1
|
Xu Z, Xu H, Shi J, Liu R, Li X, Liu S, Wei W. Inhibitor of Growth Proteins: Epigenetic Regulators Shaping Neurobiology. Biomolecules 2025; 15:281. [PMID: 40001584 DOI: 10.3390/biom15020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025] Open
Abstract
The inhibitor of growth (ING) family of proteins is emerging as a pivotal regulator of epigenetic modifications within the nervous system. These proteins are involved in various cellular processes, including apoptosis, cell cycle control, and DNA repair, through interactions with chromatin-modifying complexes. Recent studies underscore the dual role of ING proteins in both tumor suppression and neuronal differentiation, development, and neuroprotection. This review summarizes the epigenetic functions of ING proteins in neurobiology, with a focus on their involvement in neural development and their relevance to neuro-oncological diseases. We explore the mechanisms by which ING proteins influence chromatin state and gene expression, highlighting their interactions with histone acetyltransferases, deacetylases, histone methyltransferases, DNA modification enzymes, and non-coding RNAs. A deeper understanding of the role of ING proteins in epigenetic regulation in the nervous system may pave the way for novel therapeutic strategies targeting neurological disorders.
Collapse
Affiliation(s)
- Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jichun Shi
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Runming Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Sha Liu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Al Shueili B, Dantas A, Mahe E, Chu TH, Yang Y, Labit E, Kutluberk E, Lasaleta N, Masson A, Omairi H, Ito K, Krawetz RJ, Midha R, Cairncross G, Riabowol K. Knockout of the ING5 epigenetic regulator confirms roles in stem cell maintenance and tumor suppression in vivo. PLoS One 2025; 20:e0313255. [PMID: 39787145 PMCID: PMC11717183 DOI: 10.1371/journal.pone.0313255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 01/12/2025] Open
Abstract
INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells. Here we find that CRISPR/Cas9 ING5 knockout (KO) mice are sub-fertile but show no decrease in lifespan or ability to heal wounds despite indications of depleted stem cell pools in several tissues. ING5 KO mouse embryo fibroblasts accumulate in G2 of the cell cycle, have high levels of abnormal nuclei and show high basal levels of the γH2AX indicator of DNA damage. KO animals also develop severe dermatitis at a 5-fold higher rate that wild-type littermates. Consistent with ING5 serving a tumor suppressive role, ING5 KO mice developed germinal centre diffuse large B-cell lymphomas at a rate 6-fold higher than control mice at 18 months of age. These data suggest that ING5 functions in vivo to maintain stem cell character in multiple organs, that reduction of stem cell populations is not limiting for murine lifespan and that like a subset of other ING family members, ING5 functions as a tumor suppressor in hematopoietic cells in vivo.
Collapse
Affiliation(s)
- Buthaina Al Shueili
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Arthur Dantas
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
| | - Etienne Mahe
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tak Ho Chu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Yang Yang
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Elodie Labit
- Departments of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Eren Kutluberk
- Departments of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Nicolas Lasaleta
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Anand Masson
- Departments of McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
- Departments of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Hiba Omairi
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Kenichi Ito
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | - Roman J. Krawetz
- Departments of McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
- Departments of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
- Departments of Surgery, University of Calgary, Calgary, Canada
| | - Rajiv Midha
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Gregory Cairncross
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Departments of Oncology, University of Calgary, Calgary, Canada
| | - Karl Riabowol
- Robson DNA Sciences Centre, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Calgary, Canada
- Departments of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
- Departments of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Departments of Oncology, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Hifdi N, Vaucourt M, Hnia K, Panasyuk G, Vandromme M. Phosphoinositide signaling in the nucleus: Impacts on chromatin and transcription regulation. Biol Cell 2025; 117:e2400096. [PMID: 39707648 PMCID: PMC11771838 DOI: 10.1111/boc.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Phosphoinositides also called Polyphosphoinositides (PPIns) are small lipid messengers with established key roles in organelle trafficking and cell signaling in response to physiological and environmental inputs. Besides their well-described functions in the cytoplasm, accumulating evidences pointed to PPIns involvement in transcription and chromatin regulation. Through the description of previous and recent advances of PPIns implication in transcription, this review highlights key discoveries on how PPIns modulate nuclear factors activity and might impact chromatin to modify gene expression. Finally, we discuss how PPIns nuclear and cytosolic metabolisms work jointly in orchestrating key transduction cascades that end in the nucleus to modulate gene expression.
Collapse
Affiliation(s)
- Nesrine Hifdi
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Mathilde Vaucourt
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Karim Hnia
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| | - Ganna Panasyuk
- Institut Necker‐Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris CitéParisFrance
| | - Marie Vandromme
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM‐UMR 1297/University Paul SabatierToulouse Cedex 4France
| |
Collapse
|
4
|
de Barros JM, de Farias Morais HG, de Oliveira Costa CS, Rolim LSA, de Sousa Lopes MLD, Guedes Queiroz LM, de Souza LB, Pinto LP. Decreased Nuclear Immunoexpression of ING3 is a Frequent Event in Lip Carcinogenesis. Head Neck Pathol 2024; 18:103. [PMID: 39412571 PMCID: PMC11485000 DOI: 10.1007/s12105-024-01683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Evaluate the immunohistochemical expression of the ING3 in actinic cheilitis and squamous cell carcinoma of the lower lip. METHODS Forty-five specimens of actinic cheilitis and 48 specimens of squamous cell carcinoma of the lower lip were submitted to immunohistochemical detection of ING3. The protein expression in different cellular sublocations was compared between the two groups, and associations with the clinicopathological variables were analyzed. A significance level of 5% was adopted for all tests. RESULTS Deaths were significantly more frequent in tumors with a high histopathological risk score (p < 0.05). In actinic cheilitis, significant differences were found in the nucleus-cytoplasmic expression of ING3 and expression restricted to the cytoplasm with binary histopathological grading (p < 0.05). In squamous cell carcinoma of the lower lip, there was no statistically significant difference when comparing ING3 expressions with clinical and morphological parameters (p > 0.05). Nucleo-cytoplasmic ING3 expression was significantly lower in squamous cell carcinoma of the lower lip when compared to actinic cheilitis (p < 0.05) and the expression restricted to the cytoplasm was significantly higher in squamous cell carcinoma of the lower lip (p < 0.05). CONCLUSION The results of this study suggest that there is a marked decrease in the nuclear expression of ING3 as malignant progression occurs, indicating an impaired tumor suppressor function of this protein in actinic cheilitis and squamous cell carcinoma of the lower lip.
