozenges, and is primarily used for tonsillitis, pharyngitis, and stomatitis. According to the 2020 edition of the Pharmacopoeia of China, R. rubescens tablets are recognized as an adjuvant therapy for cancer. Clinical studies indicate that R. rubescens syrup, tablets, and thermal therapy can enhance cancer patient survival rates and lower tumor recurrence rates. CONCLUSIONS Given its traditional and modern uses, active anti-tumor components, and mechanisms, R. rubescens is a promising resource in traditional Chinese medicine for anti-tumor therapy. To realize its full potential, future research should explore additional active anti-tumor compounds beyond oridonin and ponicidin. For these key components, studies should focus on structural modifications to identify new active molecules and essential anti-tumor structures. Clinically, it is important to investigate how R. rubescens interacts with other Chinese herbs in anti-tumor formulations to enhance treatment efficacy and guide appropriate clinical use. Furthermore, future studies should undergo ethical review and include larger-scale randomized controlled trials to validate the efficacy of R. rubescens in treating tumors, thereby promoting its role as an anti-tumor traditional Chinese medicine.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Jianwen Li
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Weiya Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yue Wang
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Yanmin Shan
- Drug Engineering and Technology Research Center, Harbin University of Commerce, Harbin, 150076, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor Drugs, Harbin, 150076, Heilongjiang, China
| | - Huixin Tan
- Department of Pharmacy, Fourth Affiliated Hospital of Harbin Medicine University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
2
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
3
|
Xu D, Yuan L, Meng F, Lu D, Che M, Yang Y, Liu W, Nan Y. Research progress on antitumor effects of sea buckthorn, a traditional Chinese medicine homologous to food and medicine. Front Nutr 2024; 11:1430768. [PMID: 39045282 PMCID: PMC11263281 DOI: 10.3389/fnut.2024.1430768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Sea buckthorn (Hippophae Fructus), as a homologous species of medicine and food, is widely used by Mongolians and Tibetans for its anti-tumor, antioxidant and liver-protecting properties. In this review, the excellent anti-tumor effect of sea buckthorn was first found through network pharmacology, and its active components such as isorhamnetin, quercetin, gallic acid and protocatechuic acid were found to have significant anti-tumor effects. The research progress and application prospect of sea buckthorn and its active components in anti-tumor types, mechanism of action, liver protection, anti-radiation and toxicology were reviewed, providing theoretical basis for the development of sea buckthorn products in the field of anti-tumor research and clinical application.
Collapse
Affiliation(s)
- Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Doudou Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mengying Che
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yating Yang
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Nan
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Biswas P, Kaium MA, Islam Tareq MM, Tauhida SJ, Hossain MR, Siam LS, Parvez A, Bibi S, Hasan MH, Rahman MM, Hosen D, Islam Siddiquee MA, Ahmed N, Sohel M, Azad SA, Alhadrami AH, Kamel M, Alamoudi MK, Hasan MN, Abdel-Daim MM. The experimental significance of isorhamnetin as an effective therapeutic option for cancer: A comprehensive analysis. Biomed Pharmacother 2024; 176:116860. [PMID: 38861855 DOI: 10.1016/j.biopha.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Isorhamnetin (C16H12O7), a 3'-O-methylated derivative of quercetin from the class of flavonoids, is predominantly present in the leaves and fruits of several plants, many of which have traditionally been employed as remedies due to its diverse therapeutic activities. The objective of this in-depth analysis is to concentrate on Isorhamnetin by addressing its molecular insights as an effective anticancer compound and its synergistic activity with other anticancer drugs. The main contributors to Isorhamnetin's anti-malignant activities at the molecular level have been identified as alterations of a variety of signal transduction processes and transcriptional agents. These include ROS-mediated cell cycle arrest and apoptosis, inhibition of mTOR and P13K pathway, suppression of MEK1, PI3K, NF-κB, and Akt/ERK pathways, and inhibition of Hypoxia Inducible Factor (HIF)-1α expression. A significant number of in vitro and in vivo research studies have confirmed that it destroys cancerous cells by arresting cell cycle at the G2/M phase and S-phase, down-regulating COX-2 protein expression, PI3K, Akt, mTOR, MEK1, ERKs, and PI3K signaling pathways, and up-regulating apoptosis-induced genes (Casp3, Casp9, and Apaf1), Bax, Caspase-3, P53 gene expression and mitochondrial-dependent apoptosis pathway. Its ability to suppress malignant cells, evidence of synergistic effects, and design of drugs based on nanomedicine are also well supported to treat cancer patients effectively. Together, our findings establish a crucial foundation for understanding Isorhamnetin's underlying anti-cancer mechanism in cancer cells and reinforce the case for the requirement to assess more exact molecular signaling pathways relating to specific cancer and in vivo anti-cancer activities.
Collapse
Affiliation(s)
- Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md Abu Kaium
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Labib Shahriar Siam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
| | - Md Hasibul Hasan
- Department of Food Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Moshiur Rahman
- Department of Information Systems Security, Faculty of Science & Technology, Bangladesh University of Professionals, Mirpur 1216, Bangladesh
| | - Delwar Hosen
- Department of Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh
| | | | - Nasim Ahmed
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sohel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Salauddin Al Azad
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore 7400, Bangladesh
| | - Albaraa H Alhadrami
- Faculty of Medicine, King Abdulaziz University, P.O.Box 80402, Jeddah 21589, Saudi Arabia
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
5
|
Li D, Wang J, Tuo Z, Yoo KH, Yu Q, Miyamoto A, Zhang C, Ye X, Wei W, Wu R, Feng D. Natural products and derivatives in renal, urothelial and testicular cancers: Targeting signaling pathways and therapeutic potential. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155503. [PMID: 38490077 DOI: 10.1016/j.phymed.2024.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Natural products have demonstrated significant potential in cancer drug discovery, particularly in renal cancer (RCa), urothelial carcinoma (UC), and testicular cancer (TC). PURPOSE This review aims to examine the effects of natural products on RCa, UC and TC. STUDY DESIGN systematic review METHODS: PubMed and Web of Science databases were retrieved to search studies about the effects of natural products and derivatives on these cancers. Relevant publications in the reference list of enrolled studies were also checked. RESULTS This review highlighted their diverse impacts on key aspects such as cell growth, apoptosis, metastasis, therapy response, and the immune microenvironment. Natural products not only hold promise for novel drug development but also enhance the efficacy of existing chemotherapy and immunotherapy. Importantly, we exert their effects through modulation of critical pathways and target genes, including the PI3K/AKT pathway, NF-κB pathway, STAT pathway and MAPK pathway, among others in RCa, UC, and TC. CONCLUSION These mechanistic insights provide valuable guidance for researchers, facilitating the selection of promising natural products for cancer management and offering potential avenues for further gene regulation studies in the context of cancer treatment.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Qingxin Yu
- Department of pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Akira Miyamoto
- Department of Rehabilitation, West Kyushu University, Japan
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
6
|
