1
|
Yen JH, Keak PY, Wu CL, Chen HJ, Gao WY, Liou JW, Chen YR, Lin LI, Chen PY. Shikonin, a natural naphthoquinone phytochemical, exerts anti-leukemia effects in human CBF-AML cell lines and zebrafish xenograft models. Biomed Pharmacother 2024; 179:117395. [PMID: 39241566 DOI: 10.1016/j.biopha.2024.117395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Core binding factor acute myeloid leukemia (CBF-AML) stands out as the most common type of adult AML, characterized by specific chromosomal rearrangements involving CBF genes, particularly t(8;21). Shikonin (SHK), a naphthoquinone phytochemical widely employed as a food colorant and traditional Chinese herbal medicine, exhibits antioxidant, anti-inflammatory, and anti-cancer activities. In this study, we aim to investigate the antileukemic effects of SHK and its underlying mechanisms in human CBF-AML cells and zebrafish xenograft models. Our study revealed that SHK reduced the viability of CBF-AML cells. SHK induced cell cycle arrest, promoted cell apoptosis, and induced differentiation in Kasumi-1 cells. Additionally, SHK downregulated the gene expression of AML1-ETO and c-KIT in Kasumi-1 cells. In animal studies, SHK showed no toxic effects in zebrafish and markedly inhibited the growth of leukemia cells in zebrafish xenografts. Transcriptomic analysis showed that differentially expressed genes (DEGs) altered by SHK are linked to key biological processes like DNA repair, replication, cell cycle regulation, apoptosis, and division. Furthermore, KEGG pathways associated with cell growth, such as the cell cycle and p53 signaling pathway, were significantly enriched by DEGs. Analysis of AML-associated genes in response to SHK treatment using DisGeNET and the STRING database indicated that SHK downregulates the expression of cell division regulators regarding AML progression. Finally, we found that SHK combined with cytarabine synergistically reduced the viability of Kasumi-1 cells. In conclusion, our findings provide novel insights into the mechanisms of SHK in suppressing leukemia cell growth, suggesting its potential as a chemotherapeutic agent for human CBF-AML.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei Ying Keak
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Hsuan-Jan Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yi-Ruei Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City 10048, Taiwan
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan.
| |
Collapse
|
2
|
Cook JA, Lott L, Perry J, Eckel AM, Xu D, Hudson CA, Wells DA, Loken MR, Menssen AJ. Fusion-harboring mast cells can explain molecular positivity in flow cytometric MRD-negative core-binding factor AML. Blood 2024; 144:581-585. [PMID: 38749014 DOI: 10.1182/blood.2024024264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 08/02/2024] Open
Abstract
ABSTRACT Molecular measurable residual disease can persist in core-binding factor acute myeloid leukemia in otherwise disease-free patients. Utilizing cell sorting followed by fluorescent in situ hybridization, we show that detection is due to mast cells.
Collapse
MESH Headings
- Humans
- Mast Cells/metabolism
- Mast Cells/pathology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Flow Cytometry/methods
- Neoplasm, Residual/diagnosis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- In Situ Hybridization, Fluorescence
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Male
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Female
Collapse
|
3
|
Shilatifard A. Cytoplasmic transcription factor sequestration drives the pathogenesis of a rearranged leukemia. J Clin Invest 2024; 134:e179105. [PMID: 38357918 PMCID: PMC10866663 DOI: 10.1172/jci179105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
|
4
|
Day RB, Hickman JA, Xu Z, Katerndahl CD, Ferraro F, Ramakrishnan SM, Erdmann-Gilmore P, Sprung RW, Mi Y, Townsend RR, Miller CA, Ley TJ. Proteogenomic analysis reveals cytoplasmic sequestration of RUNX1 by the acute myeloid leukemia-initiating CBFB::MYH11 oncofusion protein. J Clin Invest 2023; 134:e176311. [PMID: 38061017 PMCID: PMC10866659 DOI: 10.1172/jci176311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
Several canonical translocations produce oncofusion genes that can initiate acute myeloid leukemia (AML). Although each translocation is associated with unique features, the mechanisms responsible remain unclear. While proteins interacting with each oncofusion are known to be relevant for how they act, these interactions have not yet been systematically defined. To address this issue in an unbiased fashion, we fused a promiscuous biotin ligase (TurboID) in-frame with 3 favorable-risk AML oncofusion cDNAs (PML::RARA, RUNX1::RUNX1T1, and CBFB::MYH11) and identified their interacting proteins in primary murine hematopoietic cells. The PML::RARA- and RUNX1::RUNX1T1-TurboID fusion proteins labeled common and unique nuclear repressor complexes, implying their nuclear localization. However, CBFB::MYH11-TurboID-interacting proteins were largely cytoplasmic, probably because of an interaction of the MYH11 domain with several cytoplasmic myosin-related proteins. Using a variety of methods, we showed that the CBFB domain of CBFB::MYH11 sequesters RUNX1 in cytoplasmic aggregates; these findings were confirmed in primary human AML cells. Paradoxically, CBFB::MYH11 expression was associated with increased RUNX1/2 expression, suggesting the presence of a sensor for reduced functional RUNX1 protein, and a feedback loop that may attempt to compensate by increasing RUNX1/2 transcription. These findings may have broad implications for AML pathogenesis.