Collapse
Affiliation(s)
- Joyce Magalhães de Barros
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Hannah Gil de Farias Morais
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil.
| | - Carla Samily de Oliveira Costa
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Larissa Santos Amaral Rolim
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Maria Luiza Diniz de Sousa Lopes
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Lélia Maria Guedes Queiroz
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| | - Leão Pereira Pinto
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, Lagoa Nova, Natal, 1787, CEP 59056-000, RN, Brazil
| |
Collapse
|
5
|
Tsutsumi E, Macy AM, LoBello J, Hastings KT, Kim S. Tumor immune microenvironment permissive to metastatic progression of ING4-deficient breast cancer. PLoS One 2024; 19:e0304194. [PMID: 38968186 PMCID: PMC11226078 DOI: 10.1371/journal.pone.0304194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Deficiencies in the ING4 tumor suppressor are associated with advanced stage tumors and poor patient survival in cancer. ING4 was shown to inhibit NF-kB in several cancers. As NF-kB is a key mediator of immune response, the ING4/NF-kB axis is likely to manifest in tumor-immune modulation but has not been investigated. To characterize the tumor immune microenvironment associated with ING4-deficient tumors, three approaches were employed in this study: First, tissue microarrays composed of 246 primary breast tumors including 97 ING4-deficient tumors were evaluated for the presence of selective immune markers, CD68, CD4, CD8, and PD-1, using immunohistochemical staining. Second, an immune-competent mouse model of ING4-deficient breast cancer was devised utilizing CRISPR-mediated deletion of Ing4 in a Tp53 deletion-derived mammary tumor cell line; mammary tumors were evaluated for immune markers using flow cytometry. Lastly, the METABRIC gene expression dataset was evaluated for patient survival related to the immune markers associated with Ing4-deleted tumors. The results showed that CD68, CD4, CD8, or PD-1, was not significantly associated with ING4-deficient breast tumors, indicating no enrichment of macrophages, T cells, or exhausted T cell types. In mice, Ing4-deleted mammary tumors had a growth rate comparable to Ing4-intact tumors but showed increased tumor penetrance and metastasis. Immune marker analyses of Ing4-deleted tumors revealed a significant increase in tumor-associated macrophages (Gr-1loCD11b+F4/80+) and a decrease in granzyme B-positive (GzmB+) CD4+ T cells, indicating a suppressive and/or less tumoricidal immune microenvironment. The METABRIC data analyses showed that low expression of GZMB was significantly associated with poor patient survival, as was ING4-low expression, in the basal subtype of breast cancer. Patients with GZMB-low/ING4-low tumors had the worst survival outcomes (HR = 2.80, 95% CI 1.36-5.75, p = 0.0004), supportive of the idea that the GZMB-low immune environment contributes to ING4-deficient tumor progression. Collectively, the study results demonstrate that ING4-deficient tumors harbor a microenvironment that contributes to immune evasion and metastasis.
Collapse
Affiliation(s)
- Emily Tsutsumi
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| | - Anne M. Macy
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Janine LoBello
- Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Karen T. Hastings
- Department of Dermatology, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona, United States of America
| | - Suwon Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, United States of America
- Cancer and Cell Biology Division, Translational Genomic Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
6
|
Zhang Z, Yang L, Lei X, Yu J, Wang L, Cao H, Gu H. Mechanism of non-small cell lung cancer cell-derived exosome miR-196b-5p promoting pyroptosis of tumor T cells and tumor cell proliferation by downregulating ING5. J Biochem Mol Toxicol 2024; 38:e23629. [PMID: 38229318 DOI: 10.1002/jbt.23629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
In the world, lung cancer is one of the most common malignant cancers and has become the leading cause of death of cancers in China, among which non-small cell lung cancer (NSCLC) accounts for a relatively high proportion, but there is a lack of effective treatment at present. An animal model of NSCLC was established, and BEAS-2b, H1299, Lewis, and T cells were used for subsequent experimental verification. The level of miR-196b-5p was detected by quantitative real-time polymerase chain reaction. Growth inhibitor 5 (ING5), CD9, CD63, HSP70, Caspase-1, NLRP3, and GSDMD-NT were detected by western blot. The level of ING5 was confirmed by immunohistochemistry, the location of miR-196b-5p was analyzed by fluorescence in situ hybridization (FISH), cell viability was investigated by Cell Counting Kit-8 kit, and interleukin (IL)-1β and IL-18 were confirmed by enzyme-linked immunosorbent assay. Cell apoptosis was detected by flow cytometry. In addition, the binding site was verified by dual-luciferase reporter gene experiments. Tumor volume was measured. TUNEL staining was used to detect apoptosis. Flow cytometry was used to measure the levels of CD8 T, CD4 T, and Treg cells in tumors. miR-196-5p was highly expressed in exosomes secreted by tumor cells. miR-196-5p negatively targeted ING5 to promote the growth of tumor cells. Cancer-derived exosomes promote pyroptosis of T cells to further aggravate the development of cancer. Exosome-derived miR-196b-5p promoted pyroptosis of T cells. Exosome-derived miR-196b-5p inhibited the level of ING5 to promote tumor growth and accelerate the process of NSCLC.