Wendlocha D, Kubina R, Krzykawski K, Mielczarek-Palacz A. Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis. Nutrients 2024; 16:1201. [PMID: 38674891 PMCID: PMC11053927 DOI: 10.3390/nu16081201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The complex and multi-stage processes of carcinogenesis are accompanied by a number of phenomena related to the potential involvement of various chemopreventive factors, which include, among others, compounds of natural origin such as flavonols. The use of flavonols is not only promising but also a recognized strategy for cancer treatment. The chemopreventive impact of flavonols on cancer arises from their ability to act as antioxidants, impede proliferation, promote cell death, inhibit angiogenesis, and regulate the immune system through involvement in diverse forms of cellular death. So far, the molecular mechanisms underlying the regulation of apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis occurring with the participation of flavonols have remained incompletely elucidated, and the results of the studies carried out so far are ambiguous. For this reason, one of the therapeutic goals is to initiate the death of altered cells through the use of quercetin, kaempferol, myricetin, isorhamnetin, galangin, fisetin, and morin. This article offers an extensive overview of recent research on these compounds, focusing particularly on their role in combating cancer and elucidating the molecular mechanisms governing apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and cuproptosis. Assessment of the mechanisms underlying the anticancer effects of compounds in therapy targeting various types of cell death pathways may prove useful in developing new therapeutic regimens and counteracting resistance to previously used treatments.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (K.K.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland;
| |
Collapse
|
7
|
Lei J, Yang J, Bao C, Lu F, Wu Q, Wu Z, Lv H, Zhou Y, Liu Y, Zhu N, Yu Y, Zhang Z, Hu M, Lin L. Isorhamnetin: what is the in vitro evidence for its antitumor potential and beyond? Front Pharmacol 2024; 15:1309178. [PMID: 38650631 PMCID: PMC11033395 DOI: 10.3389/fphar.2024.1309178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Isorhamnetin (ISO) is a phenolic compound belonging to flavonoid family, showcasing important in vitro pharmacological activities such as antitumor, anti-inflammation, and organ protection. ISO is predominantly extracted from Hippophae rhamnoides L. This plant is well-known in China and abroad because of its "medicinal and food homologous" characteristics. As a noteworthy natural drug candidate, ISO has received considerable attention in recent years owing to its low cost, wide availability, high efficacy, low toxicity, and minimal side effects. To comprehensively elucidate the multiple biological functions of ISO, particularly its antitumor activities and other pharmacological potentials, a literature search was conducted using electronic databases including Web of Science, PubMed, Google Scholar, and Scopus. This review primarily focuses on ISO's ethnopharmacology. By synthesizing the advancements made in existing research, it is found that the general effects of ISO involve a series of in vitro potentials, such as antitumor, protection of cardiovascular and cerebrovascular, anti-inflammation, antioxidant, and more. This review illustrates ISO's antitumor and other pharmacological potentials, providing a theoretical basis for further research and new drug development of ISO.
Collapse
Affiliation(s)
- Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Jianbao Yang
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Cuiyu Bao
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorder, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feifei Lu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qing Wu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zihan Wu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hong Lv
- School of Public Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanhong Zhou
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yifei Liu
- School of Biomedical Engineering, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ni Zhu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - You Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhipeng Zhang
- Department of Medical School of Facial Features, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
8
|
Hu D, Wang HJ, Yu LH, Guan ZR, Jiang YP, Hu JH, Yan YX, Zhou ZH, Lou JS. The role of Ginkgo Folium on antitumor: Bioactive constituents and the potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117202. [PMID: 37742878 DOI: 10.1016/j.jep.2023.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
9
|
Huang Z, Shen Y, Fan X, Guo Q, Ma W. Yinzhihuang injection induces apoptosis and suppresses tumor growth in acute myeloid leukemia cells. PLoS One 2023; 18:e0289697. [PMID: 37816017 PMCID: PMC10564230 DOI: 10.1371/journal.pone.0289697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/23/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND The unmet needs in treating acute myeloid leukemia(AML) promote us to look for more effective and less toxic therapies. In this study, we discovered that Yinzhihuang injection(YZHI), a traditional Chinese patent medicine for hepatitis treatment, suppressed the growth of AML cells. METHOD Anti-proliferative activities of YZHI were measured by CCK-8 assay. Cell cycle arrest was evaluated by PI staining, and apoptosis was evaluated by annexin V/PI staining. To explore the cell cycle arrest and cell death mechanism induced by YZHI, we assessed a series of assays, including measurements of the protein expression and cellular ATP. The anti-tumor activity was further demonstrated in nude mice. RESULTS Flow cytometric and biochemical analysis revealed that YZHI caused cell cycle arrest and induced apoptosis in the AML HL-60 cells. Mechanistically, YZHI activated AMPK by promoting phosphorylation of the kinase. The active AMPK negatively regulated the downstream target mTORC1, leading to the inhibition of cell proliferation and induction of apoptosis. Pretreatment with the AMPK inhibitor compound C rescued YZHI induced apoptosis and partially restored cell proliferation of HL-60. Consistent with the data in vitro, YZHI obviously suppressed subcutaneous xenograft growth in nude mice. CONCLUSIONS In a word, our data suggest that YZHI can be repurposed for the treatment of AML, which is worthy of further clinical evaluation.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yunfu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
10
|
Greifová H, Tokárová K, Jambor T, Štefunková N, Speváková I, Dupák R, Balytska O, Bažány D, Capcarová M, Lukáč N. Isorhamnetin Influences the Viability, Superoxide Production and Interleukin-8 Biosynthesis of Human Colorectal Adenocarcinoma HT-29 Cells In Vitro. Life (Basel) 2023; 13:1921. [PMID: 37763324 PMCID: PMC10533024 DOI: 10.3390/life13091921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Isorhamnetin has gained research interest for its anti-inflammatory, anti-proliferative and chemoprotective properties. In this study, human colon adenocarcinoma cells were cultured in the presence or absence of different isorhamnetin concentrations (5-150 μM) for 24 h or 48 h of cultivation to explore the impact on several parameters of viability/proliferation (mitochondrial function using an MTT test, metabolic activity, cell membrane integrity and lysosomal activity using a triple test). The intracellular generation of superoxide radicals using an NBT test and ELISA analysis was performed to observe the biosynthesis of interleukin 8 (IL-8) in cells stimulated with zymosan, as well as in basal conditions. The antiproliferative activity of isorhamnetin was demonstrated by significantly reduced values of mitochondrial and metabolic activity, integrity of cell membranes and lysosomal activity. Its high prooxidant potential was reflected by the significantly elevated generation of superoxides even in cells with low viability status. The anti-inflammatory effect of isorhamnetin was evident due to decreased IL-8 production, and the most significant decline in IL-8 concentration was observed after 24 h treatment in cells with induced inflammation. We demonstrated that isorhamnetin can suppress the proliferation of HT-29 cells, and this effect was correlated with pro-oxidative and anti-inflammatory activity of isorhamnetin.
Collapse
Affiliation(s)
- Hana Greifová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Katarína Tokárová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Tomáš Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Nikola Štefunková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Ivana Speváková
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Rudolf Dupák
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Olha Balytska
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Denis Bažány
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Marcela Capcarová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| | - Norbert Lukáč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (H.G.)
