1
|
Li M, Cui Y, Qi Q, Liu J, Li J, Huang G, Yang J, Sun J, Ma Z, Liang S, Zhang D, Jiang J, Zhu R, Liu Q, Huang R, Yan J. SPOP downregulation promotes bladder cancer progression based on cancer cell-macrophage crosstalk via STAT3/CCL2/IL-6 axis and is regulated by VEZF1. Theranostics 2024; 14:6543-6559. [PMID: 39479456 PMCID: PMC11519788 DOI: 10.7150/thno.101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Cancer cells are intimately intertwined with tumor microenvironment (TME), fostering a symbiotic relationship propelling cancer progression. However, the interaction between cancer cells and tumor-associated macrophages (TAMs) in urothelial bladder cancer (UBC) remains poorly understood. Methods: UBC cell lines (5637, T24 and SW780), along with a monocytic cell line (U937) capable of differentiating into macrophage, were used in a co-culture system for cell proliferation and stemness by MTT, sphere formation assays. VEZF1/SPOP/STAT3/CCL2/ IL-6 axis was determined by luciferase reporter, ChIP, RNA-seq, co-IP, in vitro ubiquitination, RT-qPCR array and ELISA analyses. Results: We observed the frequent downregulation of SPOP, an E3 ubiquitin ligase, was positively associated with tumor progression and TAM infiltration in UBC patients and T24 xenografts. Cancer cell-TAM crosstalk promoting tumor aggressiveness was demonstrated dependent on SPOP deficiency: 1) In UBC cells, STAT3 was identified as a novel substrate of SPOP, and SPOP deficiency increased STAT3 protein stability, elevated chemokine CCL2 secretion, which induced chemotaxis and M2 polarization of macrophage; 2) In co-cultured macrophages, IL-6 secretion enhanced UBC cell proliferation and stemness. Additionally, transcription factor VEZF1 could directly activate SPOP transcription, and its overexpression suppressed the above effects in UBC cells. Conclusions: A pivotal role of SPOP in maintaining UBC stemness and remodeling immunosuppressive TME was revealed. Both the intrinsic signaling (dysregulated VEZF1/SPOP/STAT3 axis) and the extrinsic cues from TME (CCL2-IL-6 axis based on macrophages) promoted UBC progression. Targeting this crosstalk may offer a promising therapeutic strategy for UBC patients with SPOP deficiency.
Collapse
Affiliation(s)
- Meiqian Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Yangyan Cui
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Qi Qi
- Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Jiakuan Liu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Jiaxuan Li
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Guifang Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiale Yang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhihui Ma
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Liang
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ruimin Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yan
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center; Laboratory Animal Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Kumar S, Arwind DA, Kumar B H, Pandey S, Nayak R, Vithalkar MP, Kumar N, Pai KSR. Inhibition of STAT3: A promising approach to enhancing the efficacy of chemotherapy in medulloblastoma. Transl Oncol 2024; 46:102023. [PMID: 38852276 PMCID: PMC11220551 DOI: 10.1016/j.tranon.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dube Aakash Arwind
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India.
| |
Collapse
|
3
|
Acevedo S, Segovia MF, de la Fuente-Ortega E. Emerging Perspectives in Zinc Transporter Research in Prostate Cancer: An Updated Review. Nutrients 2024; 16:2026. [PMID: 38999774 PMCID: PMC11243615 DOI: 10.3390/nu16132026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Dysregulation of zinc and zinc transporters families has been associated with the genesis and progression of prostate cancer. The prostate epithelium utilizes two types of zinc transporters, the ZIP (Zrt-, Irt-related Protein) and the ZnTs (Zinc Transporter), to transport zinc from the blood plasma to the gland lumen. ZIP transporters uptake zinc from extracellular space and organelle lumen, while ZnT transporters release zinc outside the cells or to organelle lumen. In prostate cancer, a commonly observed low zinc concentration in prostate tissue has been correlated with downregulations of certain ZIPs (e.g., ZIP1, ZIP2, ZIP3, ZIP14) and upregulations of specific ZnTs (e.g., ZnT1, ZnT9, ZnT10). These alterations may enable cancer cells to adapt to toxic high zinc levels. While zinc supplementation has been suggested as a potential therapy for this type of cancer, studies have yielded inconsistent results because some trials have indicated that zinc supplementation could exacerbate cancer risk. The reason for this discrepancy remains unclear, but given the high molecular and genetic variability present in prostate tumors, it is plausible that some zinc transporters-comprising 14 ZIP and 10 ZnT members-could be dysregulated in others patterns that promote cancer. From this perspective, this review highlights novel dysregulation, such as ZIP-Up/ZnT-Down, observed in prostate cancer cell lines for ZIP4, ZIP8, ZnT2, ZnT4, ZnT5, etc. Additionally, an in silico analysis of an available microarray from mouse models of prostate cancer (Nkx3.1;Pten) predicts similar dysregulation pattern for ZIP4, ZIP8, and ZnT2, which appear in early stages of prostate cancer progression. Furthermore, similar dysregulation patterns are supported by an in silico analysis of RNA-seq data from human cancer tumors available in cBioPortal. We discuss how these dysregulations of zinc transporters could impact zinc supplementation trials, particularly focusing on how the ZIP-Up/ZnT-Down dysregulation through various mechanisms might promote prostate cancer progression.