Collapse
Affiliation(s)
- Zhixian Zhang
- Department of Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Yang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuefen Lei
- Department of Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia Yu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongming Cao
- Department of Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hou Gu
- Department of Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
7
|
Šimková A, Civáňová Křížová K, Voříšková K, Vetešník L, Bystrý V, Demko M. Transcriptome Profile Analyses of Head Kidney in Roach ( Rutilus rutilus), Common Bream ( Abramis brama) and Their Hybrids: Does Infection by Monogenean Parasites in Freshwater Fish Reveal Differences in Fish Vigour among Parental Species and Their Hybrids? BIOLOGY 2023; 12:1199. [PMID: 37759598 PMCID: PMC10525477 DOI: 10.3390/biology12091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Hybrid generations usually face either a heterosis advantage or a breakdown, that can be expressed by the level of parasite infection in hybrid hosts. Hybrids are less infected by parasites than parental species (especially F1 generations) or more infected than parental species (especially post-F1 generations). We performed the experiment with blood-feeding gill parasite Paradiplozoon homoion (Monogenea) infecting leuciscid species, Abramis brama and Rutilus rutilus, their F1 generation and two backcross generations. Backcross generations tended to be more parasitized than parental lines and the F1 generation. The number of differentially expressed genes (DEGs) was lower in F1 hybrids and higher in backcross hybrids when compared to each of the parental lines. The main groups of DEGs were shared among lines; however, A. brama and R. rutilus differed in some of the top gene ontology (GO) terms. DEG analyses revealed the role of heme binding and erythrocyte differentiation after infection by blood-feeding P. homoion. Two backcross generations shared some of the top GO terms, representing mostly downregulated genes associated with P. homoion infection. KEGG analysis revealed the importance of disease-associated pathways; the majority of them were shared by two backcross generations. Our study revealed the most pronounced DEGs associated with blood-feeding monogeneans in backcross hybrids, potentially (but not exclusively) explainable by hybrid breakdown. The lower DEGs reported in F1 hybrids being less parasitized than backcross hybrids is in line with the hybrid advantage.
Collapse
Affiliation(s)
- Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (K.C.K.); (K.V.)
| | - Kristína Civáňová Křížová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (K.C.K.); (K.V.)
| | - Kristýna Voříšková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (K.C.K.); (K.V.)
| | - Lukáš Vetešník
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (K.C.K.); (K.V.)
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic; (L.V.)
| | - Vojtěch Bystrý
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (V.B.); (M.D.)
| | - Martin Demko
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic; (K.C.K.); (K.V.)
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (V.B.); (M.D.)
| |
Collapse
|
8
|
Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. J Immunother Cancer 2023; 11:e005693. [PMID: 37553181 PMCID: PMC10414074 DOI: 10.1136/jitc-2022-005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/03/2023] [Indexed: 08/10/2023] Open
Abstract
With the advances in cancer immunity regulation and immunotherapy, the effects of histone modifications on establishing antitumor immunological ability are constantly being uncovered. Developing combination therapies involving epigenetic drugs (epi-drugs) and immune checkpoint blockades or chimeric antigen receptor-T cell therapies are promising to improve the benefits of immunotherapy. Histone H3 lysine 4 trimethylation (H3K4me3) is a pivotal epigenetic modification in cancer immunity regulation, deeply involved in modulating tumor immunogenicity, reshaping tumor immune microenvironment, and regulating immune cell functions. However, how to integrate these theoretical foundations to create novel H3K4 trimethylation-based therapeutic strategies and optimize available therapies remains uncertain. In this review, we delineate the mechanisms by which H3K4me3 and its modifiers regulate antitumor immunity, and explore the therapeutic potential of the H3K4me3-related agents combined with immunotherapies. Understanding the role of H3K4me3 in cancer immunity will be instrumental in developing novel epigenetic therapies and advancing immunotherapy-based combination regimens.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Liang F, Li X, Shen X, Yang R, Chen C. Expression profiles and functional prediction of histone acetyltransferases of the MYST family in kidney renal clear cell carcinoma. BMC Cancer 2023; 23:586. [PMID: 37365518 DOI: 10.1186/s12885-023-11076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) of the MYST family are associated with a variety of human cancers. However, the relationship between MYST HATs and their clinical significance in kidney renal clear cell carcinoma (KIRC) has not yet been evaluated. METHODS The bioinformatics method was used to investigate the expression patterns and prognostic value of MYST HATs. Western blot was used to detect the expression of MYST HATs in KIRC. RESULTS The expression levels of MYST HATs except KAT8 (KAT5, KAT6A, KAT6B, and KAT7) were significantly reduced in KIRC tissues compared to normal renal tissues, and the western blot results of the KIRC samples also confirmed the result. Reduced expression levels of MYST HATs except KAT8 were significantly associated with high tumor grade and advanced TNM stage in KIRC, and showed a significant association with an unfavorable prognosis in patients with KIRC. We also found that the expression levels of MYST HATs were closely related to each other. Subsequently, gene set enrichment analysis showed that the function of KAT5 was different from that of KAT6A, KAT6B and KAT7. The expression levels of KAT6A, KAT6B and KAT7 had significant positive correlations with cancer immune infiltrates such as B cells, CD4+ T cells and CD8+ T cells. CONCLUSIONS Our results indicated that MYST HATs, except KAT8, play a beneficial role in KIRC.
Collapse
Affiliation(s)
- Fan Liang
- School of Basic Medicine, Weifang Medical University, Weifang, 261000, Shandong, P.R. China
| | - Xiangke Li
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Xiaoman Shen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China
| | - Runlei Yang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| | - Chuan Chen
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
- Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, Hebei, P.R. China.