| |
Collapse
|
11
|
Yang T, Xiao Y, Liu S, Luo F, Tang D, Yu Y, Xie Y. Isorhamnetin induces cell cycle arrest and apoptosis by triggering DNA damage and regulating the AMPK/mTOR/p70S6K signaling pathway in doxorubicin-resistant breast cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154780. [PMID: 37004402 DOI: 10.1016/j.phymed.2023.154780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Acquired resistance to doxorubicin (DOX) inevitably limits its clinical use against breast cancer (BC). Isorhamnetin (IS), a native flavonoid which extensively available in vegetables, fruits, and phytomedicine, has been deemed to the probable cancer chemopreventive agent in preceding explorations since it exhibits satisfied antitumor activity. So far, the strategy for alleviating DOX resistance by using IS as a sensitizer against resistant BC has not yet been covered. PURPOSE To investigate the effect of IS on potentiating the chemoreceptivity of drug-resistant BC cells to DOX in vitro and in vivo and elucidate the possible molecular mechanisms. METHODS MTS assays, colony formation assays, three-dimensional (3D) tumor spheroid model, and migration assay were deployed to verify the inhibiting action of IS in the presence or absence of DOX on resistant BC cells in vitro. Apoptosis, cell cycle regulation, and endocellular reactive oxygen species (ROS) were determined by flow cytometry. Protein levels were monitored by western blotting. Nuclear staining and EdU proliferation were photographed with a confocal laser scanning microscope. The effects of the IS and DOX combination on the tumorigenesis in the xenograft experiments were evaluated for further confirming the in vitro cytotoxicity. RESULTS IS significantly inhibited cell proliferation and migration and enhanced the antitumor competence of DOX against resistant BC cells both in vitro and in vivo. Adjuvant IS (50 μM) effectively enhanced the proapoptotic impacts of DOX in resistant BC cells (35.38 ± 3.18%, vs. 5.83 ± 0.68% in the DOX group) by suppressing the expression of bcl 2 in addition to enhancing cleaved caspase 3, ultimately leading to DNA condensation and fragmentation. IS (20, 30, and 50 μM) treatments induced significant increases in the G2/M populations (41.60 ± 1.28%, 44.60 ± 1.14%, and 50.64 ± 0.67%, vs. 35.84 ± 1.56% in the untreated control in MCF7/ADR cells, p < 0.01) via regulating CDK1/Cyclin B1 complex expression, subsequently triggering the inhibition of BC proliferation. In addition, IS (10, 20, 30, and 50 μM) stimulated the production of interstitial ROS in MCF7/ADR cells, by 3.99-, 4.20-, 6.29-, and 6.78-fold, respectively, versus the untreated group (p < 0.001), which were involved in DNA damage and AMPK-caused intercept of the mTOR/p70S6K signaling. CONCLUSION Our study suggested the anti-breast cancer actions of IS as a DOX sensitizer and expounded the underlying molecular mechanisms, showing that IS could be deemed to a capable alternative for resistant BC cure.
Collapse
Affiliation(s)
- Tianshu Yang
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yi Xiao
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Shuo Liu
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Fazhen Luo
- Pharmacy Department, Shanghai Integrated traditional Chinese and Western Medicine Hospital, Shanghai 200082, China
| | - Dongyun Tang
- Pharmacy Department, Xiangshan Hospital of Traditional Chinese Medicine, Shanghai 200020, China
| | - Yilin Yu
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
12
|
Sarkar S, Das AK, Bhattacharya S, Gachhui R, Sil PC. Isorhamnetin exerts anti-tumor activity in DEN + CCl 4-induced HCC mice. Med Oncol 2023; 40:188. [PMID: 37226027 DOI: 10.1007/s12032-023-02050-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer and the main cause of cancer death globally. The use of medicinal herbs as chemotherapeutic agents in cancer treatment is receiving attention as they possess no or minimum side effects. Isorhamnetin (IRN), a flavonoid, has been under attention for its anti-inflammatory and anti-proliferative properties in a number of cancers, including colorectal, skin, and lung cancers. However, the in vivo mechanism of isorhamnetin to suppress liver cancer has yet to be explored. METHODS AND RESULT HCC was induced by N-diethylnitrosamine (DEN) and carbon tetrachloride (CCL4) in Swiss albino mice. Isorhamnetin (100 mg/kg body weight) was given to examine its anti-tumor properties in HCC mice model. Histological analysis and liver function assays were performed to assess changes in liver anatomy. Probable molecular pathways were explored using immunoblot, qPCR, ELISA, and immunohistochemistry techniques. Isorhamnetin inhibited various pro-inflammatory cytokines to suppress cancer-inducing inflammation. Additionally, it regulated Akt and MAPKs to suppress Nrf2 signaling. Isorhamnetin activated PPAR-γ and autophagy while suppressing cell cycle progression in DEN + CCl4-administered mice. Additionally, isorhamnetin regulated various signaling pathways to suppress cell proliferation, metabolism, and epithelial-mesenchymal transition in HCC. CONCLUSION Regulating diverse cellular signaling pathways makes isorhamnetin a better anti-cancer chemotherapeutic candidate in HCC. Importantly, the anti-TNF-α properties of isorhamnetin could prove it a valuable therapeutic agent in sorafenib-resistant HCC patients. Additionally, anti-TGF-β properties of isorhamnetin could be utilized to reduce the EMT-inducing side effects of doxorubicin.
Collapse
Affiliation(s)
- Sayanta Sarkar
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata, 700032, India
| | - Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Semantee Bhattacharya
- Indian Association for the Cultivation of Science, 2A & 2B, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Ratan Gachhui
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata, 700032, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
13
|
Suknoppakit P, Wangteeraprasert A, Simanurak O, Somran J, Parhira S, Pekthong D, Srisawang P. Calotropis gigantea stem bark extract activates HepG2 cell apoptosis through ROS and its effect on cytochrome P450. Heliyon 2023; 9:e16375. [PMID: 37251821 PMCID: PMC10220234 DOI: 10.1016/j.heliyon.2023.e16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
The 95% ethanolic extract of the dry powder of Calotropis gigantea (C. gigantea) stem bark was separated by fractionation with different solutions to yield 4 fractions: dichloromethane (CGDCM), ethyl acetate (CGEtOAc), and water (CGW). This research focused on CGDCM-induced apoptosis in HepG2 cells with IC50 and above-IC50 values, which provide useful information for future anticancer applications. CGDCM had lower cytotoxicity on normal lung fibroblast IMR-90 cells than on HepG2 cells. Apoptotic induction of CGDCM was mediated by decreased fatty acid and ATP synthesis while increasing reactive oxygen species production. The effects of the four extracts on the activity of the four major CYP450 isoforms (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) were determined using the CYP-specific model activity of each isoform. All four fractions of the extract were shown to be poor inhibitors of CYP1A2 and CYP2E1 (IC50 > 1000 μg/mL) and moderate inhibitors of CYP3A4 (IC50 = 56.54-296.9 μg/mL). CGDCM and CGW exerted moderate inhibition activities on CYP2C9 (IC50 = 59.56 and 46.38 μg/mL, respectively), but CGEtOH and CGEtOAc exhibited strong inhibition activities (IC50 = 12.11 and 20.43 μg/mL, respectively). It is proposed that C. gigantea extracts at high doses have potential for further studies to develop alternative anticancer applications. Inhibiting CYP2C9 activity may also lead to drug-herb interactions.
Collapse
Affiliation(s)
- Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
14
|
Kim MY, Bang E, Hwangbo H, Ji SY, Kim DH, Lee H, Park C, Hong SH, Kim GY, Choi YH. Diallyl trisulfide inhibits monosodium urate-induced NLRP3 inflammasome activation via NOX3/4-dependent mitochondrial oxidative stress in RAW 264.7 and bone marrow-derived macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154705. [PMID: 36796188 DOI: 10.1016/j.phymed.2023.154705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Monosodium urate (MSU) crystals are associated with gouty inflammatory diseases. MSU-associated inflammation is majorly triggered by NOD-like receptor protein 3 (NLRP3) inflammasome that promotes interleukin (IL)-1β secretion. Although diallyl trisulfide (DATS) is well-known polysulfide garlic compounds with anti-inflammatory effects, its action in MSU-induced inflammasome activation has not been known yet. PURPOSE The objective of the current study was to investigate anti-inflammasome effects and mechanisms of DATS in RAW 264.7 and bone marrow-derived macrophages (BMDM). METHODS The concentrations of IL-1β were analyzed with enzyme-linked immunosorbent assay. The MSU-induced mitochondrial damage and reactive oxygen species (ROS) production were detected by fluorescence microscope and flow cytometry. The protein expressions of NLRP3 signaling molecules, NADPH oxidase (NOX) 3/4 were assessed with Western blotting. RESULTS DATS suppressed MSU-induced IL-1β and caspase-1 accompanied by decreased inflammasome complex formation in RAW 264.7 and BMDM. In addition, DATS restored mitochondrial damage. DATS downregulated NOX 3/4 that were upregulated by MSU as predicted by gene microarray and confirmed by Western blotting. CONCLUSION This study first reports mechanistic finding that DATS alleviates MSU-induced NLRP3 inflammasome by mediating NOX3/4-dependent mitochondrial ROS production in macrophages in vitro and ex vivo, suggesting DATS could be effective therapeutic candidate for gouty inflammatory condition.
