1
|
Kong T, Laranjeira ABA, Letson CT, Yu L, He F, Jayanthan A, Los G, Dunn SE, Challen GA, Oh ST. RSK1 dependency in FLT3-ITD acute myeloid leukemia. Blood Cancer J 2024; 14:207. [PMID: 39592591 PMCID: PMC11599852 DOI: 10.1038/s41408-024-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Internal tandem duplications (ITD) in fms-like tyrosine kinase 3 (FLT3) represent the most common genetic alteration in de novo acute myeloid leukemia (AML). Here, we identify ribosomal protein s6 kinase a1 (RSK1) as a core dependency in FLT3-ITD AML and unveil the existence of crucial bi-directional regulation. RSK1 perturbation resulted in marked apoptosis and abrogated phosphorylation of FLT3 and associated downstream signaling cascades in FLT3-ITD AML cell lines. Using cycloheximide, MG-132, and ubiquitination assays, we further demonstrate mechanistically that RSK1 regulates FLT3-ITD activity, and protein stability through deubiqutinase USP1, which we identify as a second dependency. Importantly, multivariate analysis revealed heightened expression of RPS6KA1 and USP1 to be associated with poor patient prognosis, and these effectors may serve as biomarkers predictive of patient survival and therapeutic response to FLT3-ITD inhibitors. Lastly, RSK1 inhibition utilizing a first-in-class RSK inhibitor, PMD-026, that is currently undergoing Phase 2 development for breast cancer, diminished leukemic disease burden in MV4-11 xenograft and syngeneic Flt3ITDTet2KO leukemia models. These findings illustrate an unconventional and promising therapeutic strategy targeting FLT3-ITD leukemia.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Angelo B A Laranjeira
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher T Letson
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - LaYow Yu
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Fan He
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aarthi Jayanthan
- Phoenix Molecular Designs, Vancouver, BC, Canada
- Phoenix Molecular Designs, San Diego, CA, USA
| | - Gerrit Los
- Phoenix Molecular Designs, Vancouver, BC, Canada
- Phoenix Molecular Designs, San Diego, CA, USA
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, BC, Canada
- Phoenix Molecular Designs, San Diego, CA, USA
| | - Grant A Challen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Dai W, Yin S, Wang F, Kuang T, Xiao H, Kang W, Yun C, Wang F, Luo L, Ao S, Zhou J, Yang X, Fan C, Li W, He D, Jin H, Tang W, Liu L, Wang R, Liang H, Zhu J. Punicalagin as a novel selective aryl hydrocarbon receptor (AhR) modulator upregulates AhR expression through the PDK1/p90RSK/AP-1 pathway to promote the anti-inflammatory response and bactericidal activity of macrophages. Cell Commun Signal 2024; 22:473. [PMID: 39363344 PMCID: PMC11448010 DOI: 10.1186/s12964-024-01847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) plays an important role in inflammation and immunity as a new therapeutic target for infectious disease and sepsis. Punicalagin (PUN) is a Chinese herbal monomer extract of pomegranate peel that has beneficial anti-inflammatory, antioxidant and anti-infective effects. However, whether PUN is a ligand of AhR, its effect on AhR expression, and its signaling pathway remain poorly understood. In this study, we found that PUN was a unique polyphenolic compound that upregulated AhR expression at the transcriptional level, and regulated the AhR nongenomic pathway. AhR expression in lipopolysaccharide-induced macrophages was upregulated by PUN in vitro and in vivo in a time- and dose-dependent manner. Using specific inhibitors and siRNA, induction of AhR by PUN depended on sequential phosphorylation of 90-kDa ribosomal S6 kinase (p90RSK), which was activated by the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-dependent protein kinase (PDK)1 pathways. PUN promoted p90RSK-mediated activator protein-1 (AP-1) activation. AhR knockout or inhibitors reversed suppression of interleukin (IL)-6 and IL-1β expression by PUN. PUN decreased Listeria load and increased macrophage survival via AhR upregulation. In conclusion, we identified PUN as a novel selective AhR modulator involved in AhR expression via the MEK/ERK and PDK1 pathways targeting p90RSK/AP-1 in inflammatory macrophages, which inhibited macrophage inflammation and promoted bactericidal activity.
Collapse
Affiliation(s)
- Weihong Dai
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Shuangqin Yin
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fangjie Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tianyin Kuang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongyan Xiao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenyuan Kang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Caihong Yun
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Fei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Li Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shengxiang Ao
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xue Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Chao Fan
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Li
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dongmei He
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - He Jin
- Department of Cardiothoracic Surgery, 926th Hospital of Joint Logistics Support Force of PLA, Kaiyuan, 661600, China
| | - Wanqi Tang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lizhu Liu
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China
| | - Rixing Wang
- Emergency of The Second Affiliated Hospital of Hainan Medical University, Haikou, 571100, China.
| | - Huaping Liang
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Junyu Zhu
- State Key Laboratory of Trauma and Chemical Poisoning, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Nogami A, Amemiya HJ, Fujiwara H, Umezawa Y, Tohda S, Nagao T. Targeting USP14/UCHL5: A Breakthrough Approach to Overcoming Treatment-Resistant FLT3-ITD-Positive AML. Int J Mol Sci 2024; 25:10372. [PMID: 39408703 PMCID: PMC11476563 DOI: 10.3390/ijms251910372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations in acute myeloid leukemia (AML) are associated with poor prognosis and therapy resistance. This study aimed to demonstrate that inhibiting the deubiquitinating enzymes ubiquitin-specific peptidase 14 (USP14) and ubiquitin C-terminal hydrolase L5 (UCHL5) (USP14/UCHL5) with b-AP15 or the organogold compound auranofin (AUR) induces apoptosis in the ITD-transformed human leukemia cell line MV4-11 and mononuclear leukocytes derived from patients with FLT3-ITD-positive AML. This study included patients diagnosed with AML at Tokyo Medical and Dental University Hospital between January 2018 and July 2024. Both treatments blocked downstream FLT3 pathway events, with the effects potentiated by USP14 knockdown. Both treatments inhibited FLT3 deubiquitination via K48 and disrupted translation initiation via 4EBP1, a downstream FLT3 target. FLT3 was downregulated in the leukemic cells, with the associated activation of stress-related MAP kinase pathways and increased NF-E2-related factor 2. Furthermore, the overexpression of B-cell lymphoma-extra-large and myeloid cell leukemia-1 prevented the cell death caused by b-AP15 and AUR. These results suggest that inhibiting USP14/UCHL5, which involves multiple regulatory mechanisms, is a promising target for novel therapies for treatment-resistant FLT3-ITD-positive AML.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Ubiquitin Thiolesterase/metabolism
- Ubiquitin Thiolesterase/genetics
- Ubiquitin Thiolesterase/antagonists & inhibitors
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Male
- Cell Line, Tumor
- Middle Aged
- Aged
- Apoptosis/drug effects
- Adult
- Mutation
Collapse
Affiliation(s)
- Ayako Nogami
- Department of Laboratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyoku, Tokyo 113-8510, Japan
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hideki Jose Amemiya
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Hiroki Fujiwara
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shuji Tohda
- Department of Laboratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyoku, Tokyo 113-8510, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
4
|
Dolnikova A, Kazantsev D, Klanova M, Pokorna E, Sovilj D, Kelemen CD, Tuskova L, Hoferkova E, Mraz M, Helman K, Curik N, Machova Polakova K, Andera L, Trneny M, Klener P. Blockage of BCL-XL overcomes venetoclax resistance across BCL2+ lymphoid malignancies irrespective of BIM status. Blood Adv 2024; 8:3532-3543. [PMID: 38713893 PMCID: PMC11261020 DOI: 10.1182/bloodadvances.2024012906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 05/09/2024] Open
Abstract
ABSTRACT Venetoclax (VEN), a B-cell lymphoma 2 (BCL2) inhibitor, has a promising single-agent activity in mantle cell lymphoma (MCL), acute lymphoblastic leukemia (ALL), and large BCLs, but remissions were generally short, which call for rational drug combinations. Using a panel of 21 lymphoma and leukemia cell lines and 28 primary samples, we demonstrated strong synergy between VEN and A1155463, a BCL-XL inhibitor. Immunoprecipitation experiments and studies on clones with knockout of expression or transgenic expression of BCL-XL confirmed its key role in mediating inherent and acquired VEN resistance. Of note, the VEN and A1155463 combination was synthetically lethal even in the cell lines with lack of expression of the proapoptotic BCL2L11/BIM and in the derived clones with genetic knockout of BCL2L11/BIM. This is clinically important because BCL2L11/BIM deletion, downregulation, or sequestration results in VEN resistance. Immunoprecipitation experiments further suggested that the proapoptotic effector BAX belongs to principal mediators of the VEN and A1155463 mode of action in the BIM-deficient cells. Lastly, the efficacy of the new proapoptotic combination was confirmed in vivo on a panel of 9 patient-derived lymphoma xenografts models including MCL (n = 3), B-ALL (n = 2), T-ALL (n = 1), and diffuse large BCL (n = 3). Because continuous inhibition of BCL-XL causes thrombocytopenia, we proposed and tested an interrupted 4 days on/3 days off treatment regimen, which retained the desired antitumor synergy with manageable platelet toxicity. The proposed VEN and A1155463 combination represents an innovative chemotherapy-free regimen with significant preclinical activity across diverse BCL2+ hematologic malignancies irrespective of the BCL2L11/BIM status.