| |
Collapse
|
10
|
Wang C, Guo Z, Chu C, Lu Y, Zhang X, Zhan X. Two assembly modes for SIN3 histone deacetylase complexes. Cell Discov 2023; 9:42. [PMID: 37076472 PMCID: PMC10115800 DOI: 10.1038/s41421-023-00539-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
The switch-independent 3 (SIN3)/histone deacetylase (HDAC) complexes play essential roles in regulating chromatin accessibility and gene expression. There are two major types of SIN3/HDAC complexes (named SIN3L and SIN3S) targeting different chromatin regions. Here we present the cryo-electron microscopy structures of the SIN3L and SIN3S complexes from Schizosaccharomyces pombe (S. pombe), revealing two distinct assembly modes. In the structure of SIN3L, each Sin3 isoform (Pst1 and Pst3) interacts with one histone deacetylase Clr6, and one WD40-containing protein Prw1, forming two lobes. These two lobes are bridged by two vertical coiled-coil domains from Sds3/Dep1 and Rxt2/Png2, respectively. In the structure of SIN3S, there is only one lobe organized by another Sin3 isoform Pst2; each of the Cph1 and Cph2 binds to an Eaf3 molecule, providing two modules for histone recognition and binding. Notably, the Pst1 Lobe in SIN3L and the Pst2 Lobe in SIN3S adopt similar conformation with their deacetylase active sites exposed to the space; however, the Pst3 Lobe in SIN3L is in a compact state with its active center buried inside and blocked. Our work reveals two classical organization mechanisms for the SIN3/HDAC complexes to achieve specific targeting and provides a framework for studying the histone deacetylase complexes.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kim LH, Kim JY, Xu YY, Lim MA, Koo BS, Kim JH, Yoon SE, Kim YJ, Choi KW, Chang JW, Hong ST. Tctp, a unique Ing5-binding partner, inhibits the chromatin binding of Enok in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2218361120. [PMID: 37014852 PMCID: PMC10104566 DOI: 10.1073/pnas.2218361120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 04/05/2023] Open
Abstract
The MOZ/MORF histone acetyltransferase complex is highly conserved in eukaryotes and controls transcription, development, and tumorigenesis. However, little is known about how its chromatin localization is regulated. Inhibitor of growth 5 (ING5) tumor suppressor is a subunit of the MOZ/MORF complex. Nevertheless, the in vivo function of ING5 remains unclear. Here, we report an antagonistic interaction between Drosophila Translationally controlled tumor protein (TCTP) (Tctp) and ING5 (Ing5) required for chromatin localization of the MOZ/MORF (Enok) complex and H3K23 acetylation. Yeast two-hybrid screening using Tctp identified Ing5 as a unique binding partner. In vivo, Ing5 controlled differentiation and down-regulated epidermal growth factor receptor signaling, whereas it is required in the Yorkie (Yki) pathway to determine organ size. Ing5 and Enok mutants promoted tumor-like tissue overgrowth when combined with uncontrolled Yki activity. Tctp depletion rescued the abnormal phenotypes of the Ing5 mutation and increased the nuclear translocation of Ing5 and chromatin binding of Enok. Nonfunctional Enok promoted the nuclear translocation of Ing5 by reducing Tctp, indicating a feedback mechanism between Tctp, Ing5, and Enok to regulate histone acetylation. Therefore, Tctp is essential for H3K23 acetylation by controlling the nuclear translocation of Ing5 and chromatin localization of Enok, providing insights into the roles of human TCTP and ING5-MOZ/MORF in tumorigenesis.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Ja-Young Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Yu-Ying Xu
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Jung Hae Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Eun Yoon
- Korea Drosophila Resource Center, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon34141, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon35015, Republic of Korea
| |
Collapse
|
12
|
Gómez AE, Addish S, Alvarado K, Boatemaa P, Onyali AC, Ramirez EG, Rojas MF, Rai J, Reynolds KA, Tang WJ, Kwon RY. Multiple Mechanisms Explain Genetic Effects at the CPED1-WNT16 Bone Mineral Density Locus. Curr Osteoporos Rep 2023; 21:173-183. [PMID: 36943599 PMCID: PMC10202127 DOI: 10.1007/s11914-023-00783-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Chromosome region 7q31.31, also known as the CPED1-WNT16 locus, is robustly associated with BMD and fracture risk. The aim of the review is to highlight experimental studies examining the function of genes at the CPED1-WNT16 locus. RECENT FINDINGS Genes that reside at the CPED1-WNT16 locus include WNT16, FAM3C, ING3, CPED1, and TSPAN12. Experimental studies in mice strongly support the notion that Wnt16 is necessary for bone mass and strength. In addition, roles for Fam3c and Ing3 in regulating bone morphology in vivo and/or osteoblast differentiation in vitro have been identified. Finally, a role for wnt16 in dually influencing bone and muscle morphogenesis in zebrafish has recently been discovered, which has brought forth new questions related to whether the influence of WNT16 in muscle may conspire with its influence in bone to alter BMD and fracture risk.
Collapse
Affiliation(s)
- Arianna Ericka Gómez
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sumaya Addish
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kurtis Alvarado
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Priscilla Boatemaa
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Anne C Onyali
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Emily G Ramirez
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Maria F Rojas
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jyoti Rai
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kiana A Reynolds
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - W Joyce Tang
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ronald Young Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
14
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
15
|
Zheng HC, Xue H, Jiang HM. The roles of ING5 in cancer: A tumor suppressor. Front Cell Dev Biol 2022; 10:1012179. [PMID: 36425530 PMCID: PMC9679416 DOI: 10.3389/fcell.2022.1012179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
As a Class II tumor suppressor, ING5 contains nuclear localization signal, plant homeodomain, novel conserved region, and leucine zipper-like domains. ING5 proteins form homodimer into a coil-coil structure, and heterodimers with ING4, histone H3K4me3, histone acetyltransferase (HAT) complex, Tip60, Cyclin A1/CDK2, INCA1 and EBNA3C for the transcription of target genes. The acetylated proteins up-regulated by ING5 are preferentially located in nucleus and act as transcription cofactors, chromatin and DNA binding functions, while those down-regulated by ING5 mostly in cytoplasm and contribute to metabolism. ING5 promotes the autoacetylation of HAT p300, p53, histone H3 and H4 for the transcription of downstream genes (Bax, GADD45, p21, p27 and so forth). Transcriptionally, YY1 and SRF up-regulate ING5 mRNA expression by the interaction of YY1-SRF-p53-ING5 complex with ING5 promoter. Translationally, ING5 is targeted by miR-196, miR-196a, miR-196b-5p, miR-193a-3p, miR-27-3p, miR-200b/200a/429, miR-1307, miR-193, miR-222, miR-331-3p, miR-181b, miR-543 and miR-196-b. ING5 suppresses proliferation, migration, invasion and tumor growth of various cancer cells via the suppression of EGFR/PI3K/Akt, IL-6/STAT3, Akt/NF-κB/NF-κB/MMP-9 or IL-6/CXCL12 pathway. ING5-mediated chemoresistance is closely linked to anti-apoptosis, overexpression of chemoresistant genes, the activation of PI3K/Akt/NF-κB and Wnt/β-catenin signal pathways. Histologically, ING5 abrogation in gastric stem-like and pdx1-positive cells causes gastric dysplasia and cancer, and conditional ING5 knockout in pdx1-positive and gastric chief cells increases MNU-induced gastric carcinogenesis. Intestinal ING5 deletion increases AOM/DSS- induced colorectal carcinogenesis and decreases high-fat-diet weight. The overexpression and nucleocytoplasmic translocation of ING5 are seen during carcinogenesis, and ING5 expression was inversely associated with aggressive behaviors and poor prognosis in a variety of cancers. These findings indicated that ING5 might be used for a molecular marker for carcinogenesis and following progression, and as a target for gene therapy if its chemoresistant function might be ameliorated.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