Collapse
Affiliation(s)
- Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea; Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea; Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea; Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan 47340, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea; Core-Facility Center for Tissue Regeneration, Dong-eui University, Busan 47340, Republic of Korea.
| |
Collapse
|
15
|
Zhang P, Sun Y, Shi L, Sun D, Wang L, Feng D, Ding C. Effect of isorhamnetin on carbonic anhydrase IX expression and tumorigenesis of bladder cancer by activating PPARγ/PTEN/AKT pathway. Tissue Cell 2023; 82:102048. [PMID: 36905861 DOI: 10.1016/j.tice.2023.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND To clarify the research prospect and mechanism analysis of isorhamnetin as a therapeutic drug for bladder cancer. METHODS Firstly, the effects of different concentrations of isorhamnetin on the expression of PPARγ/PTEN/Akt pathway protein, CA9, PPARγ, PTEN and AKT protein were discussed by western blot. The effects of isorhamnetin on the growth of bladder cells were also analyzed. Secondly, we verified whether the effect of isorhamnetin on CA9 was related to PPARγ/PTEN/Akt pathway by western blot, and the mechanism of isorhamnetin on the growth of bladder cells is related to this pathway by CCK8, cell cycle and ball formation experiment. Further, nude mouse model of subcutaneous tumor transplantation was constructed to analyze the effects of isorhamnetin, PPAR and PTEN on 5637 cell tumorigenesis and the effects of isorhamnetin on tumorigenesis and CA9 expression through PPARγ/PTEN/Akt pathway. RESULTS Isorhamnetin inhibited the development of bladder cancer, and regulated the expression of PPAR, PTEN, AKT, CA9. Isorhamnetin inhibits cell proliferation and the transition of cells from G0/G1 phase to S phase, and tumor sphere formation. Carbonic anhydrase IX is a potential downstream molecule of PPARγ/PTEN/AKT pathway. Overexpression of PPARγ and PTEN inhibited expression of CA9 in bladder cancer cells and tumor tissues. Isorhamnetin reduced CA9 expression in bladder cancer via PPARγ/PTEN/AKT pathway, thereby inhibiting bladder cancer tumorigenicity. CONCLUSION Isorhamnetin has the potential to become a therapeutic drug for bladder cancer, whose antitumor mechanism is related to PPARγ/PTEN/AKT pathway. Isorhamnetin reduced CA9 expression in bladder cancer via PPARγ/PTEN/AKT pathway, thereby inhibiting bladder cancer tumorigenicity.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yisheng Sun
- Department of Urology, Shidao People's Hospital of Rongcheng, Weihai, Shandong, China
| | - Lei Shi
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Dekang Sun
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Lin Wang
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Dongdong Feng
- Department of Urology, Haiyang People's Hospital, Haiyang, Shandong, China.
| | - Chao Ding
- Department of Urology, Longkou Hospital of traditional Chinese Medicine, Longkou, Shandong, China.
| |
Collapse
|
16
|
Chmiel M, Stompor-Gorący M. The Spectrum of Pharmacological Actions of Syringetin and Its Natural Derivatives-A Summary Review. Nutrients 2022; 14:nu14235157. [PMID: 36501187 PMCID: PMC9739508 DOI: 10.3390/nu14235157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mono- and poly-O-methylated flavonols and their glycoside derivatives belong to the group of natural plant polyphenols with a wide spectrum of pharmacological activities. These compounds are known for their antioxidant, antimutagenic, hepatoprotective, antidiabetic, and antilipogenic properties. Additionally, they inhibit carcinogenesis and cancer development. Having in mind the multidirectional biological activity of methylated flavonols, we would like to support further study on their health-promoting activities; in this review we summarized the most recent reports on syringetin and some of its structural analogues: laricitrin, ayanin, and isorhamnetin. Natural sources and biological potential of these substances were described based on the latest research papers.
Collapse
|
17
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
18
|
Fang T, Zhou S, Qian C, Yan X, Yin X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. Integrated metabolomics and transcriptomics insights on flavonoid biosynthesis of a medicinal functional forage, Agriophyllum squarrosum (L.), based on a common garden trial covering six ecotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:985572. [PMID: 36204072 PMCID: PMC9530573 DOI: 10.3389/fpls.2022.985572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., well known as sandrice, is an important wild forage in sandy areas and a promising edible and medicinal resource plant with great domestication potential. Previous studies showed flavonoids are one of the most abundant medicinal ingredients in sandrice, whereby isorhamnetin and isorhamnetin-3-glycoside were the top two flavonols with multiple health benefits. However, the molecular regulatory mechanisms of flavonoids in sandrice remain largely unclear. Based on a common garden trial, in this study, an integrated transcriptomic and flavonoids-targeted metabolomic analysis was performed on the vegetative and reproductive periods of six sandrice ecotypes, whose original habitats covered a variety of environmental factor gradients. Multiple linear stepwise regression analysis unveiled that flavonoid accumulation in sandrice was positively correlated with temperature and UVB and negatively affected by precipitation and sunshine duration, respectively. Weighted co-expression network analysis (WGCNA) indicated the bHLH and MYB transcription factor (TF) families might play key roles in sandrice flavonoid biosynthesis regulation. A total of 22,778 differentially expressed genes (DEGs) were identified between ecotype DL and ecotype AEX, the two extremes in most environmental factors, whereby 85 DEGs could be related to known flavonoid biosynthesis pathway. A sandrice flavonoid biosynthesis network embracing the detected 23 flavonoids in this research was constructed. Gene families Plant flavonoid O-methyltransferase (AsPFOMT) and UDP-glucuronosyltransferase (AsUGT78D2) were identified and characterized on the transcriptional level and believed to be synthases of isorhamnetin and isorhamnetin-3-glycoside in sandrice, respectively. A trade-off between biosynthesis of rutin and isorhamnetin was found in the DL ecotype, which might be due to the metabolic flux redirection when facing environmental changes. This research provides valuable information for understanding flavonoid biosynthesis in sandrice at the molecular level and laid the foundation for precise development and utilization of this functional resource forage.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Zhou
- Faculty of Environmental Science and Engineering, Shanxi Institute of Science and Technology, Jincheng, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Pengshu Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiu Liao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Shi
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| |
Collapse
|
19
|
Sawong S, Pekthong D, Suknoppakit P, Winitchaikul T, Kaewkong W, Somran J, Intapa C, Parhira S, Srisawang P. Calotropis gigantea stem bark extracts inhibit liver cancer induced by diethylnitrosamine. Sci Rep 2022; 12:12151. [PMID: 35840761 PMCID: PMC9287404 DOI: 10.1038/s41598-022-16321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Several fractions of Calotropis gigantea extracts have been proposed to have potential anticancer activity in many cancer models. The present study evaluated the anticancer activity of C. gigantea stem bark extracts in liver cancer HepG2 cells and diethylnitrosamine (DEN)-induced primary liver cancer in rats. The carcinogenesis model induced by DEN administration has been widely used to study pathophysiological features and responses in rats that are comparable to those seen in cancer patients. The dichloromethane (CGDCM), ethyl acetate, and water fractions obtained from partitioning crude ethanolic extract were quantitatively analyzed for several groups of secondary metabolites and calactin contents. A combination of C. gigantea stem bark extracts with doxorubicin (DOX) was assessed in this study to demonstrate the enhanced cytotoxic effect to cancer compared to the single administration. The combination of DOX and CGDCM, which had the most potential cytotoxic effect in HepG2 cells when compared to the other three fractions, significantly increased cytotoxicity through the apoptotic effect with increased caspase-3 expression. This combination treatment also reduced ATP levels, implying a correlation between ATP and apoptosis induction. In a rat model of DEN-induced liver cancer, treatment with DOX, C. gigantea at low (CGDCM-L) and high (CGDCM-H) doses, and DOX + CGDCM-H for 4 weeks decreased the progression of liver cancer by lowering the liver weight/body weight ratio and the occurrence of liver hyperplastic nodules, fibrosis, and proliferative cells. The therapeutic applications lowered TNF-α, IL-6, TGF-β, and α-SMA inflammatory cytokines in a similar way, implying that CGDCM had a curative effect against the inflammation-induced liver carcinogenesis produced by DEN exposure. Furthermore, CGDCM and DOX therapy decreased ATP and fatty acid synthesis in rat liver cancer, which was correlated with apoptosis inhibition. CGDCM reduced cleaved caspase-3 expression in liver cancer rats when used alone or in combination with DOX, implying that apoptosis-inducing hepatic carcinogenesis was suppressed. Our results also verified the low toxicity of CGDCM injection on the internal organs of rats. Thus, this research clearly demonstrated a promising, novel anticancer approach that could be applied in future clinical studies of CGDCM and combination therapy.