Collapse
Affiliation(s)
- Samantha Acevedo
- Laboratorio Estrés Celular y Enfermedades Crónicas No Transmisibles, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| | - María Fernanda Segovia
- Laboratorio Estrés Celular y Enfermedades Crónicas No Transmisibles, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
| | - Erwin de la Fuente-Ortega
- Laboratorio Estrés Celular y Enfermedades Crónicas No Transmisibles, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo 1781421, Chile
| |
Collapse
|
4
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
5
|
Zhang C, Gu L, Xiao J, Jin F. Knockdown of RBM15 inhibits tumor progression and the JAK-STAT signaling pathway in cervical cancer. BMC Cancer 2023; 23:684. [PMID: 37474926 PMCID: PMC10360283 DOI: 10.1186/s12885-023-11163-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND RNA binding motif protein 15 (RBM15), a writer of N6-methyladenosine (m6A) methylation, contributes significantly to the development of various tumors. However, the function of RBM15 in cervical cancer (CC) has not been determined. METHODS Based on the GSE9750, GSE63514, and m6A datasets, m6A-related differentially expressed genes (DEGs) were screened out. The hub genes were identified by generating a Protein-Protein Interaction (PPI) network. RT-qPCR was conducted to assess the mRNA expression of hub genes. CCK8, scratch wound healing, and transwell assays were utilized to examine the influence of RBM15 on HeLa and SiHa cells. Tumor xenograft models were used to assess the effects of RBM15 on tumorigenesis. A mechanistic analysis of RBM15 in CC tumors was conducted using the GeneCards and Coxpresdb databases, followed by a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the pathway-related genes were subsequently validated using Western blotting. RESULTS Five DEGs were screened, including WTAP, RBM15, CBLL1, and YTHDC2. Among them, WTAP, RBM15, CBLL1, and YTHDC2 were hub genes and can be used as biomarkers for CC. RBM15 expression was considerably increased, while WTAP, CBLL1, and YTHDC2 were significantly downregulated. Knockdown of RBM15 significantly suppressed the proliferation, invasion, and migration of CC cells and tumorigenesis. Moreover, knockdown of RBM15 significantly reduced the expression levels of proteins related to the JAK-STAT pathway. CONCLUSIONS Knockdown of RBM15 inhibited the progression of CC cells, which probably by inhibiting the JAK-STAT pathway pathway.
Collapse
Affiliation(s)
- Chunnian Zhang
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China.
| | - Liqin Gu
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Juan Xiao
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China
| | - Feng Jin
- Department of Gynecology, Ganzhou People's Hospital, No. 16, Meiguan Avenue, Ganzhou City, 341000, Jiangxi Province, China
| |
Collapse
|
6
|
Wan P, He X, Han Y, Wang L, Yuan Z. Stat5 inhibits NLRP3-mediated pyroptosis to enhance chemoresistance of breast cancer cells via promoting miR-182 transcription. Chem Biol Drug Des 2023; 102:14-25. [PMID: 36905318 DOI: 10.1111/cbdd.14229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
The treatment of breast cancer (BC) calls for targeted methods to overcome chemoresistance (CR). This study is expected to figure out the mechanism of signal transducer and activator of transcription 5 (STAT5) in NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis and CR in BC cells. BC cell lines resistant to paclitaxel (PTX) and cis-diamminedichloro-platinum (DDP) were prepared. Expressions of Stat5, miR-182, and NLRP3 were detected. The 50% inhibition concentration (IC50 ), proliferation, colony formation, apoptosis rate, and levels of pyroptosis-related factors were appraised and determined. The binding relationships of Stat5 and miR-182, and miR-182 and NLRP3 were testified. Stat5 and miR-182 were highly expressed in drug-resistant BC cells. Silencing Stat5 reduced proliferation and colony formation of drug-resistant BC cells, coincided with elevated levels of pyroptosis-related factors. Stat5 bound to the promoter region of miR-182 to promote miR-182 expression. miR-182 inhibition reversed the role of silencing Stat5 in BC cells. miR-182 inhibited NLRP3. Overall, Stat5 bound to the promoter region of miR-182 to promote miR-182 expression and inhibit NLRP3 transcription, thereby suppressing pyroptosis and enhancing CR of BC cells.
Collapse
Affiliation(s)
- Peng Wan
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Xiaolan He
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Ying Han
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Liangliang Wang
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| | - Zuguo Yuan
- Affiliated People's Hospital of Ningbo University Cancer Chemoradiotherapy Center, Ningbo, China
| |
Collapse
|
7
|
Wang H, Chen J, Li S, Yang J, Tang D, Wu W, Yu K, Cao Y, Xu K, Yin P, Chen Y, Li W. Bufalin reverses cancer-associated fibroblast-mediated colorectal cancer metastasis by inhibiting the STAT3 signaling pathway. Apoptosis 2023; 28:594-606. [PMID: 36705874 DOI: 10.1007/s10495-023-01819-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/28/2023]
Abstract
At present, recurrence and metastasis are still important factors that lead to a poor prognosis among colorectal cancer (CRC) patients. Cancer-associated fibroblasts (CAFs) can promote tumorigenesis and development. Bufalin is the main active monomer of the clinical drug cinobufacini, which exhibits antitumor activity in various cancers. But few research have investigated the effect of bufalin in inhibiting metastasis from the perspective of the tumor microenvironment. We first isolated CAFs from freshly resected colorectal cancer patient specimens and observed the effect of CAFs on CRC cell invasion through a series of experiments. We explored the effect of bufalin on the physiological activity of CRC mediated by CAFs through experiments. In our study, we found that CAFs could promote CRC cell activity through the STAT3 pathway. Bufalin reversed CAF-mediated CRC invasion and metastasis by inhibiting the STAT3 pathway. Overexpression of STAT3 attenuated the inhibitory function of bufalin on invasion and metastasis. Taken together, bufalin can reverse CAF-mediated colorectal cancer metastasis based on inhibiting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Haijing Wang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jinbao Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Sen Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Donghao Tang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wentao Wu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Kun Yu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Yijun Cao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China. .,Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China. .,Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, 230032, China.