16
|
Taheri M, Hussen BM, Najafi S, Abak A, Ghafouri-Fard S, Samsami M, Baniahmad A. Molecular mechanisms of inhibitor of growth (ING) family members in health and malignancy. Cancer Cell Int 2022; 22:272. [PMID: 36056353 PMCID: PMC9438315 DOI: 10.1186/s12935-022-02693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
ING genes belong to family of tumor suppressor genes with regulatory functions on cell proliferation, apoptosis, and cellular senescence. These include a family of proteins with 5 members (ING1-5), which are downregulated in human malignancies and/or affected by pathogenic mutations. ING proteins are highly evolutionarily conserved proteins containing several domains through which bind to chromatin structures by exerting their effects as readers of histone modification marks, and also binding to proteins like p53 involved in biological processes such as cell cycle regulation. Further, they are known as subunits of histone acetylation as well as deacetylation complexes and so exert their regulatory roles through epigenetic mechanisms. Playing role in restriction of proliferative but also invasive potentials of normal cells, INGs are particularly involved in cancer development and progression. However, additional studies and experimental confirmation are required for these models. This paper highlights the potential impact that INGs may have on the development of human cancer and explores what new information has recently arise on the functions of ING genes.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
17
|
Inhibitor of Growth Factors Regulate Cellular Senescence. Cancers (Basel) 2022; 14:cancers14133107. [PMID: 35804879 PMCID: PMC9264871 DOI: 10.3390/cancers14133107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Five members of the Inhibitor of Growth (ING) family share a highly conserved plant homeodomian with affinity to the specific histone modification H3K4me3. Since some ING family members are preferentially associated with histone acetyltransferaseactivity while other members with histone deacetlyse activity, the ING family membres are epigenetic regulators. Interestingly, ING members can regulate the induction cellular senescence in both primray untransformed human cells as well as human cancer cells. We discuss here the up-to-date knowledge about their regulatory activity within the cellular senescent program. Abstract The Inhibitor of Growth (ING) proteins are a group of tumor suppressors with five conserved genes. A common motif of ING factors is the conserved plant homeodomain (PHD), with which they bind to chromatin as readers of the histone mark trimethylated histone H3 (H3K4me3). These genes often produce several protein products through alternative splicing events. Interestingly, ING1 and ING2 participate in the establishment of the repressive mSIN3a-HDAC complexes, whereas ING3, ING4, and ING5 are associated with the activating HAT protein complexes. In addition to the modulation of chromatin’s structure, they regulate cell cycle transition, cellular senescence, repair of DNA damage, apoptosis, and angiogenic pathways. They also have fundamental effects on regulating cellular senescence in cancer cells. In the current review, we explain their role in cellular senescence based on the evidence obtained from cell line and animal studies, particularly in the context of cancer.
Collapse
|
18
|
Zheng HC, Xue H, Wu X, Xu HL, Zhao EH, Cui ZG. Transcriptional Regulation of ING5 and its Suppressive Effects on Gastric Cancer. Front Oncol 2022; 12:918954. [PMID: 35747809 PMCID: PMC9209732 DOI: 10.3389/fonc.2022.918954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 01/23/2023] Open
Abstract
ING5 targets histone acetyltransferase or histone deacetylase complexes for local chromatin remodeling. Its transcriptional regulation and suppressive effects on gastric cancer remain elusive. Luciferase assay, EMSA, and ChIP were used to identify the cis-acting elements and trans-acting factors of the ING5 gene. We analyzed the effects of SAHA on the aggressive phenotypes of ING5 transfectants, and the effects of different ING5 mutants on aggressive phenotypes in SGC-7901 cells. Finally, we observed the effects of ING5 abrogation on gastric carcinogenesis. EMSA and ChIP showed that both SRF (−717 to −678 bp) and YY1 (−48 to 25bp) interacted with the promoter of ING5 and up-regulated ING5 expression in gastric cancer via SRF-YY1-ING5-p53 complex formation. ING5, SRF, and YY1 were overexpressed in gastric cancer, (P<0.05), and associated with worse prognosis of gastric cancer patients (P<0.05). ING5 had positive relationships with SRF and YY1 expression in gastric cancer (P<0.05). SAHA treatment caused early arrest at S phase in ING5 transfectants of SGC-7901 (P<0.05), and either 0.5 or 1.0 μM SAHA enhanced their migration and invasion (P<0.05). The wild-type and mutant ING5 transfectants showed lower viability and invasion than the control (P<0.05) with low CDC25, VEGF, and MMP-9 expression. Gastric spontaneous adenocarcinoma was observed in Atp4b-cre; ING5f/f, Pdx1-cre; ING5f/f, and K19-cre; ING5f/f mice. ING5 deletion increased the sensitivity of MNU-induced gastric carcinogenesis. ING5 mRNA might be a good marker of gastric carcinogenesis, and poor prognosis. ING5 expression was positively regulated by the interaction of SRF-YY1-ING5-p53 complex within the ING5 promoter from −50 bp upstream to the transcription start site. ING5 deletion might contribute to the tumorigenesis and histogenesis of gastric cancer.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xin Wu
- Department of Pathology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Hai-lan Xu
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - En-hong Zhao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng-guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| |
Collapse
|
19
|