Collapse
Affiliation(s)
- Suphunwadee Sawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Pennapha Suknoppakit
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thanwarat Winitchaikul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chaidan Intapa
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, 65000, Thailand
| | - Supawadee Parhira
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
20
|
Massa S, Pagliarello R, Paolini F, Venuti A. Natural Bioactives: Back to the Future in the Fight against Human Papillomavirus? A Narrative Review. J Clin Med 2022; 11:jcm11051465. [PMID: 35268556 PMCID: PMC8911515 DOI: 10.3390/jcm11051465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) still represents an important threat to health worldwide. Better therapy in terms of further improvement of outcomes and attenuation of related side-effects is desirable. The pharmaceutical industry has always targeted natural substances-phytochemicals in particular-to identify lead compounds to be clinically validated and industrially produced as antiviral and anticancer drugs. In the field of HPV, numerous naturally occurring bioactives and dietary phytochemicals have been investigated as potentially valuable in vitro and in vivo. Interference with several pathways and improvement of the efficacy of chemotherapeutic agents have been demonstrated. Notably, some clinical trials have been conducted. Despite being endowed with general safety, these natural substances are in urgent need of further assessment to foresee their clinical exploitation. This review summarizes the basic research efforts conducted so far in the study of anti-HPV properties of bio-actives with insights into their mechanisms of action and highlights the variety of their natural origin in order to provide comprehensive mapping throughout the different sources. The clinical studies available are reported, as well, to highlight the need of uniformity and consistency of studies in the future to select those natural compounds that may be suited to clinical application.
Collapse
Affiliation(s)
- Silvia Massa
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Correspondence:
| | - Riccardo Pagliarello
- Biotechnology Laboratory, Casaccia Research Center, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy;
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Francesca Paolini
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| | - Aldo Venuti
- HPV-Unit, Unità Operativa Semplice Dipartimentale (UOSD) Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (F.P.); (A.V.)
| |
Collapse
|
21
|
Hung SY, Chen WF, Lee YC, Su JH, Juan YS, Lin IP, Zhang YH, Chang MK, Lin MY, Chen CY, Lee CH. Rhopaloic acid A induces apoptosis, autophagy and MAPK activation through ROS-mediated signaling in bladder cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153720. [PMID: 34481340 DOI: 10.1016/j.phymed.2021.153720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bladder cancer (BC) is a very common type of malignant cancer in men and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that Rhopaloic acid A (RA), a compound isolated from marine sponges, fights cancer but its potential anti-tumor effect on BC is still unknown. PURPOSE The present study was aimed to explore the potential anti-tumor effects of RA against human BC cells and the underlying molecular mechanism. METHODS Cell cytotoxicity was determined using the MTT and colony formation assays. Cell cycle distribution, apoptosis induction and generation of mitochondrial reactive oxygen species (ROS) were analyzed by flow cytometry. Mitochondrial membrane potential, acridine orange staining and intracellular ROS levels were observed using fluorescence microscopy. Levels of various signaling proteins were assessed using Western blotting. Furthermore, a zebrafish BC xenotransplantation model was used to confirm the anti-tumor effect of RA in vivo. RESULTS Treatment with RA significantly suppressed the proliferation of BC cells that resulted from G2/M cycle arrest. Additionally, RA induced mitochondrial-mediated apoptosis and autophagy in BC cells. The death of BC cells induced by RA was rescued by treatment with inhibitors of apoptosis (Z-VAD-FMA) or autophagy (3-MA). RA activated the MAPK pathway and increased the production of cellular and mitochondrial ROS. Treatment with the ROS scavenger N-acetyl cysteine, effectively reversed the induction of apoptosis, autophagy, JNK activation and DNA damage elicited by RA. Finally, RA significantly inhibited tumor growth in a zebrafish BC xenotransplantation model. CONCLUSION Taken together, our findings indicate that RA induces apoptosis and autophagy and activates the MAPK pathway through ROS-mediated signaling in human BC cells. This RA-induced pathway offers insights into the molecular mechanism of its antitumor effect and shows that RA is a promising candidate for the treatment of BC.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong District, Kaohsiung 83300, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, Department of Medical Research, Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - In-Pin Lin
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Hui Zhang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Kai Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
22
|
Yang Z, Zheng Y, Tursumamat N, Zhu M. Synthesis of 3'-O-Alkyl Homologues and a Biotin Probe of Isorhamnetin and Evaluation of Cytotoxic Efficacy on Cancer Cells. Chem Biodivers 2021; 18:e2100301. [PMID: 34561940 DOI: 10.1002/cbdv.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022]
Abstract
Isorhamnetin is a natural flavonoid which shows a variety of biological activities such as antioxidant, anti-inflammatory and antitumor. In order to identify the cellular binding protein of isorhamnetin as potential anti-cancer target, we first synthesized 3'-O-substituted quercetin as isorhamnetin homologues and evaluated the growth inhibitory activity of these derivatives on breast, colon and prostate cancer cell lines. The preliminary results showed that the 3'-O modification did not affect the cytotoxic activity of the scaffold. Analysis of the co-crystal structure and the docking pose of isorhamnetin with reported binding protein of isorhamnetin or quercetin indicated the 3'-O-substitution groups located outside of the binding pocket, which is in accordance with activity of 3'-O derivatives. Then a biotin conjugate of isorhamnetin with a tetraethylene glycol (PEG)4 linker at the 3' position was synthesized and the resulting probe retained the anti-proliferative activity on cancer cell lines, while the cellular fluorescence analysis showed the distribution of probe inside the cells which indicated the probe had limited cell permeability. Finally, pull down assay both in situ inside cells and in the cell lysates indicated the isorhamnetin biotin probe was capable of protein labeling in cell lysates. These findings provide the isorhamnetin 3'-O-biotin probe as a tool to reveal the target proteins of isorhamnetin.