Collapse
Affiliation(s)
- Alexandra Dolnikova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dmitry Kazantsev
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magdalena Klanova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Eva Pokorna
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Sovilj
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
| | - Cristina Daniela Kelemen
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
| | - Liliana Tuskova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Eva Hoferkova
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Helman
- Faculty of Informatics and Statistics, University of Economics, Prague, Czech Republic
| | - Nikola Curik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Ladislav Andera
- Institute of Biotechnology Czech Academy of Sciences/Biotechnology and Biomedicine Centre of the Czech Academy of Sciences and Charles University, Vestec, Czech Republic
- Institute of Molecular Genetics CAS, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine, Department of Hematology, Charles University General Hospital, Prague, Czech Republic
| |
Collapse
|
5
|
Khatua S, Nandi S, Nag A, Sen S, Chakraborty N, Naskar A, Gürer ES, Calina D, Acharya K, Sharifi-Rad J. Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications. Eur J Med Res 2024; 29:269. [PMID: 38704602 PMCID: PMC11069164 DOI: 10.1186/s40001-024-01856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sudeshna Nandi
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore Central Campus, Bangalore, Karnataka, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Diamond Harbour, South 24-Parganas, Kolkata, India
| | | | - Arghya Naskar
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Krishnendu Acharya
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India.
| | | |
Collapse
|
6
|
Su Y, Wu M, Zhou B, Bai Z, Pang R, Liu Z, Zhao W. Paclitaxel mediates the PI3K/AKT/mTOR pathway to reduce proliferation of FLT3‑ITD + AML cells and promote apoptosis. Exp Ther Med 2024; 27:161. [PMID: 38476887 PMCID: PMC10928971 DOI: 10.3892/etm.2024.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Acute myeloid leukemia (AML) with internal tandem duplication (ITD) mutations in the FLT3 tyrosine kinase tend to have a poor prognosis. FLT3-ITD can promote the progress of AML by activating the PI3K/AKT/mTOR pathway. Paclitaxel (PTX) is a natural anticancer drug that has been widely used in chemotherapy for multiple malignancies. The present study used the CCK-8 assay, flow cytometry, PCR and western blotting to explore the anti-leukemia effect and possible mechanisms of PTX on MV4-11 cells with the FLT3-ITD mutation and the underlying mechanism. As a result, it was found that PTX could inhibit proliferation of MV4-11 cells and promoted apoptosis by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanyun Su
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Meiqing Wu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Baowen Zhou
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ziwen Bai
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ruli Pang
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weihua Zhao
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
7
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
8
|
Wu S, Jin J, Huang J, Chen G, Chen Y. Comprehensive analysis of the RSK gene family in acute myeloid leukemia determines a prognostic signature for the prediction of clinical prognosis and treatment responses. Hematology 2023; 28:2235833. [PMID: 37462338 DOI: 10.1080/16078454.2023.2235833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE The prognosis of acute myeloid leukemia (AML) remains poor although the basic and translational research has been highly productive in understanding the genetics and pathopoiesis of AML and a plethora of targeted therapies have been developed. Consequently, it is crucial to deepen the knowledge of molecular pathogenesis underlying AML for the advancement of new treatment options. METHOD A RSK gene family-related signature was constructed to investigate whether RSK gene family members were useful in predicting the prognosis of AML patients. The relationship between the RSK gene family-related signature and the infiltration of immune cells was further assessed using the CIBERSORT algorithm. The 'oncoPredict' package was used to analyze relationships between the RSK gene family-related signature and the sensitivity to drugs or small molecules. RESULTS Patients were classified into two groups using the RSK gene family-related signature following the median risk score. Overall survival (OS) was significantly longer in patients with low-risk scores than that in patients with high-risk scores as showed by both training and validation datasets. Moreover, the signature was helpful in predicting 1-year, 3-year, and 5-year OS in training and validation datasets. In addition, it was identified that low-risk patients exhibited greater sensitivity to 20 drugs or small molecules and that high-risk patients had higher sensitivity to 38 drugs or small molecules. CONCLUSION RSK gene family members, particularly RPS6KA1 and RPS6KA4, may help to predict prognosis for AML patients. Furthermore, RPS6KA1 may serve as a novel drug target for AML.
Collapse
Affiliation(s)
- Shasha Wu
- Guizhou Medical University, Guiyang, People's Republic of China
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Jiao Jin
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Jing Huang
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Guifang Chen
- Department of Pediatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Yan Chen
- Guizhou Medical University, Guiyang, People's Republic of China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
9
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Postiglione AE, Adams LL, Ekhator ES, Odelade AE, Patwardhan S, Chaudhari M, Pardue AS, Kumari A, LeFever WA, Tornow OP, Kaoud TS, Neiswinger J, Jeong JS, Parsonage D, Nelson KJ, Kc DB, Furdui CM, Zhu H, Wommack AJ, Dalby KN, Dong M, Poole LB, Keyes JD, Newman RH. Hydrogen peroxide-dependent oxidation of ERK2 within its D-recruitment site alters its substrate selection. iScience 2023; 26:107817. [PMID: 37744034 PMCID: PMC10514464 DOI: 10.1016/j.isci.2023.107817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/11/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are dysregulated in many pervasive diseases. Recently, we discovered that ERK1/2 is oxidized by signal-generated hydrogen peroxide in various cell types. Since the putative sites of oxidation lie within or near ERK1/2's ligand-binding surfaces, we investigated how oxidation of ERK2 regulates interactions with the model substrates Sub-D and Sub-F. These studies revealed that ERK2 undergoes sulfenylation at C159 on its D-recruitment site surface and that this modification modulates ERK2 activity differentially between substrates. Integrated biochemical, computational, and mutational analyses suggest a plausible mechanism for peroxide-dependent changes in ERK2-substrate interactions. Interestingly, oxidation decreased ERK2's affinity for some D-site ligands while increasing its affinity for others. Finally, oxidation by signal-generated peroxide enhanced ERK1/2's ability to phosphorylate ribosomal S6 kinase A1 (RSK1) in HeLa cells. Together, these studies lay the foundation for examining crosstalk between redox- and phosphorylation-dependent signaling at the level of kinase-substrate selection.