Zheng HC, Xue H, Jin YZ, Jiang HM, Cui ZG. The Oncogenic Effects, Pathways, and Target Molecules of JC Polyoma Virus T Antigen in Cancer Cells. Front Oncol 2022; 12:744886. [PMID: 35350574 PMCID: PMC8958009 DOI: 10.3389/fonc.2022.744886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyoma virus (JCPyV) is a ubiquitous polyoma virus that infects the individual to cause progressive multifocal leukoencephalopathy and malignancies. Here, we found that T-antigen knockdown suppressed proliferation, glycolysis, mitochondrial respiration, migration, and invasion, and induced apoptosis and G2 arrest. The reverse was true for T-antigen overexpression, with overexpression of Akt, survivin, retinoblastoma protein, β-catenin, β-transducin repeat-containing protein (TRCP), and inhibitor of growth (ING)1, and the underexpression of mammalian target of rapamycin (mTOR), phosphorylated (p)-mTOR, p-p38, Cyclin D1, p21, vascular endothelial growth factor (VEGF), ING2, and ING4 in hepatocellular and pancreatic cancer cells and tissues. In lens tumor cells, T antigen transcriptionally targeted viral carcinogenesis, microRNAs in cancer, focal adhesion, p53, VEGF, phosphoinositide 3 kinase-Akt, and Forkhead box O signaling pathways, fructose and mannose metabolism, ribosome biosynthesis, and choline and pyrimidine metabolism. At a metabolomics level, it targeted protein digestion and absorption, aminoacryl-tRNA biosynthesis, biosynthesis of amino acids, and the AMPK signal pathway. At a proteomic level, it targeted ribosome biogenesis in eukaryotes, citrate cycle, carbon metabolism, protein digestion and absorption, aminoacryl-tRNA biosynthesis, extracellular-matrix-receptor interaction, and biosynthesis of amino acids. In lens tumor cells, T antigen might interact with various keratins, ribosomal proteins, apolipoproteins, G proteins, ubiquitin-related proteins, RPL19, β-catenin, β-TRCP, p53, and CCAAT-enhancer-binding proteins in lens tumor cells. T antigen induced a more aggressive phenotype in mouse and human cancer cells due to oncogene activation, inactivation of tumor suppressors, and disruption of metabolism, cell adhesion, and long noncoding RNA-microRNA-target axes.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yu-Zi Jin
- Department of Pediatrics, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-Mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| |
Collapse
|
20
|
Cxcl10 chemokine induces migration of ING4-deficient breast cancer cells via a novel crosstalk mechanism between the Cxcr3 and Egfr receptors. Mol Cell Biol 2021; 42:e0038221. [PMID: 34871062 DOI: 10.1128/mcb.00382-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The chemokine Cxcl10 has been associated with poor prognosis in breast cancer, but the mechanism is not well understood. Our previous study have shown that CXCL10 was repressed by the ING4 tumor suppressor, suggesting a potential inverse functional relationship. We thus investigated a role for Cxcl10 in the context of ING4 deficiencies in breast cancer. We first analyzed public gene expression datasets and found that patients with CXCL10-high/ING4-low expressing tumors had significantly reduced disease-free survival in breast cancer. In vitro, Cxcl10 induced migration of ING4-deleted breast cancer cells, but not of ING4-intact cells. Using inhibitors, we found that Cxcl10-induced migration of ING4-deleted cells required Cxcr3, Egfr, and the Gβγ subunits downstream of Cxcr3, but not Gαi. Immunofluorescent imaging showed that Cxcl10 induced early transient colocalization between Cxcr3 and Egfr in both ING4-intact and ING4-deleted cells, which recurred only in ING4-deleted cells. A peptide agent that binds to the internal juxtamembrane domain of Egfr inhibited Cxcr3/Egfr colocalization and cell migration. Taken together, these results presented a novel mechanism of Cxcl10 that elicits migration of ING4-deleted cells, in part by inducing a physical or proximal association between Cxcr3 and Egfr and signaling downstream via Gβγ. These results further indicated that ING4 plays a critical role in the regulation of Cxcl10 signaling that enables breast cancer progression.
Collapse
|
21
|
Ghosh AK. Acetyltransferase p300 Is a Putative Epidrug Target for Amelioration of Cellular Aging-Related Cardiovascular Disease. Cells 2021; 10:cells10112839. [PMID: 34831061 PMCID: PMC8616404 DOI: 10.3390/cells10112839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the leading cause of accelerated as well as chronological aging-related human morbidity and mortality worldwide. Genetic, immunologic, unhealthy lifestyles including daily consumption of high-carb/high-fat fast food, lack of exercise, drug addiction, cigarette smoke, alcoholism, and exposure to environmental pollutants like particulate matter (PM)-induced stresses contribute profoundly to accelerated and chronological cardiovascular aging and associated life threatening diseases. All these stressors alter gene expression epigenetically either through activation or repression of gene transcription via alteration of chromatin remodeling enzymes and chromatin landscape by DNA methylation or histone methylation or histone acetylation. Acetyltransferase p300, a major epigenetic writer of acetylation on histones and transcription factors, contributes significantly to modifications of chromatin landscape of genes involved in cellular aging and cardiovascular diseases. In this review, the key findings those implicate acetyltransferase p300 as a major contributor to cellular senescence or aging related cardiovascular pathologies including vascular dysfunction, cardiac hypertrophy, myocardial infarction, cardiac fibrosis, systolic/diastolic dysfunction, and aortic valve calcification are discussed. The efficacy of natural or synthetic small molecule inhibitor targeting acetyltransferase p300 in amelioration of stress-induced dysregulated gene expression, cellular aging, and cardiovascular disease in preclinical study is also discussed.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Melekhova A, Baniahmad A. ING Tumour Suppressors and ING Splice Variants as Coregulators of the Androgen Receptor Signalling in Prostate Cancer. Cells 2021; 10:cells10102599. [PMID: 34685579 PMCID: PMC8533759 DOI: 10.3390/cells10102599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Prevention and overcoming castration resistance of prostate cancer (PC) remains one of the main unsolved problems in modern oncology. Hence, many studies are focused on the investigation of novel androgen receptor (AR) regulators that could serve as potential drug targets in disease therapy. Among such factors, inhibitor of growth (ING) proteins were identified. Some ING proteins act as AR transcriptional coregulators, indicating their relevance for PC research. The ING family consists of five protein-coding genes from ING1 to ING5 and pseudogene INGX. The ING genes were revealed through their sequence homology to the first identified ING1 from an in vivo screen. ING factors are a part of histone modification complexes. With the help of the conserved plant homeodomain (PHD) motif, ING factors bind to Histone 3 Lysine 4 (H3K4) methylation mark with a stronger affinity to the highest methylation grade H3K4me3 and recruit histone acetyltransferases (HAT) and histone deacetylases (HDAC) to chromatin. ING1 and ING2 are core subunits of mSIN3a-HDAC corepressor complexes, whereas ING3–5 interact with different HAT complexes that serve as coactivators. ING members belong to type II tumour suppressors and are frequently downregulated in many types of malignancies, including PC. As the family name indicates, ING proteins are able to inhibit cell growth and tumour development via regulation of cell cycle and cancer-relevant pathways such as apoptosis, cellular senescence, DNA repair, cell migration, invasion, and angiogenesis. Many ING splice variants that enhance the diversity of ING activity were discovered. However, it seems that the existence of multiple ING splice variants is underestimated, since alternative splice variants, such as the AR coregulators ING1 and ING3, counteract full-length ING and thus play an opposite functional role. These results open a novel prospective investigation direction in understanding ING factors biology in PC and other malignancies.