Collapse
Affiliation(s)
- Zhuojin Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Yi Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Nafisa Tursumamat
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Mingyan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
23
|
The Involvement of Natural Polyphenols in the Chemoprevention of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168812. [PMID: 34445518 PMCID: PMC8396230 DOI: 10.3390/ijms22168812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
From all types of cancer, cervical cancer manages to be in top four most frequent types, with a 6.5% rate of occurrence. The infectious vector that induces the disease, the high-risk Human papillomavirus (HPV), which is a sexually transmitted virus, is capable of transforming the host cell by modulating some of the principal signaling pathways responsible for cell cycle arrest, proliferation, and survival. Fortunately, like other cancer types, cervical cancer can be treated by chirurgical interventions or chemoradiotherapy, but these methods are not exactly the lucky clover of modern medicine because of the adverse effects they have. That is the reason why in the last years the emphasis has been on alternative medicine, more specifically on phytochemicals, as a substantial number of studies showed that diet contributes to cancer prevention and treatment. All these studies are trying to find new chemopreventive agents with less toxicity but high effectiveness both in vitro and in vivo. The aim of this review is to evaluate the literature in order to underline the advantages and disadvantages of polyphenols, a class of dietary compounds, as chemopreventive and chemotherapeutic agents. This review also aims to present polyphenols from different perspectives, starting with mechanisms of action and ending with their toxicity. The bigger picture illustrates that polyphenols have great potential in cervical cancer prevention, with strong effects on gene modulation.
Collapse
|
24
|
Winitchaikul T, Sawong S, Surangkul D, Srikummool M, Somran J, Pekthong D, Kamonlakorn K, Nangngam P, Parhira S, Srisawang P. Calotropis gigantea stem bark extract induced apoptosis related to ROS and ATP production in colon cancer cells. PLoS One 2021; 16:e0254392. [PMID: 34343190 PMCID: PMC8330925 DOI: 10.1371/journal.pone.0254392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Conventional chemotherapeutic agents for colorectal cancer (CRC) cause systemic side effects and eventually become less efficacious owing to the development of drug resistance in cancer cells. Therefore, new therapeutic regimens have focused on the use of natural products. The anticancer activity of several parts of Calotropis gigantea has been reported; however, the effects of its stem bark extract on inhibition of cancer cell proliferation have not yet been examined. In this study, the anticancer activity of C. gigantea stem bark extract, both alone and in combination with 5-fluorouracil (5-FU), was evaluated. A crude ethanolic extract was prepared from dry, powdered C. gigantea barks using 95% ethanol. This was then partitioned to obtain dichloromethane (CGDCM), ethyl acetate, and water fractions. Quantitative analysis of the constituent secondary metabolites and calotropin was performed. These fractions exhibited cytotoxicity in HCT116 and HT-29 cells, with CGDCM showing the highest potency in both the cell lines. A combination of CGDCM and 5-FU significantly enhanced the cytotoxic effect. Moreover, the resistance of normal fibroblast, HFF-1, cells to this combination demonstrated its safety in normal cells. The combination significantly enhanced apoptosis through the mitochondria-dependent pathway. Additionally, the combination reduced adenosine triphosphate production and increased the production of reactive oxygen species, demonstrating the mechanisms involved in the induction of apoptosis. Our results suggest that CGDCM is a promising anti-cancer agent and may enhance apoptosis induction by 5-FU in the treatment of CRC, while minimizing toxicity toward healthy cells.
Collapse
Affiliation(s)
- Thanwarat Winitchaikul
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Suphunwadee Sawong
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
| | - Damratsamon Surangkul
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Metawee Srikummool
- Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Faculty of Medicine, Department of Pathology, Naresuan University, Phitsanulok, Thailand
| | - Dumrongsak Pekthong
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Naresuan University, Phitsanulok, Thailand
| | - Kittiya Kamonlakorn
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry and Pharmacognosy, Naresuan University, Phitsanulok, Thailand
| | - Pranee Nangngam
- Faculty of Science, Department of Biology, Naresuan University, Phitsanulok, Thailand
| | - Supawadee Parhira
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| | - Piyarat Srisawang
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
- * E-mail: (SP); (PS)
| |
Collapse
|
25
|
Tian X, Peng X, Lin J, Zhang Y, Zhan L, Yin J, Zhang R, Zhao G. Isorhamnetin Ameliorates Aspergillus fumigatus Keratitis by Reducing Fungal Load, Inhibiting Pattern-Recognition Receptors and Inflammatory Cytokines. Invest Ophthalmol Vis Sci 2021; 62:38. [PMID: 33783487 PMCID: PMC8010362 DOI: 10.1167/iovs.62.3.38] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Isorhamnetin is a natural flavonoid with both antimicrobial and anti-inflammatory properties, but its effect on fungal keratitis (FK) remains unknown. The current study aims to investigate the antifungal and anti-inflammatory effects of isorhamnetin against mouse Aspergillus fumigatus keratitis. Methods In vitro, the lowest effective concentration of isorhamnetin was assessed by minimum inhibitory concentration and cytotoxicity tests in human corneal epithelial cells (HCECs) and RAW264.7 cells. The antifungal property was investigated by scanning electron microscopy and propidium iodide uptake test. The anti-inflammatory effect of isorhamnetin in HCECs and RAW264.7 cells was observed by quantitative real-time polymerase chain reaction (qRT-PCR). In the eyes of mice with A. fumigatus keratitis, FK severity was evaluated using clinical score, plate counting, histological staining and periodic acid Schiff staining. In vivo, the anti-inflammatory effect of isorhamnetin was examined by immunofluorescence staining, myeloperoxidase assay, Western blot, enzyme-linked immunosorbent assay, and qRT-PCR. Results In HCECs and RAW264.7 cells, isorhamnetin significantly inhibited A. fumigatus conidia growth and hyphae viability at 80 µg/mL without affecting cell viability. In vitro, isorhamnetin altered A. fumigatus hyphal morphology and membrane integrity. In A. fumigatus keratitis mouse model, isorhamnetin treatment alleviated the severity of FK by reducing corneal fungal load and inhibiting neutrophil recruitment. In addition, the mRNA and protein expression levels of TLR-2, TLR-4, Dectin-1, IL-1β, and tumor necrosis factor-α were significantly decreased in isorhamnetin-treated groups in vivo and in vitro. Conclusions Isorhamnetin improves the prognosis of A. fumigatus keratitis in mice by inhibiting the growth of A. fumigatus, reducing the recruitment of neutrophils and downregulating inflammatory factors.