| | - Yi Chen
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, China. .,Key laboratory of whole-period monitoring and precise intervention of digestive cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201100, China.
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China. .,Shanghai Putuo Central School of Clinical Medicine, Anhui Medicine University, Anhui, 230032, China.
| |
Collapse
|
8
|
Wang KW, Wang MD, Li ZX, Hu BS, Wu JJ, Yuan ZD, Wu XL, Yuan QF, Yuan FL. An antigen processing and presentation signature for prognostic evaluation and immunotherapy selection in advanced gastric cancer. Front Immunol 2022; 13:992060. [PMID: 36311733 PMCID: PMC9615473 DOI: 10.3389/fimmu.2022.992060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of the study was to propose a signature based on genes associated with antigen processing and presentation (APscore) to predict prognosis and response to immune checkpoint inhibitors (ICIs) in advanced gastric cancer (aGC). Background How antigen presentation-related genes affected the immunotherapy response and whether they could predict the clinical outcomes of the immune checkpoint inhibitor (ICI) in aGC remain largely unknown. Methods In this study, an aGC cohort (Kim cohort, RNAseq, N=45) treated by ICIs, and 467 aGC patients from seven cohorts were conducted to investigate the value of the APscore predicting the prognosis and response to ICIs. Subsequently, the associations of the APscore with the tumor microenvironment (TME), molecular characteristics, clinical features, and somatic mutation variants in aGC were assessed. The area under the receiver operating characteristic curve (AUROC) of the APscore was analyzed to estimate response to ICIs. Cox regression or Log-rank test was used to estimate the prognosis of aGC patients. Results The APscore constructed by principal component analysis algorithms was an effective predictive biomarker of the response to ICIs in the Kim cohort and 467 aGC patients (Kim: AUC =0.85, 95% CI: 0.69–1.00; 467 aGC: AUC =0.69, 95% CI: 0.63–0.74). The APscore also was a prognostic biomarker in 467 aGC patients (HR=1.73, 95% CI: 1.21−2.46). Inhibitory immunity, decreased TMB and low stromal scores were observed in the high APscore group, while activation of immunity, increased TMB, and high stromal scores were observed in the low APscore group. Next, we evaluated the value of several central genes in predicting the prognosis and response to ICIs in aGC patients, and verified them using immunogenic, transcriptomic, genomic, and multi-omics methods. Lastly, a predictive model built successfully discriminated patients with vs. without immunotherapy response and predicted the survival of aGC patients. Conclusions The APscore was a new biomarker for identifying high-risk aGC patients and patients with responses to ICIs. Exploration of the APscore and hub genes in multi-omics GC data may guide treatment decisions.
Collapse
Affiliation(s)
- Ke-wei Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mei-dan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zi-xi Li
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ben-shun Hu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-jie Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zheng-dong Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-long Wu
- Department of hospital infection, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qin-fang Yuan
- Department of hospital infection, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-lai Yuan
- Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Feng-lai Yuan,
| |
Collapse
|
9
|
Ding X, Sharko AC, McDermott MSJ, Schools GP, Chumanevich A, Ji H, Li J, Zhang L, Mack ZT, Sikirzhytski V, Shtutman M, Ivers L, O'Donovan N, Crown J, Győrffy B, Chen M, Roninson IB, Broude EV. Inhibition of CDK8/19 Mediator kinase potentiates HER2-targeting drugs and bypasses resistance to these agents in vitro and in vivo. Proc Natl Acad Sci U S A 2022; 119:e2201073119. [PMID: 35914167 PMCID: PMC9371674 DOI: 10.1073/pnas.2201073119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
Breast cancers (BrCas) that overexpress oncogenic tyrosine kinase receptor HER2 are treated with HER2-targeting antibodies (such as trastuzumab) or small-molecule kinase inhibitors (such as lapatinib). However, most patients with metastatic HER2+ BrCa have intrinsic resistance and nearly all eventually become resistant to HER2-targeting therapy. Resistance to HER2-targeting drugs frequently involves transcriptional reprogramming associated with constitutive activation of different signaling pathways. We have investigated the role of CDK8/19 Mediator kinase, a regulator of transcriptional reprogramming, in the response of HER2+ BrCa to HER2-targeting drugs. CDK8 was in the top 1% of all genes ranked by correlation with shorter relapse-free survival among treated HER2+ BrCa patients. Selective CDK8/19 inhibitors (senexin B and SNX631) showed synergistic interactions with lapatinib and trastuzumab in a panel of HER2+ BrCa cell lines, overcoming and preventing resistance to HER2-targeting drugs. The synergistic effects were mediated in part through the PI3K/AKT/mTOR pathway and reduced by PI3K inhibition. Combination of HER2- and CDK8/19-targeting agents inhibited STAT1 and STAT3 phosphorylation at S727 and up-regulated tumor suppressor BTG2. The growth of xenograft tumors formed by lapatinib-sensitive or -resistant HER2+ breast cancer cells was partially inhibited by SNX631 alone and strongly suppressed by the combination of SNX631 and lapatinib, overcoming lapatinib resistance. These effects were associated with decreased tumor cell proliferation and altered recruitment of stromal components to the xenograft tumors. These results suggest potential clinical benefit of combining HER2- and CDK8/19-targeting drugs in the treatment of metastatic HER2+ BrCa.