Collapse
Affiliation(s)
| | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396-820; Fax: +49-3641-9396-822
| |
Collapse
|
23
|
Antithetic hTERT Regulation by Androgens in Prostate Cancer Cells: hTERT Inhibition Is Mediated by the ING1 and ING2 Tumor Suppressors. Cancers (Basel) 2021; 13:cancers13164025. [PMID: 34439179 PMCID: PMC8391603 DOI: 10.3390/cancers13164025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The expression of the catalytic subunit of the human telomerase reverse transcriptase subunit (hTERT) is hormonally controlled. Androgen treatment suppresses the hTERT expression at a transcriptional level in prostate cancer cells. Here, we identified the responsive promoter element that mediates the androgen receptor induced transrepression of hTERT. The negative androgen response element (nARE) is identified as 62 bp located in the core promoter of hTERT. Chromatin immunoprecipitations indicate an androgen-dependent recruitment of the androgen receptor (AR) ING1 and ING2 to the hTERT promoter. Interestingly, the androgen-induced transrepression is mediated by the class II tumor suppressors inhibitor of growth 1 and 2, namely ING1 and ING2, respectively. Abstract The human telomerase is a key factor during tumorigenesis in prostate cancer (PCa). The androgen receptor (AR) is a key drug target controlling PCa growth and regulates hTERT expression, but is described to either inhibit or to activate. Here, we reveal that androgens repress and activate hTERT expression in a concentration-dependent manner. Physiological low androgen levels activate, while, notably, supraphysiological androgen levels (SAL), used in bipolar androgen therapy (BAT), repress hTERT expression. We confirmed the SAL-mediated gene repression of hTERT in PCa cell lines, native human PCa samples derived from patients treated ex vivo, as well as in cancer spheroids derived from androgen-dependent or castration resistant PCa (CRPC) cells. Interestingly, chromatin immuno-precipitation (ChIP) combined with functional assays revealed a positive (pARE) and a negative androgen response element (nARE). The nARE was narrowed down to 63 bp in the hTERT core promoter region. AR and tumor suppressors, inhibitor of growth 1 and 2 (ING1 and ING2, respectively), are androgen-dependently recruited. Mechanistically, knockdown indicates that ING1 and ING2 mediate AR-regulated transrepression. Thus, our data suggest an oppositional, biphasic function of AR to control the hTERT expression, while the inhibition of hTERT by androgens is mediated by the AR co-repressors ING1 and ING2.
Collapse
|
24
|
A Novel Splice Variant of the Inhibitor of Growth 3 Lacks the Plant Homeodomain and Regulates Epithelial-Mesenchymal Transition in Prostate Cancer Cells. Biomolecules 2021; 11:biom11081152. [PMID: 34439818 PMCID: PMC8392754 DOI: 10.3390/biom11081152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Inhibitor of growth 3 (ING3) is one of five members of the ING tumour suppressor family, characterized by a highly conserved plant homeodomain (PHD) as a reader of the histone mark H3K4me3. ING3 was reported to act as a tumour suppressor in many different cancer types to regulate apoptosis. On the other hand, ING3 levels positively correlate with poor survival prognosis of prostate cancer (PCa) patients. In PCa cells, ING3 acts rather as an androgen receptor (AR) co-activator and harbours oncogenic properties in PCa. Here, we show the identification of a novel ING3 splice variant in both the human PCa cell line LNCaP and in human PCa patient specimen. The novel ING3 splice variant lacks exon 11, ING3∆ex11, which results in deletion of the PHD, providing a unique opportunity to analyse functionally the PHD of ING3 by a natural splice variant. Functionally, overexpression of ING3Δex11 induced morphological changes of LNCaP-derived 3D spheroids with generation of lumen and pore-like structures within spheroids. Since these structures are an indicator of epithelial-mesenchymal transition (EMT), key regulatory factors and markers for EMT were analysed. The data suggest that in contrast to ING3, ING3Δex11 specifically modulates the expression of key EMT-regulating upstream transcription factors and induces the expression of EMT markers, indicating that the PHD of ING3 inhibits EMT. In line with this, ING3 knockdown also induced the expression of EMT markers, confirming the impact of ING3 on EMT regulation. Further, ING3 knockdown induced cellular senescence via a pathway leading to cell cycle arrest, indicating an oncogenic role for ING3 in PCa. Thus, the data suggest that the ING3Δex11 splice variant lacking functional PHD exhibits oncogenic characteristics through triggering EMT in PCa cells.
Collapse
|
25
|
ING4 Expression Landscape and Association With Clinicopathologic Characteristics in Breast Cancer. Clin Breast Cancer 2021; 21:e319-e331. [DOI: 10.1016/j.clbc.2020.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
|
26
|
Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021; 13:138. [PMID: 34238359 PMCID: PMC8264473 DOI: 10.1186/s13148-021-01126-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Transcriptionally active chromatin is marked by tri-methylation of histone H3 at lysine 4 (H3K4me3) located after first exons and around transcription start sites. This epigenetic mark is typically restricted to narrow regions at the 5`end of the gene body, though a small subset of genes have a broad H3K4me3 domain which extensively covers the coding region. Although most studies focus on the H3K4me3 mark, the broad H3K4me3 domain is associated with a plethora of histone modifications (e.g., H3 acetylated at K27) and is therein termed broad epigenetic domain. Genes marked with the broad epigenetic domain are involved in cell identity and essential cell functions and have clinical potential as biomarkers for patient stratification. Reducing expression of genes with the broad epigenetic domain may increase the metastatic potential of cancer cells. Enhancers and super-enhancers interact with the broad epigenetic domain marked genes forming a hub of interactions involving nucleosome-depleted regions. Together, the regulatory elements coalesce with transcription factors, chromatin modifying/remodeling enzymes, coactivators, and the Mediator and/or Integrator complex into a transcription factory which may be analogous to a liquid–liquid phase-separated condensate. The broad epigenetic domain has a dynamic chromatin structure which supports frequent transcription bursts. In this review, we present the current knowledge of broad epigenetic domains.