Collapse
Affiliation(s)
- Anthony E. Postiglione
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Biology, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Laquaundra L. Adams
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anuoluwapo E. Odelade
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Supriya Patwardhan
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Meenal Chaudhari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Computational Data Science and Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Mathematics and Computer Science, University of Virginia at Wise, Wise, VA 24293, USA
| | - Avery S. Pardue
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Anjali Kumari
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - William A. LeFever
- Department of Chemistry, High Point University, High Point, NC 27268, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Olivia P. Tornow
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Tamer S. Kaoud
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Johnathan Neiswinger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biology, Belhaven University, Jackson, MS 39202, USA
| | - Jun Seop Jeong
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kimberly J. Nelson
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Dukka B. Kc
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC 27268, USA
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ming Dong
- Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeremiah D. Keyes
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Biology, Penn State University Behrend, Erie, PA 16563, USA
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
11
|
Weidenauer K, Schmidt C, Rohde C, Pauli C, Blank MF, Heid D, Waclawiczek A, Corbacioglu A, Göllner S, Lotze M, Vierbaum L, Renders S, Krijgsveld J, Raffel S, Sauer T, Trumpp A, Pabst C, Müller-Tidow C, Janssen M. The ribosomal protein S6 kinase alpha-1 (RPS6KA1) induces resistance to venetoclax/azacitidine in acute myeloid leukemia. Leukemia 2023; 37:1611-1625. [PMID: 37414921 PMCID: PMC10400424 DOI: 10.1038/s41375-023-01951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Venetoclax/azacitidine combination therapy is effective in acute myeloid leukemia (AML) and tolerable for older, multimorbid patients. Despite promising response rates, many patients do not achieve sustained remission or are upfront refractory. Identification of resistance mechanisms and additional therapeutic targets represent unmet clinical needs. By using a genome-wide CRISPR/Cas9 library screen targeting 18,053 protein- coding genes in a human AML cell line, various genes conferring resistance to combined venetoclax/azacitidine treatment were identified. The ribosomal protein S6 kinase A1 (RPS6KA1) was among the most significantly depleted sgRNA-genes in venetoclax/azacitidine- treated AML cells. Addition of the RPS6KA1 inhibitor BI-D1870 to venetoclax/azacitidine decreased proliferation and colony forming potential compared to venetoclax/azacitidine alone. Furthermore, BI-D1870 was able to completely restore the sensitivity of OCI-AML2 cells with acquired resistance to venetoclax/azacitidine. Analysis of cell surface markers revealed that RPS6KA1 inhibition efficiently targeted monocytic blast subclones as a potential source of relapse upon venetoclax/azacitidine treatment. Taken together, our results suggest RPS6KA1 as mediator of resistance towards venetoclax/azacitidine and additional RPS6KA1 inhibition as strategy to prevent or overcome resistance.
Collapse
Affiliation(s)
- Katharina Weidenauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Christina Schmidt
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Christian Rohde
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Cornelius Pauli
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian F Blank
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Heid
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alexander Waclawiczek
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Anika Corbacioglu
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Stefanie Göllner
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michelle Lotze
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Vierbaum
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Renders
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Jeroen Krijgsveld
- University of Heidelberg Medical Faculty, Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Raffel
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Sauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Caroline Pabst
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maike Janssen
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
12
|
Sun Y, Tang L, Wu C, Wang J, Wang C. RSK inhibitors as potential anticancer agents: Discovery, optimization, and challenges. Eur J Med Chem 2023; 251:115229. [PMID: 36898330 DOI: 10.1016/j.ejmech.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Ribosomal S6 kinase (RSK) family is a group of serine/threonine kinases, including four isoforms (RSK1/2/3/4). As a downstream effector of the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, RSK participates in many physiological activities such as cell growth, proliferation, and migration, and is intimately involved in tumor occurrence and development. As a result, it is recognized as a potential target for anti-cancer and anti-resistance therapies. There have been several RSK inhibitors discovered or designed in recent decades, but only two have entered clinical trials. Low specificity, low selectivity, and poor pharmacokinetic properties in vivo limit their clinical translation. Published studies performed structure optimization by increasing interaction with RSK, avoiding hydrolysis of pharmacophores, eliminating chirality, adapting to binding site shape, and becoming prodrugs. Besides enhancing efficacy, the focus of further design will move towards selectivity since there are functional differences among RSK isoforms. This review summarized the types of cancers associated with RSK, along with the structural characteristics and optimization process of the reported RSK inhibitors. Furthermore, we addressed the importance of RSK inhibitors' selectivity and discussed future drug development directions. This review is expected to shed light on the emergence of RSK inhibitors with high potency, specificity, and selectivity.
Collapse
Affiliation(s)
- Ying Sun
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichao Tang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, United States
| | - Chengyong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
13
|
Bender O, Shoman ME, Ali TFS, Dogan R, Celik I, Mollica A, Hamed MIA, Aly OM, Alamri A, Alanazi J, Ahemad N, Gan SH, Malik JA, Anwar S, Atalay A, Beshr EAM. Discovery of oxindole-based FLT3 inhibitors as a promising therapeutic lead for acute myeloid leukemia carrying the oncogenic ITD mutation. Arch Pharm (Weinheim) 2023; 356:e2200407. [PMID: 36403191 DOI: 10.1002/ardp.202200407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-β. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.
Collapse
Affiliation(s)
- Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Rumeysa Dogan
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Adriano Mollica
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Omar M Aly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Jowaher Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor DE, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor DE, Malaysia
| | - Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostics Unit and Personalized Treatment, University of Hail, Hail, Saudi Arabia
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
14
|
Jiang G, Jin P, Xiao X, Shen J, Li R, Zhang Y, Li X, Xue K, Li J. Identification and validation of a novel CD8+ T cell-associated prognostic model based on ferroptosis in acute myeloid leukemia. Front Immunol 2023; 14:1149513. [PMID: 37138885 PMCID: PMC10150955 DOI: 10.3389/fimmu.2023.1149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive cancer with great heterogeneity and variability in prognosis. Though European Leukemia Net (ELN) 2017 risk classification has been widely used, nearly half of patients were stratified to "intermediate" risk and requires more accurate classification via excavating biological features. As new evidence showed that CD8+ T cell can kill cancer cells through ferroptosis pathway. We firstly use CIBERSORT algorithm to divide AMLs into CD8+ high and CD8+ low T cell groups, then 2789 differentially expressed genes (DEGs) between groups were identified, of which 46 ferroptosis-related genes associated with CD8+ T cell were sorted out. GO, KEGG analysis and PPI network were conducted based on these 46 DEGs. By jointly using LASSO algorithm and Cox univariate regression, we generated a 6-gene prognostic signature comprising VEGFA, KLHL24, ATG3, EIF2AK4, IDH1 and HSPB1. Low-risk group shows a longer overall survival. We then validated the prognostic value of this 6-gene signature using two independent external datasets and patient sample collection dataset. We also proved that incorporation of the 6-gene signature obviously enhanced the accuracy of ELN risk classification. Finally, gene mutation analysis, drug sensitive prediction, GSEA and GSVA analysis were conducted between high-risk and low-risk AML patients. Collectively, our findings suggested that the prognostic signature based on CD8+ T cell-related ferroptosis genes can optimize the risk stratification and prognostic prediction of AML patients.