Collapse
Affiliation(s)
- Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Lu Zhan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jiao Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ranran Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
26
|
Wang C, Nan X, Pei S, Zhao Y, Wang X, Ma S, Ma G. Salidroside and isorhamnetin attenuate urotensin II-induced inflammatory response in vivo and in vitro: Involvement in regulating the RhoA/ROCK II pathway. Oncol Lett 2021; 21:292. [PMID: 33732368 PMCID: PMC7905674 DOI: 10.3892/ol.2021.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Urotensin II (UII), a vital vasoconstrictor peptide, causes an inflammatory response in the pathogenesis of atherosclerosis. Previous studies have reported that the Ras homolog gene family, member A (RhoA)/Rho kinases (ROCK) pathway modulates the inflammatory response of the atherosclerotic process. However, to the best of our knowledge, whether the RhoA/ROCK pathway mediates the inflammatory effect of UII has not been previously elucidated. Salidroside and isorhamnetin are two early developed antioxidant Tibetan drugs, both displaying cardioprotective effects against atherosclerosis. Therefore, the aim of the present study was to investigate the protective effects of salidroside, isorhamnetin or combination of these two drugs on the UII-induced inflammatory response in vivo (rats) or in vitro [primary vascular smooth muscle cells (VSMCs)], as well as to examine the role of the RhoA/ROCK pathway in these processes. The levels of inflammatory markers were measured via ELISA. The mRNA and protein expression levels of RhoA and ROCK II were detected using reverse transcription-quantitative PCR assay and western blot analysis. It was demonstrated that salidroside, isorhamnetin and both in combination decreased the levels of the serum pro-inflammatory cytokines TNF-α and IL-1β, as well as increased the levels of the anti-inflammatory cytokine IL-10 and macrophage migration inhibitory factor in rats with subacute infusion of UII and in the culture supernatant from primary VSMCs-exposed to UII. Moreover, salidroside, isorhamnetin and both in combination attenuated the mRNA and protein expression levels of RhoA and ROCK II in vivo and in vitro, at concentrations corresponding to human therapeutic blood plasma concentrations. Thus, these drugs could inhibit the RhoA/ROCK II pathway under UII conditions. The combination of salidroside and isorhamnetin did not display a stronger inhibitory effect on the inflammatory response and the RhoA/ROCK II pathway compared with salidroside and isorhamnetin in isolation. Collectively, the results indicated that salidroside, isorhamnetin and both in combination inhibited the RhoA/ROCK II pathway, which then attenuated the inflammatory response under UII-induced conditions, resulting in cardioprotection in atherosclerosis.
Collapse
Affiliation(s)
- Chenjing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaodong Nan
- Intensive Care Unit, Gansu Provincial Corps Hospital of Chinese People's Armed Police Force, Lanzhou, Gansu 730050, P.R. China
| | - Shuyan Pei
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Yu Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaokun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Shijie Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Guoyan Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
27
|
Santin Y, Lluel P, Rischmann P, Gamé X, Mialet-Perez J, Parini A. Cellular Senescence in Renal and Urinary Tract Disorders. Cells 2020; 9:cells9112420. [PMID: 33167349 PMCID: PMC7694377 DOI: 10.3390/cells9112420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is a state of cell cycle arrest induced by repetitive cell mitoses or different stresses, which is implicated in various physiological or pathological processes. The beneficial or adverse effects of senescent cells depend on their transitory or persistent state. Transient senescence has major beneficial roles promoting successful post-injury repair and inhibiting malignant transformation. On the other hand, persistent accumulation of senescent cells has been associated with chronic diseases and age-related illnesses like renal/urinary tract disorders. The deleterious effects of persistent senescent cells have been related, in part, to their senescence-associated secretory phenotype (SASP) characterized by the release of a variety of factors responsible for chronic inflammation, extracellular matrix adverse remodeling, and fibrosis. Recently, an increase in senescent cell burden has been reported in renal, prostate, and bladder disorders. In this review, we will summarize the molecular mechanisms of senescence and their implication in renal and urinary tract diseases. We will also discuss the differential impacts of transient versus persistent status of cellular senescence, as well as the therapeutic potential of senescent cell targeting in these diseases.
Collapse
Affiliation(s)
- Yohan Santin
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
| | - Philippe Lluel
- Urosphere SAS, Rue des Satellites, 31400 Toulouse, France;
| | - Pascal Rischmann
- Department of Urology, Kidney Transplantation and Andrology, Toulouse Rangueil University Hospital, 31432 Toulouse, France; (P.R.); (X.G.)
| | - Xavier Gamé
- Department of Urology, Kidney Transplantation and Andrology, Toulouse Rangueil University Hospital, 31432 Toulouse, France; (P.R.); (X.G.)
| | - Jeanne Mialet-Perez
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
| | - Angelo Parini
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1048—I2MC, 31432 Toulouse, France; (Y.S.); (J.M.-P.)
- Correspondence: ; Tel.: +33-561325601
| |
Collapse
|
28
|
Tao J, Diao L, Chen F, Shen A, Wang S, Jin H, Cai D, Hu Y. pH-Sensitive Nanoparticles Codelivering Docetaxel and Dihydroartemisinin Effectively Treat Breast Cancer by Enhancing Reactive Oxidative Species-Mediated Mitochondrial Apoptosis. Mol Pharm 2020; 18:74-86. [PMID: 33084332 DOI: 10.1021/acs.molpharmaceut.0c00432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis are the major causes of high mortality in breast cancer. We previously constructed pH-sensitive nanoparticles (D/D NPs) for the codelivery of docetaxel (DTX) and dihydroartemisinin (DHA) and demonstrated that D/D NPs showed anticancer activity in breast cancer cells in vitro. The present study further investigated the therapeutic effect of D/D NPs on orthotopic breast cancer in vivo and examined the antitumor mechanism of D/D NPs. D/D NPs significantly increased the apoptosis of 4T1 cells with a synergistic effect of DTX and DHA. D/D NPs increased reactive oxygen species, reduced mitochondrial membrane potential, increased the expression of p53, and induced cytochrome c release into the cytoplasm to activate caspase-3. In an orthotopic metastatic breast cancer mouse model derived from 4T1 cells, D/D NPs inhibited tumor growth and prevented lung metastasis due to the synergistic effect of DTX and DHA. No distinct changes were observed in the histology of major organs. These results indicate that pH-sensitive D/D NP-based combination therapy may be a promising strategy for the treatment of metastatic breast cancers via the ROS-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Jin Tao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Diao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fangcheng Chen
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ao Shen
- The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shutian Wang
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Hongyan Jin
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Danwei Cai
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
29
|
Role of Natural Bioactive Compounds in the Rise and Fall of Cancers. Cancers (Basel) 2020; 12:cancers12092499. [PMID: 32899221 PMCID: PMC7564139 DOI: 10.3390/cancers12092499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Recent years have seen the idea of a close association between nutrition and the modulation of cancer development/progression reinforced [...].