Collapse
Affiliation(s)
- Tasnim H Beacon
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Geneviève P Delcuve
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Camila López
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada
| | - Gino Nardocci
- Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - James R Davie
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Room 333A, Winnipeg, MB, Canada.
| |
Collapse
|
27
|
ING2 tumor suppressive protein translocates into mitochondria and is involved in cellular metabolism homeostasis. Oncogene 2021; 40:4111-4123. [PMID: 34017078 DOI: 10.1038/s41388-021-01832-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2020] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 02/04/2023]
Abstract
ING2 (Inhibitor of Growth 2) is a tumor suppressor gene that has been implicated in critical biological functions (cell-cycle regulation, replicative senescence, DNA repair and DNA replication), most of which are recognized hallmarks of tumorigenesis occurring in the cell nucleus. As its close homolog ING1 has been recently observed in the mitochondrial compartment, we hypothesized that ING2 could also translocate into the mitochondria and be involved in new biological functions. In the present study, we demonstrate that ING2 is imported in the inner mitochondrial fraction in a redox-sensitive manner in human cells and that this mechanism is modulated by 14-3-3η protein expression. Remarkably, ING2 is necessary to maintain mitochondrial ultrastructure integrity without interfering with mitochondrial networks or polarization. We observed an interaction between ING2 and mtDNA under basal conditions. This interaction appears to be mediated by TFAM, a critical regulator of mtDNA integrity. The loss of mitochondrial ING2 does not impair mtDNA repair, replication or transcription but leads to a decrease in mitochondrial ROS production, suggesting a detrimental impact on OXPHOS activity. We finally show using multiple models that ING2 is involved in mitochondrial respiration and that its loss confers a protection against mitochondrial respiratory chain inhibition in vitro. Consequently, we propose a new tumor suppressor role for ING2 protein in the mitochondria as a metabolic shift gatekeeper during tumorigenesis.
Collapse
|
28
|
Li H, Zhang H, Tan X, Liu D, Guo R, Wang M, Tang Y, Zheng K, Chen W, Li H, Tan M, Wang K, Liu R, Tang S. Overexpression of ING3 is associated with attenuation of migration and invasion in breast cancer. Exp Ther Med 2021; 22:699. [PMID: 34007308 PMCID: PMC8120550 DOI: 10.3892/etm.2021.10131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibitor of growth 3 (ING3) has been identified as a potential cancer drug target, but little is known about its role in breast cancer. Thus, the present study aimed to investigate ING3 expression in breast cancer, its clinical value, and how ING3 influences the migration and invasion of breast cancer cells. The Cancer Genome Atlas and UALCAN databases were used to analyze ING3 expression in cancer tissues and normal tissues. Survival analysis was performed using the UALCAN, UCSC Xena and KM-plot databases. In addition, reverse transcription-quantitative PCR and western blot analyses were performed to detect ING3 mRNA and protein expression levels. ING3 was overexpressed via lentiviral vector transfection, while the Transwell and wound healing assays were performed to assess the cell migratory and invasive abilities. Protein interaction and pathway analyses were performed using the GeneMANIA and Kyoto Encyclopedia of Genes and Genomes databases, respectively. The results demonstrated that ING3 expression was significantly lower in cancer tissues compared with normal tissues (P<0.05). In addition, luminal A and human epidermal growth factor receptor 2 (HER2)-enriched breast cancer tissues expressed lower levels of ING3 compared with normal breast tissues. Notably, statistically significant differences were observed in long-term survival between patients with luminal A (P=0.04) and HER2-enriched (P=0.008) breast cancer, with high and low expression levels of ING3. The results of the Transwell migration and invasion assays demonstrated that overexpression of ING3 significantly inhibited the migratory and invasive abilities of MCF7 (P<0.05) and HCC1937 (P<0.05) cells. The results of the wound healing assay demonstrated that the percentage wound closure significantly decreased in cells transfected with LV5-ING3 compared with the negative control group at 12 h (P<0.05) and 24 h (P<0.01). The PI3K/AKT, JAK/STAT, NF-κB and Wnt/β-catenin pathways are the potential pathways regulated by ING3. Notably, overexpression of ING3 inhibited migration and invasion in vitro. However, further studies are required to determine whether ING3 regulates the biological behavior of breast cancer via tumor-related pathways.
Collapse
Affiliation(s)
- Huimeng Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hengyu Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Xin Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rong Guo
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Maohua Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Yiyin Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Kai Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Wenlin Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Hongwan Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Mingjian Tan
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| | - Rui Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Shicong Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
29
|
Macromolecular Crowding Increases the Affinity of the PHD of ING4 for the Histone H3K4me3 Mark. Biomolecules 2020; 10:biom10020234. [PMID: 32033221 PMCID: PMC7072245 DOI: 10.3390/biom10020234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
The five members of the family of tumor suppressors ING contain a Plant Homeodomain (PHD) that specifically recognizes histone H3 trimethylated at lysine 4 (H3K4me3) with an affinity in the low micromolar range. Here, we use NMR to show that in the presence of 15% Ficoll 70, an inert macromolecular crowding agent, the mode of binding does not change but the affinity increases by one order of magnitude. The affinity increases also for unmethylated histone H3 tail, but the difference with H3K4me3 is larger in the presence of Ficoll. These results indicate that in the cellular milieu, the affinity of the ING proteins for their chromatin target is larger than previously thought.
Collapse
|
30
|
Archambeau J, Blondel A, Pedeux R. Focus-ING on DNA Integrity: Implication of ING Proteins in Cell Cycle Regulation and DNA Repair Modulation. Cancers (Basel) 2019; 12:cancers12010058. [PMID: 31878273 PMCID: PMC7017203 DOI: 10.3390/cancers12010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022] Open
Abstract
The ING family of tumor suppressor genes is composed of five members (ING1-5) involved in cell cycle regulation, DNA damage response, apoptosis and senescence. All ING proteins belong to various HAT or HDAC complexes and participate in chromatin remodeling that is essential for genomic stability and signaling pathways. The gatekeeper functions of the INGs are well described by their role in the negative regulation of the cell cycle, notably by modulating the stability of p53 or the p300 HAT activity. However, the caretaker functions are described only for ING1, ING2 and ING3. This is due to their involvement in DNA repair such as ING1 that participates not only in NERs after UV-induced damage, but also in DSB repair in which ING2 and ING3 are required for accumulation of ATM, 53BP1 and BRCA1 near the lesion and for the subsequent repair. This review summarizes evidence of the critical roles of ING proteins in cell cycle regulation and DNA repair to maintain genomic stability.
Collapse
|