Collapse
Affiliation(s)
- Ge Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xiao
- Department of Orthopedic, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Shen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxiang Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kai Xue, ; Xiaoyang Li, ; Junmin Li,
| | - Kai Xue
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kai Xue, ; Xiaoyang Li, ; Junmin Li,
| | - Junmin Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kai Xue, ; Xiaoyang Li, ; Junmin Li,
| |
Collapse
|
15
|
Rationale for Combining the BCL2 Inhibitor Venetoclax with the PI3K Inhibitor Bimiralisib in the Treatment of IDH2- and FLT3-Mutated Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012587. [PMID: 36293442 PMCID: PMC9604078 DOI: 10.3390/ijms232012587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
In October 2020, the FDA granted regular approval to venetoclax (ABT-199) in combination with hypomethylating agents for newly-diagnosed acute myeloid leukemia (AML) in adults 75 years or older, or in patients with comorbidities precluding intensive chemotherapy. The treatment response to venetoclax combination treatment, however, may be short-lived, and leukemia relapse is the major cause of treatment failure. Multiple studies have confirmed the upregulation of the anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family and the activation of intracellular signaling pathways associated with resistance to venetoclax. To improve treatment outcome, compounds targeting anti-apoptotic proteins and signaling pathways have been evaluated in combination with venetoclax. In this study, the BCL-XL inhibitor A1331852, MCL1-inhibitor S63845, dual PI3K-mTOR inhibitor bimiralisib (PQR309), BMI-1 inhibitor unesbulin (PTC596), MEK-inhibitor trametinib (GSK1120212), and STAT3 inhibitor C-188-9 were assessed as single agents and in combination with venetoclax, for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Enhanced cytotoxic effects were present in all combination treatments with venetoclax in AML cell lines and AML patient samples. Elevated in vitro efficacies were observed for the combination treatment of venetoclax with A1331852, S63845 and bimiralisib, with differing response markers for each combination. For the venetoclax and bimiralisib combination treatment, responders were enriched for IDH2 and FLT3 mutations, whereas non-responders were associated with PTPN11 mutations. The combination of PI3K/mTOR dual pathway inhibition with bimiralisib and BCL2 inhibition with venetoclax has emerged as a candidate treatment in IDH2- and FLT3-mutated AML.
Collapse
|
16
|
Zhang S, Liu J, Lu ZY, Xue YT, Mu XR, Liu Y, Cao J, Li ZY, Li F, Xu KL, Wu QY. Combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 promoted apoptosis and proliferation inhibition of AML cell lines. Cell Oncol (Dordr) 2022; 45:1005-1018. [PMID: 36036884 DOI: 10.1007/s13402-022-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE FLT3 mutations occurred in approximately one third of patients with acute myeloid leukemia (AML). FLT3-ITD mutations caused the constitutive activation of the RAS/MAPK signaling pathway. Ribosomal S6 Kinases (RSKs) were serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. However, roles and mechanisms of RSKs inhibitor LJH-685, and combinational effects of LJH-685 and FLT3 inhibitor FF-10101 on AML cells were till unclear. METHODS Cell viability assay, CFSE assay, RT-qPCR, Colony formation assay, PI stain, Annexin-V/7-AAD double stain, Western blot, and Xenogeneic transplantation methods were used to used to investigate roles and mechanisms of LJH-685 in the leukemogenesis of AML. RESULTS LJH-685 inhibited the proliferation and clone formation of AML cells, caused cell cycle arrest and induced the apoptosis of AML cells via inhibiting the RSK-YB-1 signaling pathway. MV4-11 and MOLM-13 cells carrying FLT3-ITD mutations were more sensitive to LJH-685 than that of other AML cell lines. Further studies suggested that LJH-685 combined with Daunorubicin or FF- 10101 synergistically inhibited the cell viability, promoted the apoptosis and caused cycle arrest of AML cells carrying FLT3-ITD mutations. Moreover, in vivo experiments also indicated that LJH-685 combined with FF-10101 or Daunorubicin prolonged the survival time of NSG mice and reduced the leukemogenesis of AML. CONCLUSION Thus, these observations demonstrated combination of RSK inhibitor LJH-685 and FLT3 inhibitor FF-10101 showed synergism anti-leukemia effects in AML cell lines with FLT3-ITD mutations via inhibiting MAPK-RSKs-YB-1 pathway and provided new targets for therapeutic intervention especially for AML with FLT3-ITD mutations and Daunorubicin-resistant AML.
Collapse
Affiliation(s)
- Sen Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zi-Yi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Xue
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing-Ru Mu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen-Yu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Kai-Lin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qing-Yun Wu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Lo Iudice G, De Bellis E, Savi A, Guarnera L, Massacci A, De Nicola F, Goeman F, Ottone T, Divona M, Pallocca M, Fanciulli M, Voso MT, Ciliberto G. Molecular dissection of a hyper-aggressive CBFB-MYH11/FLT3-ITD-positive acute myeloid leukemia. J Transl Med 2022; 20:311. [PMID: 35794567 PMCID: PMC9258203 DOI: 10.1186/s12967-022-03486-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Acute Myeloid Leukaemia (AML) is a haematological malignancy showing a hypervariable landscape of clinical outcomes and phenotypic differences, explainable by heterogeneity at the cellular and molecular level. Among the most common genomic alterations, CBFB-MYH11 rearrangement and FLT3-ITD gene mutations, have opposite clinical significance and are unfrequently associated. We present here a Molecular Case Report in which these two events co-exist an ultra-aggressive phenotype resulting in death in 4 days from hospital admittance. Somatic and germline Whole Exome Sequencing analysis was performed to uncover other putative driver mutations, de-novo genomic structural events or germline clusters increasing cancer insurgence. Only three mutations in LTK, BCAS2 and LGAS9 were found, unlikely causative of the exhibited phenotype, prompting to additional investigation of the rare CBFB-MYH11/ FLT3-ITD scenario.
Collapse
Affiliation(s)
| | - Eleonora De Bellis
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Department of Onco-Hematology, Policlinico Tor Vergata, Rome, Italy
| | - Arianna Savi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Department of Onco-Hematology, Policlinico Tor Vergata, Rome, Italy
| | - Luca Guarnera
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Department of Onco-Hematology, Policlinico Tor Vergata, Rome, Italy
| | - Alice Massacci
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Frauke Goeman
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Santa Lucia Foundation, IRCCS, Neuro-Oncohematology, Rome, Italy
| | - Mariadomenica Divona
- Laboratory of Advanced Diagnostics in Oncohematology, Hematology Department, Tor Vergata Hospital, Rome, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | | | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
18
|
Bhattacharjee R, Ghosh S, Nath A, Basu A, Biswas O, Patil CR, Kundu CN. Theragnostic strategies harnessing the self-renewal pathways of stem-like cells in the acute myeloid leukemia. Crit Rev Oncol Hematol 2022; 177:103753. [PMID: 35803452 DOI: 10.1016/j.critrevonc.2022.103753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023] Open
Abstract
Acute myelogenous leukemia (AML) is a genetically heterogeneous and aggressive cancer of the Hematopoietic Stem/progenitor cells. It is distinguished by the uncontrollable clonal growth of malignant myeloid stem cells in the bone marrow, venous blood, and other body tissues. AML is the most predominant of leukemias occurring in adults (25%) and children (15-20%). The relapse after chemotherapy is a major concern in the treatment of AML. The overall 5-year survival rate in young AML patients is about 40-45% whereas in the elderly patients it is less than 10%. Leukemia stem-like cells (LSCs) having the ability to self-renew indefinitely, repopulate and persist longer in the G0/G1 phase play a crucial role in the AML relapse and refractoriness to chemotherapy. Hence, novel treatment strategies and diagnostic biomarkers targeting LSCs are being increasingly investigated. Through this review, we have explored the signaling modulations in the LSCs as the theragnostic targets. The significance of the self-renewal pathways in overcoming the treatment challenges in AML has been highlighted.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Sharad Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Arijit Nath
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Asmita Basu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ojaswi Biswas
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Chandragauda R Patil
- Department of Pharmacology, DIPSAR, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Chanakya Nath Kundu
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India.