Collapse
|
30
|
Chen Q, Song S, Wang Z, Shen Y, Xie L, Li J, Jiang L, Zhao H, Feng X, Zhou Y, Zhou M, Zeng X, Ji N, Chen Q. Isorhamnetin induces the paraptotic cell death through ROS and the ERK/MAPK pathway in OSCC cells. Oral Dis 2020; 27:240-250. [PMID: 32654232 DOI: 10.1111/odi.13548] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE There were rarely investigations on the effects and molecular mechanisms of oral squamous cell carcinoma (OSCC) cells when treated with isorhamnetin. This article assesses the anti-cancer effect of isorhamnetin. METHODS AND MATERIALS Oral squamous cell carcinoma cells were treated with or without isorhamnetin. Cell proliferation, cell cycle arrest, cell migration, cell death, and the related signaling pathways were evaluated. RESULTS The results revealed that cell proliferation was inhibited in a dose- and time-dependent manner, which was confirmed by diminished cell viability and revealed by decreased in the number of cell colonies. In addition, the cell cycle arrested in the G2/M phase, and the protein levels of cyclin B1 and CDC2 were suppressed. Moreover, the cell migration was inhibited, and the protein levels of related proteins were modulated. Furthermore, it could be observed that abundant cytoplasmic vacuoles existed which that were derived from mitochondria and the endoplasmic reticulum. It was confirmed that cell death did not result from apoptosis and may have which may be apt to paraptosis. Isorhamnetin was observed to upregulate phosphorylated ERK cascades and increase intracellular reactive oxygen species levels. CONCLUSIONS Our study suggested that the anti-cancer effect of isorhamnetin might trigger paraptosis, which may indicate a new therapeutic approach to OSCC.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Moldogazieva NT, Mokhosoev IM, Terentiev AA. Metabolic Heterogeneity of Cancer Cells: An Interplay between HIF-1, GLUTs, and AMPK. Cancers (Basel) 2020; 12:E862. [PMID: 32252351 PMCID: PMC7226606 DOI: 10.3390/cancers12040862] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
It has been long recognized that cancer cells reprogram their metabolism under hypoxia conditions due to a shift from oxidative phosphorylation (OXPHOS) to glycolysis in order to meet elevated requirements in energy and nutrients for proliferation, migration, and survival. However, data accumulated over recent years has increasingly provided evidence that cancer cells can revert from glycolysis to OXPHOS and maintain both reprogrammed and oxidative metabolism, even in the same tumor. This phenomenon, denoted as cancer cell metabolic plasticity or hybrid metabolism, depends on a tumor micro-environment that is highly heterogeneous and influenced by an intensity of vasculature and blood flow, oxygen concentration, and nutrient and energy supply, and requires regulatory interplay between multiple oncogenes, transcription factors, growth factors, and reactive oxygen species (ROS), among others. Hypoxia-inducible factor-1 (HIF-1) and AMP-activated protein kinase (AMPK) represent key modulators of a switch between reprogrammed and oxidative metabolism. The present review focuses on cross-talks between HIF-1, glucose transporters (GLUTs), and AMPK with other regulatory proteins including oncogenes such as c-Myc, p53, and KRAS; growth factor-initiated protein kinase B (PKB)/Akt, phosphatydyl-3-kinase (PI3K), and mTOR signaling pathways; and tumor suppressors such as liver kinase B1 (LKB1) and TSC1 in controlling cancer cell metabolism. The multiple switches between metabolic pathways can underlie chemo-resistance to conventional anti-cancer therapy and should be taken into account in choosing molecular targets to discover novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nurbubu T. Moldogazieva
- Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Innokenty M. Mokhosoev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| | - Alexander A. Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (I.M.M.); (A.A.T.)
| |
Collapse
|
32
|
Kim Y, Eom YJ, Cho SH. Treatment of Hominis placenta pharmacopuncture for a patient with mild neurocognitive disorder: Case report. J Pharmacopuncture 2020; 22:279-283. [PMID: 31970026 PMCID: PMC6970571 DOI: 10.3831/kpi.2019.22.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Hominis placenta pharmacopuncture, a treatment that injects Hominis placenta extract into acupoints, has been suggested in the literature and researches that it could be used for cognitive decline. We experienced a case of mild neurocognitive disorder treated with Hominis placenta pharmacopuncture. Hominis placenta pharmacopuncture could be a possible treatment modality producing substantial clinical result in cognitive function which is assessed with Mini-Mental State Examination-Dementia Screening (MMSE-DS), Korean Version of Montreal Cognitive Assessment (MoCA-K), and Korean-Dementia Rating Scale (K-DRS). A 84-year-old man with mild neurocognitive disorder received Hominis placenta pharmacopuncture on GV20, CV12, and bilateral ST36 for a month. The results of neuropsychological examination showed increase in scores after treatment of Hominis placenta pharmacopuncture. Before treatment, they were 15 points for MoCA-K, and 120 points for K-DRS (7.6%), but after treatment, they elevated by 21 points for MoCA-K and 137 points for K-DRS (100%). MMSE-DS score was 28 points, unchanged before and after treatment. It did not cause any side-effect. Hominis placenta pharmacopuncture could be a safe option for treating mild neurocognitive disorder.
Collapse
Affiliation(s)
- Yunna Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| | - Yoon Ji Eom
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| | - Seung-Hun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
33
|
Kim HJ, Jeong JW, Park C, Choi YH, Hong SH. Naesohwangryeon-tang Induced Apoptosis and Autophagy in A549 Human Lung Cancer Cells. J Pharmacopuncture 2020; 22:269-278. [PMID: 31970025 PMCID: PMC6970567 DOI: 10.3831/kpi.2019.22.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023] Open
Abstract
Objectives Naesohwangryeon-tang (NHT) is a type of traditional herbal formula, however, little is known about its antitumor activity. In this study, the antitumor properties of NHT was evaluated in human lung adenocarcinoma cells. Methods To check the inhibitory effect of NHT, MTT assay was performed. Cell cycle analysis and detection of ROS production were conducted by flow cytometry. To evaluate the signaling pathway, Western blotting was conducted. Results Our results showed that the decrease of cell proliferation by NHT stimulation occurred more significantly in A549 cells than in NCI-H460 cells. In addition, NHT-induced apoptosis was associated with the activation of caspases and production of reactive oxygen species (ROS). NHT-induced apoptosis was attenuated after pretreatments with z-VAD-fmk or N-acetylcysteine, suggesting that NHT-induced apoptosis was caspase- and ROS-dependent. Interestingly, NHT treatment led to the development of autophagic vesicular organelles and upregulation of several autophagy-related genes. The pretreatment of bafilomycin A1 decreased apoptosis slightly but increased cell viability in the presence of NHT. Conclusion These findings indicated that NHT induces both apoptosis and cell-protective autophagy in human lung cancer cells. This data suggests that NHT might be a novel herbal drug for lung cancer.
Collapse
Affiliation(s)
- Hong Jae Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resoureces, Gyeongsangbuk-do 37242, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dong-eui University, Busan 47340, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
34
|
Screening of the Hepatotoxic Components in Fructus Gardeniae and Their Effects on Rat Liver BRL-3A Cells. Molecules 2019; 24:molecules24213920. [PMID: 31671698 PMCID: PMC6864725 DOI: 10.3390/molecules24213920] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Fructus Gardeniae (FG) is a common Chinese medicine and food. However, the toxicity of FG has drawn increasing concern, especially its hepatotoxicity. The purpose of this study was to screen the hepatotoxic components of FG and evaluate their effects on rat liver BRL-3A cells. The chemical composition of FG was determined by HPLC-ESI-MS. CCK-8 assay was used to evaluate the cytotoxicity of ten chemical components from FG, and then the toxic components with significant inhibitory activity were selected for further study. The results showed that geniposide, genipin, genipin-1-gentiobioside, gardenoside, and shanzhiside all suppress cells viability. Apoptosis assays further indicated that geniposide and its metabolite genipin are the main hepatotoxic components of FG. Pretreatment of cells with geniposide or genipin increased the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). The activities of superoxide dismutase (SOD) and glutathione (GSH) were decreased, while the malondialdehyde (MDA) level was increased. The cell contents of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) were also increased. Molecular docking simulations were used to investigate the mechanism of FG-induced hepatotoxicity, revealing that geniposide and genipin bind strongly to the pro-inflammatory factor TNFR1 receptor of the NF-κB and MAPK signaling pathways. The obtained results strongly indicate that the hepatotoxicity of FG is caused by iridoids compounds. Genipin had the most significant hepatotoxic effect. These toxic substances destroy the cell antioxidant defense system, increasing inflammatory injury to the liver cells and leading to apoptosis and even necrosis. Thus, this study lays a foundation for toxicology research into FG and its rational application.
Collapse
|