Collapse
Affiliation(s)
- Xiaokai Ding
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Amanda C Sharko
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Martina S J McDermott
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Alexander Chumanevich
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Hao Ji
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Li Zhang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Zachary T Mack
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Vitali Sikirzhytski
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Michael Shtutman
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Laura Ivers
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, H-1085, Hungary
- Oncology Biomarker Research Group, Research Center for Natural Sciences, H-1117, Budapest, Hungary
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
- Senex Biotechnology, Inc., 715 Sumter St., Columbia, SC, 29208
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, 715 Sumter St., Columbia, SC, 29208
| |
Collapse
|
10
|
Kaviany S, Bartkowiak T, Dulek DE, Khan YW, Hayes MJ, Schaefer SG, Ye X, Dahunsi DO, Connelly JA, Irish JM, Rathmell JC. Systems Immunology Analyses of STAT1 Gain-of-Function Immune Phenotypes Reveal Heterogeneous Response to IL-6 and Broad Immunometabolic Roles for STAT1. Immunohorizons 2022; 6:447-464. [PMID: 35840326 PMCID: PMC9623573 DOI: 10.4049/immunohorizons.2200041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Patients with STAT1 gain-of-function (GOF) pathogenic variants have enhanced or prolonged STAT1 phosphorylation following cytokine stimulation and exhibit increased yet heterogeneous susceptibility to infections, autoimmunity, and cancer. Although disease phenotypes are diverse and other genetic factors contribute, how STAT1 GOF affects cytokine sensitivity and cell biology remains poorly defined. In this study, we analyzed the immune and immunometabolic profiles of two patients with known pathogenic heterozygous STAT1 GOF mutation variants. A systems immunology approach of peripheral blood cells from these patients revealed major changes in multiple immune cell compartments relative to healthy adult and pediatric donors. Although many phenotypes of STAT1 GOF donors were shared, including increased Th1 cells but decreased class-switched B cells and plasmacytoid dendritic cell populations, others were heterogeneous. Mechanistically, hypersensitivity for cytokine-induced STAT1 phosphorylation in memory T cell populations was particularly evident in response to IL-6 in one STAT1 GOF patient. Immune cell metabolism directly influences cell function, and the STAT1 GOF patients shared an immunometabolic phenotype of heightened glucose transporter 1 (GLUT1) and carnitine palmitoyl transferase 1A (CPT1a) expression across multiple immune cell lineages. Interestingly, the metabolic phenotypes of the pediatric STAT1 GOF donors more closely resembled or exceeded those of healthy adult than healthy age-similar pediatric donors, which had low expression of these metabolic markers. These results define new features of STAT1 GOF patients, including a differential hypersensitivity for IL-6 and a shared increase in markers of metabolism in many immune cell types that suggests a role for STAT1 in metabolic regulation of immunity.
Collapse
Affiliation(s)
- Saara Kaviany
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Todd Bartkowiak
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Daniel E Dulek
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Yasmin W Khan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Madeline J Hayes
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Samuel G Schaefer
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Debolanle O Dahunsi
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - James A Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan M Irish
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN;
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN; and
| | - Jeffrey C Rathmell
- Vanderbilt Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
11
|
Hadjigol S, Shah BA, O’Brien-Simpson NM. The 'Danse Macabre'-Neutrophils the Interactive Partner Affecting Oral Cancer Outcomes. Front Immunol 2022; 13:894021. [PMID: 35784290 PMCID: PMC9243430 DOI: 10.3389/fimmu.2022.894021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Over the past few decades, tremendous advances in the prevention, diagnosis, and treatment of cancer have taken place. However for head and neck cancers, including oral cancer, the overall survival rate is below 50% and they remain the seventh most common malignancy worldwide. These cancers are, commonly, aggressive, genetically complex, and difficult to treat and the delay, which often occurs between early recognition of symptoms and diagnosis, and the start of treatment of these cancers, is associated with poor prognosis. Cancer development and progression occurs in concert with alterations in the surrounding stroma, with the immune system being an essential element in this process. Despite neutrophils having major roles in the pathology of many diseases, they were thought to have little impact on cancer development and progression. Recent studies are now challenging this notion and placing neutrophils as central interactive players with other immune and tumor cells in affecting cancer pathology. This review focuses on how neutrophils and their sub-phenotypes, N1, N2, and myeloid-derived suppressor cells, both directly and indirectly affect the anti-tumor and pro-tumor immune responses. Emphasis is placed on what is currently known about the interaction of neutrophils with myeloid innate immune cells (such as dendritic cells and macrophages), innate lymphoid cells, natural killer cells, and fibroblasts to affect the tumor microenvironment and progression of oral cancer. A better understanding of this dialog will allow for improved therapeutics that concurrently target several components of the tumor microenvironment, increasing the possibility of constructive and positive outcomes for oral cancer patients. For this review, PubMed, Web of Science, and Google Scholar were searched for manuscripts using keywords and combinations thereof of "oral cancer, OSCC, neutrophils, TANs, MDSC, immune cells, head and neck cancer, and tumor microenvironment" with a focus on publications from 2018 to 2021.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| | | | - Neil M. O’Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, Centre for Oral Health Research, Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, Carlton, VIC, Australia
| |
Collapse
|
12
|