| |
Collapse
|
19
|
Shen M, Wang D, Sennari Y, Zeng Z, Baba R, Morimoto H, Kitamura N, Nakanishi T, Tsukada J, Ueno M, Todoroki Y, Iwata S, Yonezawa T, Tanaka Y, Osada Y, Yoshida Y. Pentacyclic triterpenoid ursolic acid induces apoptosis with mitochondrial dysfunction in adult T-cell leukemia MT-4 cells to promote surrounding cell growth. Med Oncol 2022; 39:118. [PMID: 35674939 DOI: 10.1007/s12032-022-01707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
We investigated the antitumor effects of oleanolic acid (OA) and ursolic acid (UA) on adult T-cell leukemia cells. OA and UA dose-dependently inhibited the proliferation of adult T-cell leukemia cells. UA-treated cells showed caspase 3/7 and caspase 9 activation. PARP cleavage was detected in UA-treated MT-4 cells. Activation of mTOR and PDK-1 was inhibited by UA. Autophagosomes were detected in MT-4 cells after UA treatment using electron microscopy. Consistently, mitophagy was observed in OA- and UA-treated MT-4 cells by confocal microscopy. The mitochondrial membrane potential in MT-4 cells considerably decreased, and mitochondrial respiration and aerobic glycolysis were significantly reduced following UA treatment. Furthermore, MT-1 and MT-4 cells were sorted into two regions based on their mitochondrial membrane potential. UA-treated MT-4 cells from both regions showed high activation of caspase 3/7, which were inhibited by Z-vad. Interestingly, MT-4 cells cocultured with sorted UA-treated cells showed enhanced proliferation. Finally, UA induced cell death and ex vivo PARP cleavage in peripheral blood mononuclear cells from patients with adult T-cell leukemia. Therefore, UA-treated MT-4 cells show caspase activation following mitochondrial dysfunction and may produce survival signals to the surrounding cells.
Collapse
Affiliation(s)
- Mengyue Shen
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Duo Wang
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yusuke Sennari
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Zirui Zeng
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Ryoko Baba
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy (II), School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Noriaki Kitamura
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tsukasa Nakanishi
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Junichi Tsukada
- Department of Hematology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Masanobu Ueno
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuyuki Todoroki
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Shigeru Iwata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tomo Yonezawa
- Division of Functional Genomics and Therapeutic Innovation, Research Center for Advanced Genomics, Graduate School of Biomedical Sciences,, Nagasaki University, 1-12-14 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshio Osada
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
20
|
Xu Y, Ye H. Progress in understanding the mechanisms of resistance to BCL-2 inhibitors. Exp Hematol Oncol 2022; 11:31. [PMID: 35598030 PMCID: PMC9124382 DOI: 10.1186/s40164-022-00283-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022] Open
Abstract
Venetoclax is a new type of BH3 mimetic compound that can target the binding site in the BCL-2 protein and induce apoptosis in cancer cells by stimulating the mitochondrial apoptotic pathway. Venetoclax is especially used to treat haematological malignancies. However, with the recent expansion in the applications of venetoclax, some cases of venetoclax resistance have appeared, posing a major problem in clinical treatment. In this article, we explored several common mechanisms of venetoclax resistance. Increased expression of the antiapoptotic proteins MCL-1 and BCL-XL plays a key role in conferring cellular resistance to venetoclax. These proteins can bind to the released BIM in the context of venetoclax binding to BCL-2 and thus continue to inhibit mitochondrial apoptosis. Structural mutations in BCL-2 family proteins caused by genetic instability lead to decreased affinity for venetoclax and inhibit the intrinsic apoptosis pathway. Mutation or deletion of the BAX gene renders the BAX protein unable to anchor to the outer mitochondrial membrane to form pores. In addition to changes in BCL-2 family genes, mutations in other oncogenes can also confer resistance to apoptosis induced by venetoclax. TP53 mutations and the expansion of FLT3-ITD promote the expression of antiapoptotic proteins MCL-1 and BCL-XL through multiple signalling pathways, and interfere with venetoclax-mediated apoptosis processes depending on their affinity for BH3-only proteins. Finally, the level of mitochondrial oxidative phosphorylation in venetoclax-resistant leukaemia stem cells is highly abnormal. Not only the metabolic pathways but also the levels of important metabolic components are changed, and all of these alterations antagonize the venetoclax-mediated inhibition of energy metabolism and promote the survival and proliferation of leukaemia stem cells. In addition, venetoclax can change mitochondrial morphology independent of the BCL-2 protein family, leading to mitochondrial dysfunction. However, mitochondria resistant to venetoclax antagonize this effect, forming tighter mitochondrial cristae, which provide more energy for cell survival.
Collapse
Affiliation(s)
- Yilan Xu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University-Zhejiang, Wenzhou, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University-Zhejiang, Wenzhou, China.
| |
Collapse
|
21
|
Wang W, Sun Y, Liu X, Kumar SK, Jin F, Dai Y. Dual-Targeted Therapy Circumvents Non-Genetic Drug Resistance to Targeted Therapy. Front Oncol 2022; 12:859455. [PMID: 35574302 PMCID: PMC9093074 DOI: 10.3389/fonc.2022.859455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
The introduction of various targeted agents into the armamentarium of cancer treatment has revolutionized the standard care of patients with cancer. However, like conventional chemotherapy, drug resistance, either preexisting (primary or intrinsic resistance) or developed following treatment (secondary or acquired resistance), remains the Achilles heel of all targeted agents with no exception, via either genetic or non-genetic mechanisms. In the latter, emerging evidence supports the notion that intracellular signaling pathways for tumor cell survival act as a mutually interdependent network via extensive cross-talks and feedback loops. Thus, dysregulations of multiple signaling pathways usually join forces to drive oncogenesis, tumor progression, invasion, metastasis, and drug resistance, thereby providing a basis for so-called "bypass" mechanisms underlying non-genetic resistance in response to targeted agents. In this context, simultaneous interruption of two or more related targets or pathways (an approach called dual-targeted therapy, DTT), via either linear or parallel inhibition, is required to deal with such a form of drug resistance to targeted agents that specifically inhibit a single oncoprotein or oncogenic pathway. Together, while most types of tumor cells are often addicted to two or more targets or pathways or can switch their dependency between them, DTT targeting either intrinsically activated or drug-induced compensatory targets/pathways would efficiently overcome drug resistance caused by non-genetic events, with a great opportunity that those resistant cells might be particularly more vulnerable. In this review article, we discuss, with our experience, diverse mechanisms for non-genetic resistance to targeted agents and the rationales to circumvent them in the treatment of cancer, emphasizing hematologic malignancies.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shaji K. Kumar
- Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Spohr C, Poggio T, Andrieux G, Schönberger K, Cabezas-Wallscheid N, Boerries M, Halbach S, Illert AL, Brummer T. Gab2 deficiency prevents Flt3-ITD driven acute myeloid leukemia in vivo. Leukemia 2022; 36:970-982. [PMID: 34903841 PMCID: PMC8979819 DOI: 10.1038/s41375-021-01490-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Internal tandem duplications (ITD) of the FMS-like tyrosine kinase 3 (FLT3) predict poor prognosis in acute myeloid leukemia (AML) and often co-exist with inactivating DNMT3A mutations. In vitro studies implicated Grb2-associated binder 2 (GAB2) as FLT3-ITD effector. Utilizing a Flt3-ITD knock-in, Dnmt3a haploinsufficient mouse model, we demonstrate that Gab2 is essential for the development of Flt3-ITD driven AML in vivo, as Gab2 deficient mice displayed prolonged survival, presented with attenuated liver and spleen pathology and reduced blast counts. Furthermore, leukemic bone marrow from Gab2 deficient mice exhibited reduced colony-forming unit capacity and increased FLT3 inhibitor sensitivity. Using transcriptomics, we identify the genes encoding for Axl and the Ret co-receptor Gfra2 as targets of the Flt3-ITD/Gab2/Stat5 axis. We propose a pathomechanism in which Gab2 increases signaling of these receptors by inducing their expression and by serving as downstream effector. Thereby, Gab2 promotes AML aggressiveness and drug resistance as it incorporates these receptor tyrosine kinases into the Flt3-ITD signaling network. Consequently, our data identify GAB2 as a promising biomarker and therapeutic target in human AML.
Collapse
Affiliation(s)
- Corinna Spohr
- grid.5963.9Institute of Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany ,grid.5963.9Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Teresa Poggio
- grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany ,grid.5963.9Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Geoffroy Andrieux
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Schönberger
- grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany ,grid.429509.30000 0004 0491 4256Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- grid.429509.30000 0004 0491 4256Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany ,Centre for Integrative Biological Signaling Studies (CIBSS), 79104 Freiburg, Germany
| | - Melanie Boerries
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.5963.9Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Halbach
- grid.5963.9Institute of Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Anna L. Illert
- grid.5963.9Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.5963.9Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
23
|
The effect of lipocalin-2 (LCN2) on apoptosis: a proteomics analysis study in an LCN2 deficient mouse model. BMC Genomics 2021; 22:892. [PMID: 34903175 PMCID: PMC8670060 DOI: 10.1186/s12864-021-08211-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent studies have shown that lipocalin-2 (LCN2) has multiple functions involved in various biological and pathological processes including energy homeostasis, cancer, inflammation, and apoptosis. We aimed to investigate the effect of LCN2 on apoptosis that influences the pathogenetic process of metabolic diseases and cancer. METHODS We performed a proteomics analysis of livers taken from LCN2-knockout mice and wild type mice by using label-free LC-MS/MS quantitative proteomics. RESULTS Proteomic analysis revealed that there were 132 significantly differentially expressed proteins (49 upregulated and 83 downregulated) among 2140 proteins in the liver of LCN2-knockout mice compared with wild type mice. Of these, seven apoptosis-associated proteins were significantly upregulated and seven apoptosis-associated proteins downregulated. CONCLUSION Proteomics demonstrated that there were seven upregulated and seven downregulated apoptosis-associated proteins in liver of LCN2-knockout mice. It is important to clarify the effect of LCN2 on apoptosis that might contribute to the pathogenesis of insulin resistance, cancer, and various nervous system diseases.
Collapse
|
24
|
Katayama K, Nishihata A. RSK Inhibition Induces Apoptosis by Downregulating Protein Synthesis in a Variety of Acute Myeloid Leukemia Cell Lines. Biol Pharm Bull 2021; 44:1843-1850. [PMID: 34602526 DOI: 10.1248/bpb.b21-00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1/2 (IDH1/2) mutations drive malignancy in acute myeloid leukemia (AML), which accounts for approximately 40% of AML cases. Treatment with FLT3 or IDH1/2 inhibitors is used for such patients; however, it is not considered for most patients with AML who lack mutations on the respective genes. In this study, p90 ribosomal S6 kinase (RSK) was found to serve as a new therapeutic target in various AMLs with or without FLT3 mutations. BI-D1870, a potent inhibitor of RSK, significantly suppressed the proliferation of AML cell lines, among which three encoded wild-type FLT3 and three contained FLT3 driver mutations, compared with chronic myeloid leukemia K562 cells or other adherent cancer cells. BI-D1870 inhibited protein synthesis by dephosphorylating the p70 S6 kinase and eukaryotic initiation factor 4E-binding protein 1 in all AML cells except KG-1a cells. Meanwhile, the expression of microtubule-associated protein light chain 3B-I and -II increased in KG-1a cells treated with BI-D1870. BI-D1870 induced caspase-dependent apoptosis in all AML cells, including KG-1a cells. We next investigated the synergistic effect of BI-D1870 with cytarabine, a traditional anticancer drug used in AML. Synergistic effects of BI-D1870 and cytarabine were not observed in any of the cell lines. The findings suggested that BI-D1870 alone exerts an adequate antiproliferative effect on AML with or without FLT3 mutations and serves as a novel AML therapeutic agent.
Collapse
Affiliation(s)
- Kazuhiro Katayama
- Laboratory of Molecular Targeted Therapeutics, School of Pharmacy, Nihon University.,Division of Chemotherapy, Faculty of Pharmacy, Keio University
| | - Ayane Nishihata
- Division of Chemotherapy, Faculty of Pharmacy, Keio University
| |
Collapse
|
25
|
Comparative Efficacy of Haizao Yuhu Decoction Composed of Different Varieties of Glycyrrhiza in Goiter Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4343239. [PMID: 34567211 PMCID: PMC8460382 DOI: 10.1155/2021/4343239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022]
Abstract
In traditional Chinese medicine, Glycyrrhiza and Sargassum are one pair of the “18 incompatible medicaments,” which in theory cannot be used together. However, since ancient times, many reports have described using compounds containing both Glycyrrhiza and Sargassum to treat diseases. Haizao Yuhu Decoction (HYD), which contains both ingredients, is mainly used to treat goiter. Chinese Pharmacopoeia officially recorded three varieties of Glycyrrhiza: Glycyrrhiza uralensis, Glycyrrhiza inflata, and Glycyrrhiza glabra. These three varieties have certain differences in chemical composition and pharmacological effects. The purpose of the present study was to investigate whether the HYD containing different varieties of Glycyrrhiza and Sargassum had different therapeutic effects in rats with goiter and to elucidate the underlying mechanism of any difference. In this study, propylthiouracil (PTU) was used to replicate the goiter model, then HYDs containing different varieties of Glycyrrhiza were used for treatment for four weeks, and then the relevant indicators were tested. The results demonstrated that HYD had antigoiter effects, alleviated the pathological changes in the thyroid tissue, and restored the abnormal serum levels of hormones related to thyroid function induced by PTU. HYD containing Glycyrrhiza uralensis had the best therapeutic effect in rats with PTU-induced goiter. The antigoiter effect of HYD may function through the hypothalamic-pituitary-thyroid (HPT) axis, inhibit the expression of the Tg and NIS genes, and regulate the synthesis of thyroid hormones, thereby reducing the excessive stimulation of TSH in thyroid cells. In addition, HYD also prevented goiter by promoting thyroid cell apoptosis and inhibiting the ERK/RSK1 pathway of cell proliferation. In conclusion, three types of HYD had different therapeutic effects in rats with goiter, which might be caused by the compatibility of different varieties of Glycyrrhiza and Sargassum.