Zhou XY, Dai HY, Zhang H, Zhu JL, Hu H. Signal transducer and activator of transcription family is a prognostic marker associated with immune infiltration in endometrial cancer. J Clin Lab Anal 2022; 36:e24315. [PMID: 35244291 PMCID: PMC8993664 DOI: 10.1002/jcla.24315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) is a unique protein family that binds to DNA and plays a vital role in regulating major physiological cellular processes. Seven STAT genes have been identified in the human genome. Several studies suggest STAT family members to be involved in cancer development, progression, and metastasis. However, the predictive relationship between STAT family expression and immune cell infiltration in endometrial cancer remains unknown. METHODS We explored STAT family expression and prognosis in endometrial cancer using various databases. The STRING, GeneMANIA, and DAVID databases, along with GO and KEGG analyses, were used to construct a protein interaction network of related genes. Finally, the TIMER database and ssGSEA immune infiltration algorithm were used to investigate the correlation of STAT family expression with the immune infiltration level in uterine corpus endometrial carcinoma (UCEC). RESULTS Our study showed that different STAT family members are differentially expressed in UCEC. STAT1 and STAT2 expression increased at various stages of UCEC, and STAT5A, STAT5B, and STAT6 levels were decreased. STAT3 and STAT4 expression was not significantly different between UCEC and normal tissues. High STAT1 expression may be a prognostic disadvantage of UCEC, and high STAT6 expression may improve UCEC patient prognosis. The STAT family-associated genes were significantly enriched in signal transduction, protein binding, DNA binding, and ATP binding upon GO analysis. Related genes in the KEGG analysis were mainly enriched in pathways in cancer, viral carcinogenesis, chemokine signaling pathway, JAK/STAT signaling pathway, and regulation of the actin cytoskeleton. In terms of immune infiltration, STAT1 and STAT2 were positively correlated with B, CD8+ T, CD4+ T, and dendritic cells, and neutrophils (p < 0.05). All STAT family members were positively correlated with neutrophils and dendritic cells (p < 0.05). STAT1 and STAT2 showed similar correlations with all immune cell types, whereas STAT1 and STAT6 showed opposite correlations. CONCLUSION These findings suggest that the STAT family is a prognostic marker, and the immune infiltration level, a therapeutic target, for endometrial cancer.
Collapse
Affiliation(s)
- Xin-Ying Zhou
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hai-Yan Dai
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hu Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Jian-Long Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| |
Collapse
|
13
|
Bie Q, Zhai R, Chen Y, Li Y, Xie N, Wang B, Yuan P, Zhou X, Cong H, Chang X, Xiong H, Zhang B. Sox9 Is Crucial for Mesenchymal Stem Cells to Enhance Cutaneous Wound Healing. Int J Stem Cells 2021; 14:465-474. [PMID: 34456192 PMCID: PMC8611311 DOI: 10.15283/ijsc21078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Human umbilical cord mesenchymal stem cells (HUC-MSCs) are promising candidates for cell-based therapy in regenerative medicine or other diseases due to their superior characteristics, including higher proliferation, faster self-renewal ability, lower immunogenicity, a noninvasive harvest procedure, easy expansion in vitro, and ethical access, compared with stem cells from other sources. METHODS AND RESULTS In the present study, we knocked down the expression of SOX9 in HUC-MSCs by lentivirus interference and found that knockdown of SOX9 inhibited the proliferation and migration of HUC-MSCs and influenced the expression of cytokines (IL-6 and IL-8), growth factors (GM-CSF and VEGF) and stemness-related genes (OCT4 and SALL4). In addition, the repair effect of skin with burn injury in rats treated with HUC-MSCs transfected with sh-control was better than that rats treated with HUC-MSCs transfected with shSOX9 or PBS, and the accessory structures of the skin, including hair follicles and glands, were greater than those in the other groups. We found that knockdown of the expression of SOX9 obviously inhibited the expression of Ki67, CK14 and CK18. CONCLUSIONS In conclusion, this study will provide a guide for modifying HUC-MSCs by bioengineering technology in the future.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Ruixia Zhai
- Department of Obstetric, Affiliated Hospital of Jining
Medical University, Jining Medical University, Jining,
China
| | - Yanrong Chen
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Yingao Li
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Na Xie
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
| | - Baoyi Wang
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Poyun Yuan
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Xinjie Zhou
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| | - Haiyan Cong
- Department of Central Lab, Weihai Municipal Hospital,
Cheeloo College of Medicine, Weihai, China
| | - Xin Chang
- Department of Central Lab, Weihai Municipal Hospital,
Cheeloo College of Medicine, Weihai, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining
Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of
Jining Medical University, Jining Medical University, Jining,
China
- Institute of Forensic Medicine and Laboratory Medicine,
Jining Medical University, Jining, China
| |
Collapse
|
14
|
Awasthi N, Liongue C, Ward AC. STAT proteins: a kaleidoscope of canonical and non-canonical functions in immunity and cancer. J Hematol Oncol 2021; 14:198. [PMID: 34809691 PMCID: PMC8607625 DOI: 10.1186/s13045-021-01214-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
STAT proteins represent an important family of evolutionarily conserved transcription factors that play key roles in diverse biological processes, notably including blood and immune cell development and function. Classically, STAT proteins have been viewed as inducible activators of transcription that mediate cellular responses to extracellular signals, particularly cytokines. In this 'canonical' paradigm, latent STAT proteins become tyrosine phosphorylated following receptor activation, typically via downstream JAK proteins, facilitating their dimerization and translocation into the nucleus where they bind to specific sequences in the regulatory region of target genes to activate transcription. However, growing evidence has challenged this paradigm and identified alternate 'non-canonical' functions, such as transcriptional repression and roles outside the nucleus, with both phosphorylated and unphosphorylated STATs involved. This review provides a revised framework for understanding the diverse kaleidoscope of STAT protein functional modalities. It further discusses the implications of this framework for our understanding of STAT proteins in normal blood and immune cell biology and diseases such as cancer, and also provides an evolutionary context to place the origins of these alternative functional modalities.