Collapse
|
26
|
Yuan Y, Xu J, Jiang L, Yu K, Ge Y, Li M, He H, Niu Q, Shi X, Fan L, Chen Z, Zhao Z, Li S, Xu Y, Wang Z, Li H. Discovery, Optimization, and Structure-Activity Relationship Study of Novel and Potent RSK4 Inhibitors as Promising Agents for the Treatment of Esophageal Squamous Cell Carcinoma. J Med Chem 2021; 64:13572-13587. [PMID: 34496560 DOI: 10.1021/acs.jmedchem.1c00969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribosomal S6 protein kinase 4 (RSK4) was identified to be a promising target for the treatment of esophageal squamous cell carcinoma (ESCC) in our previous research, whose current treatments are primarily chemotherapy and radiotherapy due to the lack of targeted therapy. However, few potent and specific RSK4 inhibitors are reported. In this study, a series of 1,4-dihydro-2H-pyrimido[4,5-d][1,3]oxazin-2-ones derivatives were designed and synthesized as novel and potent RSK4 inhibitors. Compound 14f was identified with potent RSK4 inhibitory activity both in vitro and in vivo. 14f significantly inhibited the proliferation and invasion of ESCC cells in vitro with IC50 values of 0.57 and 0.98 μM, respectively. It dose dependently inhibited the phosphorylation of RSK4 downstream substrates while exerting little effect on the substrates of RSK1-3 in ESCC cells. The markedly suppressed tumor growth and no observed toxicity to main organs in the ESCC xenograft mouse model suggested 14f to be a promising RSK4-targeting agent for ESCC treatment.
Collapse
Affiliation(s)
- Yuan Yuan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Junpeng Xu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Jiang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Kangjie Yu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yuanyuan Ge
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huan He
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Qiqi Niu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Xiayu Shi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330096, China
| |
Collapse
|
27
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
28
|
Hallal M, Braga-Lagache S, Jankovic J, Simillion C, Bruggmann R, Uldry AC, Allam R, Heller M, Bonadies N. Inference of kinase-signaling networks in human myeloid cell line models by Phosphoproteomics using kinase activity enrichment analysis (KAEA). BMC Cancer 2021; 21:789. [PMID: 34238254 PMCID: PMC8268341 DOI: 10.1186/s12885-021-08479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/10/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the introduction of targeted therapies, most patients with myeloid malignancies will not be cured and progress. Genomics is useful to elucidate the mutational landscape but remains limited in the prediction of therapeutic outcome and identification of targets for resistance. Dysregulation of phosphorylation-based signaling pathways is a hallmark of cancer, and therefore, kinase-inhibitors are playing an increasingly important role as targeted treatments. Untargeted phosphoproteomics analysis pipelines have been published but show limitations in inferring kinase-activities and identifying potential biomarkers of response and resistance. METHODS We developed a phosphoproteomics workflow based on titanium dioxide phosphopeptide enrichment with subsequent analysis by liquid chromatography tandem mass spectrometry (LC-MS). We applied a novel Kinase-Activity Enrichment Analysis (KAEA) pipeline on differential phosphoproteomics profiles, which is based on the recently published SetRank enrichment algorithm with reduced false positive rates. Kinase activities were inferred by this algorithm using an extensive reference database comprising five experimentally validated kinase-substrate meta-databases complemented with the NetworKIN in-silico prediction tool. For the proof of concept, we used human myeloid cell lines (K562, NB4, THP1, OCI-AML3, MOLM13 and MV4-11) with known oncogenic drivers and exposed them to clinically established kinase-inhibitors. RESULTS Biologically meaningful over- and under-active kinases were identified by KAEA in the unperturbed human myeloid cell lines (K562, NB4, THP1, OCI-AML3 and MOLM13). To increase the inhibition signal of the driving oncogenic kinases, we exposed the K562 (BCR-ABL1) and MOLM13/MV4-11 (FLT3-ITD) cell lines to either Nilotinib or Midostaurin kinase inhibitors, respectively. We observed correct detection of expected direct (ABL, KIT, SRC) and indirect (MAPK) targets of Nilotinib in K562 as well as indirect (PRKC, MAPK, AKT, RPS6K) targets of Midostaurin in MOLM13/MV4-11, respectively. Moreover, our pipeline was able to characterize unexplored kinase-activities within the corresponding signaling networks. CONCLUSIONS We developed and validated a novel KAEA pipeline for the analysis of differential phosphoproteomics MS profiling data. We provide translational researchers with an improved instrument to characterize the biological behavior of kinases in response or resistance to targeted treatment. Further investigations are warranted to determine the utility of KAEA to characterize mechanisms of disease progression and treatment failure using primary patient samples.
Collapse
Affiliation(s)
- Mahmoud Hallal
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga-Lagache
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jovana Jankovic
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
RSK Isoforms in Acute Myeloid Leukemia. Biomedicines 2021; 9:biomedicines9070726. [PMID: 34202904 PMCID: PMC8301392 DOI: 10.3390/biomedicines9070726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Ribosomal S6 Kinases (RSKs) are a group of serine/threonine kinases that function downstream of the Ras/Raf/MEK/ERK signaling pathway. Four RSK isoforms are directly activated by ERK1/2 in response to extracellular stimuli including growth factors, hormones, and chemokines. RSKs phosphorylate many cytosolic and nuclear targets resulting in the regulation of diverse cellular processes such as cell proliferation, survival, and motility. In hematological malignancies such as acute myeloid leukemia (AML), RSK isoforms are highly expressed and aberrantly activated resulting in poor outcomes and resistance to chemotherapy. Therefore, understanding RSK function in leukemia could lead to promising therapeutic strategies. This review summarizes the current information on human RSK isoforms and discusses their potential roles in the pathogenesis of AML and mechanism of pharmacological inhibitors.
Collapse
|
30
|
Li L, Zhao L, Man J, Liu B. CXCL2 benefits acute myeloid leukemia cells in hypoxia. Int J Lab Hematol 2021; 43:1085-1092. [PMID: 33793061 DOI: 10.1111/ijlh.13512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Drug resistance and relapse of acute myeloid leukemia (AML) is still an important problem in the treatment of leukemia. Leukemia outbreak causes severe hypoxia in bone marrow (BM), remolding BM microenvironment (niche), and transforming hematopoietic stem cell (HSC) niche into leukemia stem cell (LSC) niche. AML cells and the microenvironment usually conduct "cross-talk" through cytokines to anchor resistant AML cells into LSC niche, thus supporting their survival. Therefore, this study was aimed to investigate the role of CXCL2 in the hypoxic AML niche. METHODS AML hypoxic niche was simulated by hypoxic culture of THP-1 and HL-60 cells in vitro, thus to study the effects of CXCL2 on the proliferation and migration of AML cells. The expression of hypoxia-inducible factor-1α (HIF-1α) and the activation of survival-related kinases such as PIM2 and mTOR under CoCl2 -simulated hypoxic conditions were detected. The correlation between CXCL2 and the prognosis of AML with big data was verified. RESULTS (a) CXCL2 promoted the proliferation and migration of AML cells. (b) CXCL2 up-regulated the expression of PIM2 by enhancing the transcriptional activity of HIF-1α. (c) CXCL2 activated mTOR in AML cells. (d) CXCL2 was associated with poor prognosis in AML. CONCLUSION CXCL2 promotes survival, migration, and drug resistance pathway of AML cells in hypoxia and is associated with poor prognosis in AML. Therefore, CXCL2 can be considered as an important factor in promoting the development of AML cells in hypoxia.