Collapse
Affiliation(s)
- Nagendra Awasthi
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia.,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Pigdons Road, Geelong, VIC, 3216, Australia. .,Institue of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
15
|
Kilanczyk E, Banales JM, Jurewicz E, Milkiewicz P, Milkiewicz M. p-STAT3 is a PDC-E2 interacting partner in human cholangiocytes and hepatocytes with potential pathobiological implications. Sci Rep 2021; 11:21649. [PMID: 34737337 PMCID: PMC8569217 DOI: 10.1038/s41598-021-01060-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/22/2021] [Indexed: 01/13/2023] Open
Abstract
The E2 component of the mitochondrial pyruvate dehydrogenase complex (PDC) is the key autoantigen in primary biliary cholangitis (PBC) and STAT3 is an inflammatory modulator that participates in the pathogenesis of many liver diseases. This study investigated whether PDC-E2 interacts with STAT3 in human cholangiocytes (NHC) and hepatocytes (Hep-G2) under cholestatic conditions induced by glyco-chenodeoxycholic acid (GCDC). GCDC induced PDC-E2 expression in the cytoplasmic and nuclear fraction of NHC, whereas in Hep-G2 cells PDC-E2 expression was induced only in the cytoplasmic fraction. GCDC-treatment stimulated phosphorylation of STAT3 in the cytoplasmic fraction of NHC. siRNA-mediated gene silencing of PDC-E2 reduced the expression of pY-STAT3 in NHC but not in HepG2 cells. Immunoprecipitation and a proximity ligation assay clearly demonstrated that GCDC enhanced pY-STAT3 binding to PDC-E2 in the nuclear and cytoplasmic fraction of NHC cells. Staining with Mitotracker revealed mitochondrial co-localization of PDC-E2/pS-STAT3 complexes in NHC and Hep-G2 cells. In cirrhotic PBC livers the higher expression of both PDC-E2 and pY-STAT3 was observed. The immunoblot analysis demonstrated the occurrence of double bands of PDC-E2 protein in control livers, which was associated with a lower expression of pY-STAT3. Our data indicate the interaction between PDC-E2 and phosphorylated STAT3 under cholestatic conditions, which may play a role in the development of PBC.
Collapse
Affiliation(s)
- Ewa Kilanczyk
- Department of Medical Biology, Pomeranian Medical University, Szczecin, Poland.
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital - Ikerbasque, CIBERehd, San Sebastian, Spain
| | | | - Piotr Milkiewicz
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland.,Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
16
|
Zhang M, Wang H, Bie M, Wang X, Lu K, Xiao H. Caveolin-1 Deficiency Induces Atrial Fibrosis and Increases Susceptibility to Atrial Fibrillation by the STAT3 Signaling Pathway. J Cardiovasc Pharmacol 2021; 78:175-183. [PMID: 34554674 DOI: 10.1097/fjc.0000000000001066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Atrial fibrillation (AF) is a common arrhythmia in the clinic. Ablation failure and recurrence after cardioversion have become medical problems worldwide. An important pathological feature of AF is atrial fibrosis, which increases susceptibility to AF. As an important target of fibrosis signal integration, the signal transducer and activator of transcription 3 (STAT3) signaling pathway plays an important role in fibrosis. Caveolin-1 (CAV1), a cell membrane protein, is involved in a variety of the biological functions of cells. However, the role of CAV1 in atrial fibrosis remains unclear. In this study, Masson's trichrome staining was used to detect the degree of atrial fibrosis, and the expression of CAV1 in the human atrium was evaluated by immunohistochemistry. To further study the role of CAV1, its expression in cultured rat atrial fibroblasts was silenced using siRNAs. Atrial fibroblasts were treated with angiotensin II to observe the effects on CAV1 and the transforming growth factor-β1 and STAT3 signaling pathways. We also detected the effects of CAV1 scaffolding domain (CSD) peptide on fibrosis through the addition of exogenous CSD peptide. The results showed that CAV1 expression decreased with the aggravation of atrial fibrosis and that this effect increased the incidence of AF. The depletion of CAV1 induced excessive extracellular matrix deposition by activating the STAT3 and transforming growth factor-β1/SMAD2 signaling pathways, and this effect was exacerbated by stimulation with angiotensin II and improved by CSD peptide. These data suggested that CAV1 not only plays a critical role in fibrosis progression but also provides a target for the treatment of atrial fibrosis and AF.
Collapse
Affiliation(s)
| | | | - Mengjun Bie
- Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaowen Wang
- Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Lu
- Departments of Cardiology; and
| | | |
Collapse
|
17
|
Tran MTMT, Yeh KT, Chuang YM, Hsu PY, Low JT, Kumari H, Lee YT, Chen YC, Huang WH, Jin H, Lin SH, Chan MWY. Methylomic analysis identifies C11orf87 as a novel epigenetic biomarker for GI cancers. PLoS One 2021; 16:e0250499. [PMID: 33886682 PMCID: PMC8062079 DOI: 10.1371/journal.pone.0250499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer death worldwide. Previous studies demonstrated that activation of STAT3 is crucial for the development and progression of gastric cancer. However, the role of STAT3 in neuronal related gene methylation in gastric cancer has never been explored. In this study, by using DNA methylation microarray, we identified a potential STAT3 target, C11orf87, showing promoter hypomethylation in gastric cancer patients with lower STAT3 activation and AGS gastric cancer cell lines depleted with STAT3 activation. Although C11orf87 methylation is independent of its expression, ectopic expression of a constitutive activated STAT3 mutant upregulated its expression in gastric cancer cell line. Further bisulfite pyrosequencing demonstrated a progressive increase in DNA methylation of this target in patient tissues from gastritis, intestinal metaplasia, to gastric cancer. Intriguingly, patients with higher C11orf87 methylation was associated with better survival. Furthermore, hypermethylation of C11orf87 was also frequently observed in other GI cancers, as compared to their adjacent normal tissues. These results suggested that C11orf87 methylation may serve as a biomarker for diagnosis and prognosis of GI cancers, including gastric cancer. We further postulated that constitutive activation of STAT3 might be able to epigenetically silence C11orf87 as a possible negative feedback mechanism to protect the cells from the overactivation of STAT3. Targeted inhibition of STAT3 may not be appropriate in gastric cancer patients with promoter hypermethylation of C11orf87.
Collapse
Affiliation(s)
- Mita T. M. T. Tran
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Po-Yen Hsu
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Jie-Ting Low
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Himani Kumari
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Yu-Ting Lee
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Department of Hematology and Oncology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Yin-Chen Chen
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chia-Yi, Taiwan
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
- * E-mail: (SHL); (MWYC)
| | - Michael W. Y. Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- * E-mail: (SHL); (MWYC)
| |
Collapse
|
18
|
de Araujo ED, Keserű GM, Gunning PT, Moriggl R. Targeting STAT3 and STAT5 in Cancer. Cancers (Basel) 2020; 12:E2002. [PMID: 32707820 PMCID: PMC7465272 DOI: 10.3390/cancers12082002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Insights into the mutational landscape of the human cancer genome coding regions defined about 140 distinct cancer driver genes in 2013, which approximately doubled to 300 in 2018 following advances in systems cancer biology studies [...].
Collapse
Affiliation(s)
- Elvin D. de Araujo
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry, Research Center for Natural Sciences, 1117 Budapest, Hungary;
| | - Patrick T. Gunning
- Centre for Medicinal Chemistry, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| |
Collapse
|
19
|
Taverna JA, Hung CN, DeArmond DT, Chen M, Lin CL, Osmulski PA, Gaczynska ME, Wang CM, Lucio ND, Chou CW, Chen CL, Nazarullah A, Lampkin SR, Qiu L, Bearss DJ, Warner S, Whatcott CJ, Mouritsen L, Wade M, Weitman S, Mesa RA, Kirma NB, Chao WT, Huang THM. Single-Cell Proteomic Profiling Identifies Combined AXL and JAK1 Inhibition as a Novel Therapeutic Strategy for Lung Cancer. Cancer Res 2020; 80:1551-1563. [PMID: 31992541 PMCID: PMC7127959 DOI: 10.1158/0008-5472.can-19-3183] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Cytometry by time-of-flight (CyTOF) simultaneously measures multiple cellular proteins at the single-cell level and is used to assess intertumor and intratumor heterogeneity. This approach may be used to investigate the variability of individual tumor responses to treatments. Herein, we stratified lung tumor subpopulations based on AXL signaling as a potential targeting strategy. Integrative transcriptome analyses were used to investigate how TP-0903, an AXL kinase inhibitor, influences redundant oncogenic pathways in metastatic lung cancer cells. CyTOF profiling revealed that AXL inhibition suppressed SMAD4/TGFβ signaling and induced JAK1-STAT3 signaling to compensate for the loss of AXL. Interestingly, high JAK1-STAT3 was associated with increased levels of AXL in treatment-naïve tumors. Tumors with high AXL, TGFβ, and JAK1 signaling concomitantly displayed CD133-mediated cancer stemness and hybrid epithelial-to-mesenchymal transition features in advanced-stage patients, suggesting greater potential for distant dissemination. Diffusion pseudotime analysis revealed cell-fate trajectories among four different categories that were linked to clinicopathologic features for each patient. Patient-derived organoids (PDO) obtained from tumors with high AXL and JAK1 were sensitive to TP-0903 and ruxolitinib (JAK inhibitor) treatments, supporting the CyTOF findings. This study shows that single-cell proteomic profiling of treatment-naïve lung tumors, coupled with ex vivo testing of PDOs, identifies continuous AXL, TGFβ, and JAK1-STAT3 signal activation in select tumors that may be targeted by combined AXL-JAK1 inhibition. SIGNIFICANCE: Single-cell proteomic profiling of clinical samples may facilitate the optimal selection of novel drug targets, interpretation of early-phase clinical trial data, and development of predictive biomarkers valuable for patient stratification.