Collapse
Affiliation(s)
- Lijun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Zhao
- Central Laboratory, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Jiancheng Man
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
Yu DH, Chen C, Liu XP, Yao J, Li S, Ruan XL. Dysregulation of miR-138-5p/RPS6KA1-AP2M1 Is Associated With Poor Prognosis in AML. Front Cell Dev Biol 2021; 9:641629. [PMID: 33732707 PMCID: PMC7959750 DOI: 10.3389/fcell.2021.641629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant disease of hematopoietic stem/progenitor cells, and most AML patients are in a severe state. Internal tandem duplication mutations in FLT3 gene (FLT3-ITD) detected in AML stem cells account for 20–30 percent of AML patients. In this study, we attempted to study the impact of the interaction of FLT3-ITD mutation and the CXCL12/CXCR4 axis in AML, and the possible mechanisms caused by the impact by bioinformatics. Gene set variation analysis (GSVA) revealed that the PI3K-Akt-mTOR pathway positively correlated with the status of FLT3-ITD mutation. Multiple survival analyses were performed on TCGA-AML to screen the prognostic-related genes, and RPS6KA1 and AP2M1 are powerful prognostic candidates for overall survival in AML. WGCNA, KEGG/GO analysis, and the functional roles of RPS6KA1 and AP2M1 in AML were clarified by correlation analysis. We found that the expression levels of RPS6KA1 and AP2M1 were significantly associated with chemoresistance of AML, and the CXCL12/CXCR4 axis would regulate RPS6KA1/AP2M1 expression. Besides, miR-138-5p, regulated by the CXCL12/CXCR4 axis, was the common miRNA target of RPS6KA1 and AP2M1. Taken together, the interaction of FLT3-ITD mutation and the CXCL12/CXCR4 axis activated the PI3K-Akt-mTOR pathway, and the increased expression of RPS6KA1 and AP2M1 caused by hsa-miR-138-5p downregulation regulates the multi-resistance gene expression leading to drug indications.
Collapse
Affiliation(s)
- Dong-Hu Yu
- Department of Biological Repositories, Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Second Clinical College, Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Yao
- Department of Biological Repositories, Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Biological Repositories, Human Genetics Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
33
|
Liu Z, Han M, Ding K, Fu R. The role of Pim kinase in immunomodulation. Am J Cancer Res 2020; 10:4085-4097. [PMID: 33414987 PMCID: PMC7783746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Pim kinase, which has three isozymes (Pim-1, Pim-2 and Pim-3), is a serine/threonine kinase abnormally expressed in many cancers. High Pim kinase expression has been recognized to be associated with disease progression and prognosis. It is well accepted that Pim kinase is considered a clinical biomarker and potential therapeutic target for tumor cell. In recent years, researches verified the role of Pim kinase in immunomodulation. The mechanisms by which Pim kinase modulates the immune microenvironment and regulates immune cells, as well as the effects of Pim kinase inhibitors on immunity, have not been systematically described. This review comprehensively focuses on the current research status of Pim kinase pathways and the immune regulation.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Mei Han
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| |
Collapse
|
34
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
35
|
Kim BR, Jung SH, Han AR, Park G, Kim HJ, Yuan B, Battula VL, Andreeff M, Konopleva M, Chung YJ, Cho BS. CXCR4 Inhibition Enhances Efficacy of FLT3 Inhibitors in FLT3-Mutated AML Augmented by Suppressed TGF-b Signaling. Cancers (Basel) 2020; 12:cancers12071737. [PMID: 32629802 PMCID: PMC7407511 DOI: 10.3390/cancers12071737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Given the proven importance of the CXCL12/CXCR4 axis in the stroma–acute myeloid leukemia (AML) interactions and the rapid emergence of resistance to FLT3 inhibitors, we investigated the efficacy and safety of a novel CXCR4 inhibitor, LY2510924, in combination with FLT3 inhibitors in preclinical models of AML with FLT3-ITD mutations (FLT3-ITD-AML). Quizartinib, a potent FLT3 inhibitor, induced apoptosis in FLT3-ITD-AML, while LY2510924 blocked surface CXCR4 without inducing apoptosis. LY2510924 significantly reversed stroma-mediated resistance against quizartinib mainly through the MAPK pathway. In mice with established FLT3-ITD-AML, LY2510924 induced durable mobilization and differentiation of leukemia cells, resulting in enhanced anti-leukemia effects when combined with quizartinib, whereas transient effects were seen on non-leukemic blood cells in immune-competent mice. Sequencing of the transcriptome of the leukemic cells surviving in vivo treatment with quizartinib and LY2510924 revealed that genes related to TGF-β signaling may confer resistance against the drug combination. In co-culture experiments of FLT3-ITD-AML and stromal cells, both silencing of TGF-β in stromal cells or TGF-β-receptor kinase inhibitor enhanced apoptosis by combined treatment. Disruption of the CXCL12/CXCR4 axis in FLT3-ITD-AML by LY2510924 and its negligible effects on normal immunocytes could safely enhance the potency of quizartinib, which may be further improved by blockade of TGF-β signaling.
Collapse
Affiliation(s)
- Bo-Reum Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
| | - Seung-Hyun Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - A-Reum Han
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
| | - Gyeongsin Park
- Department of Pathology, College of Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hee-Je Kim
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
| | - Marina Konopleva
- Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yeun-Jun Chung
- Department of Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (Y.-J.C.); (B.-S.C.)
| | - Byung-Sik Cho
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (B.-R.K.); (A.-R.H.); (H.-J.K.)
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (B.Y.); (V.L.B.); (M.A.)
- Correspondence: (Y.-J.C.); (B.-S.C.)
| |
Collapse
|
36
|
The PI3K-Akt-mTOR Signaling Pathway in Human Acute Myeloid Leukemia (AML) Cells. Int J Mol Sci 2020; 21:ijms21082907. [PMID: 32326335 PMCID: PMC7215987 DOI: 10.3390/ijms21082907] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Malignant cell growth is characterized by disruption of normal intracellular signaling, caused by mutations or aberrant external signaling. The phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway (PI3K-Akt-mTOR pathway) is among one of the intracellular pathways aberrantly upregulated in cancers including AML. Activation of this pathway seems important in leukemogenesis, and given the central role of this pathway in metabolism, the bioenergetics of AML cells may depend on downstream signaling within this pathway. Furthermore, observations suggest that constitutive activation of the PI3K-Akt-mTOR pathway differs between patients, and that increased activity within this pathway is an adverse prognostic parameter in AML. Pharmacological targeting of the PI3K-Akt-mTOR pathway with specific inhibitors results in suppression of leukemic cell growth. However, AML patients seem to differ regarding their susceptibility to various small-molecule inhibitors, reflecting biological heterogeneity in the intracellular signaling status. These findings should be further investigated in both preclinical and clinical settings, along with the potential use of this pathway as a prognostic biomarker, both in patients receiving intensive curative AML treatment and in elderly/unfit receiving AML-stabilizing treatment.
Collapse
|