Collapse
Affiliation(s)
- Josephine A Taverna
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chia-Nung Hung
- Department of Life Science, Tunghai University, Taichung, Taiwan
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Daniel T DeArmond
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, Texas
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Nicholas D Lucio
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Alia Nazarullah
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Shellye R Lampkin
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Lianqun Qiu
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - David J Bearss
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Steven Warner
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Clifford J Whatcott
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Lars Mouritsen
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Mark Wade
- Tolero Pharmaceuticals, Department of Biomarker and Drug Discovery, Lehi, Utah
| | - Steven Weitman
- Institute for Drug Development, University of Texas Health Science Center, San Antonio, Texas
| | - Ruben A Mesa
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, Taichung, Taiwan.
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas.
| |
Collapse
|
20
|
Qin Y, Shembrey C, Smith J, Paquet-Fifield S, Behrenbruch C, Beyit LM, Thomson BNJ, Heriot AG, Cao Y, Hollande F. Laminin 521 enhances self-renewal via STAT3 activation and promotes tumor progression in colorectal cancer. Cancer Lett 2020; 476:161-169. [PMID: 32105676 DOI: 10.1016/j.canlet.2020.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/30/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Remodeling of basement membrane proteins contributes to tumor progression towards the metastatic stage. One of these proteins, laminin 521 (LN521), sustains embryonic and induced pluripotent stem cell self-renewal, but its putative role in cancer is poorly described. In the present study we found that LN521 promotes colorectal cancer (CRC) cell self-renewal and invasion. siRNA-mediated knockdown of endogenously-produced laminin alpha 5, as well as treatment with neutralizing antibodies against integrin α3β1 and α6β1, were able to reverse the effect of LN521 on self-renewal. Exposure of CRC cells to LN521 enhanced STAT3 phosphorylation, and incubation with STAT3 inhibitors Napabucasin and Stattic was sufficient to block the LN521-driven self-renewal increase. Robust expression of laminin alpha 5 was detected in 7/10 liver metastases tissue sections collected from CRC patients as well as in mouse liver metastasis xenografts, in most cases within areas expressing metastasis cancer stem cell markers such as c-KIT and CD44v6. Finally, retrospective analysis of multiple CRC datasets highlighted the significant association between high LN521 mRNA expression and poor clinical outcome in colorectal cancer patients. Collectively our results indicate that high Laminin 521 expression is a frequent feature of metastatic dissemination in CRC and that it promotes cell invasion and self-renewal, the latter through engagement of integrin isoforms and activation of STAT3 signaling.
Collapse
Affiliation(s)
- Yan Qin
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia
| | - Carolyn Shembrey
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia
| | - Jai Smith
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia
| | - Sophie Paquet-Fifield
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia
| | - Corina Behrenbruch
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Laura M Beyit
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia
| | - Benjamin N J Thomson
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia; University of Melbourne Department of Surgery, Royal Melbourne Hospital, Grattan Street, Parkville, VIC3010, Australia
| | - Alexander G Heriot
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
| | - Yuan Cao
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia; University of Melbourne Centre for Cancer Research, The University of Melbourne, Victorian Comprehensive Cancer Centre, Melbourne, VIC3000, Australia.
| |
Collapse
|
21
|
Kieslinger M, Swoboda A, Kramer N, Pratscher B, Wolfesberger B, Burgener IA. Companion Animals as Models for Inhibition of STAT3 and STAT5. Cancers (Basel) 2019; 11:cancers11122035. [PMID: 31861073 PMCID: PMC6966487 DOI: 10.3390/cancers11122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
The use of transgenic mouse models has revolutionized the study of many human diseases. However, murine models are limited in their representation of spontaneously arising tumors and often lack key clinical signs and pathological changes. Thus, a closer representation of complex human diseases is of high therapeutic relevance. Given the high failure rate of drugs at the clinical trial phase (i.e., around 90%), there is a critical need for additional clinically relevant animal models. Companion animals like cats and dogs display chronic inflammatory or neoplastic diseases that closely resemble the human counterpart. Cat and dog patients can also be treated with clinically approved inhibitors or, if ethics and drug safety studies allow, pilot studies can be conducted using, e.g., inhibitors of the evolutionary conserved JAK-STAT pathway. The incidence by which different types of cancers occur in companion animals as well as mechanisms of disease are unique between humans and companion animals, where one can learn from each other. Taking advantage of this situation, existing inhibitors of known oncogenic STAT3/5 or JAK kinase signaling pathways can be studied in the context of rare human diseases, benefitting both, the development of drugs for human use and their application in veterinary medicine.
Collapse
|