Collapse
Affiliation(s)
- Ryan B. Day
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Julia A. Hickman
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Ziheng Xu
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Casey D.S. Katerndahl
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Francesca Ferraro
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | | | - Petra Erdmann-Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert W. Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiling Mi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher A. Miller
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| | - Timothy J. Ley
- Section of Stem Cell Biology, Division of Oncology, Department of Internal Medicine, and
| |
Collapse
|
5
|
Guo W, Liu X, Wang M, Liu J, Cao Y, Zheng Y, Zhai W, Chen X, Zhang R, Ma Q, Yang D, Wei J, He Y, Pang A, Feng S, Han M, Jiang E. Application of prophylactic or pre-emptive therapy after allogeneic transplantation for high-risk patients with t(8;21) acute myeloid leukemia. Hematology 2023; 28:2205739. [PMID: 37104677 DOI: 10.1080/16078454.2023.2205739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES To determine the impact of pretransplant measurable residual disease (pre-MRD) and the efficacy of maintenance therapy in t(8;21) acute myeloid leukemia (AML) patients after allogeneic hematopoietic cell transplantation (allo-HCT). METHODS We retrospectively analyzed 100 t(8;21) AML patients who underwent allo-HCT between 2013 and 2022. 40 patients received pre-emptive therapy including immunosuppressant adjustment, azacitidine, and donor lymphocyte infusion (DLI) combined with chemotherapy. 23 patients received prophylactic therapy, including azacitidine or chidamide. RESULTS Patients with a positive pre-MRD (pre-MRDpos) had a higher 3-year cumulative incidence of relapse (CIR) (25.90% [95% CI, 13.87%-39.70%] vs 5.00% [95% CI, 0.88%-15.01%]; P = 0.008). Pre-MRDpos patients were less likely to have a superior 3-year disease-free survival (DFS) (40.83% [95% CI, 20.80%-80.16%]) if their MRD was still positive at 28 days after transplantation (post-MRD28pos). The 3-year DFS and CIR were 53.17% (95% CI, 38.31% - 73.80%) and 34.87% (95% CI, 18.84% - 51.44%), respectively, for patients receiving pre-emptive interventions after molecular relapse. The 3-year DFS and CIR were 90.00% (95%CI, 77.77% - 100%) and 5.00% (95%CI, 0.31% - 21.10%), respectively, for high-risk patients receiving prophylactic therapy. In most patients, epigenetic-drug-induced adverse events were reversible with dose adjustment or temporary discontinuation. CONCLUSION Patients with pre-MRDpos and post-MRD28pos were more likely to have higher rates of relapse and inferior DFS, even after receiving pre-emptive interventions. Prophylactic therapy may be a better option for high-risk t(8;21) AML patients; however, this warrants further investigation.
Collapse
Affiliation(s)
- Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Xin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
- Tianjin Institutes of Health Science, Tianjin, People's Republic of China
| |
Collapse
|
6
|
Zheng ZQ, Huang ZH, Liang YL, Zheng WH, Xu C, Li ZX, Liu N, Yang PY, Li YQ, Ma J, Sun Y, Tang LL, Wei D. VIRMA Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Upregulation of E2F7 in an m6A-Dependent Manner. J Biol Chem 2023; 299:104677. [PMID: 37028765 DOI: 10.1016/j.jbc.2023.104677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
The N6-methyladenosine (m6A) modification possesses new and essential roles in tumor initiation and progression by regulating mRNA biology. However, the role of aberrant m6A regulation in nasopharyngeal carcinoma (NPC) remains unclear. Here, through comprehensive analyses of NPC cohorts from the GEO database and our internal cohort, we identified that VIRMA, an m6A writer, is significantly upregulated in NPC and plays an essential role in tumorigenesis and metastasis of NPC, both in vitro and in vivo. High VIRMA expression served as a prognostic biomarker and was associated with poor outcomes in patients with NPC. Mechanistically, VIRMA mediated the m6A methylation of E2F7 3'-UTR, then IGF2BP2 bound and maintained the stability of E2F7 mRNA. An integrative high-throughput sequencing approach revealed that E2F7 drives a unique transcriptome distinct from the classical E2F family in NPC, which functioned as an oncogenic transcriptional activator. E2F7 cooperated with CBFB-recruited RUNX1 in a non-canonical manner to transactivate ITGA2, ITGA5, and NTRK1, strengthening Akt signaling-induced tumor-promoting effect.
Collapse
Affiliation(s)
- Zi-Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhuo-Hui Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ye-Lin Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wei-Hong Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Cheng Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhi-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Pan-Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ying-Qin Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Ling-Long Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
7
|
The roles of Runx1 in skeletal development and osteoarthritis: A concise review. Heliyon 2022; 8:e12656. [PMID: 36636224 PMCID: PMC9830174 DOI: 10.1016/j.heliyon.2022.e12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/12/2022] [Accepted: 12/19/2022] [Indexed: 12/26/2022] Open
Abstract
Runt-related transcription factor-1 (Runx1) is well known for its functions in hematopoiesis and leukemia but recent research has focused on its role in skeletal development and osteoarthritis (OA). Deficiency of the Runx1 gene is fatal in early embryonic development, and specific knockout of Runx1 in cell lineages of cartilage and bone leads to delayed cartilage formation and impaired bone calcification. Runx1 can regulate genes including collagen type II (Col2a1) and X (Col10a1), SRY-box transcription factor 9 (Sox9), aggrecan (Acan) and matrix metalloproteinase 13 (MMP-13), and the up-regulation of Runx1 improves the homeostasis of the whole joint, even in the pathological state. Moreover, Runx1 is activated as a response to mechanical compression, but impaired in the joint with the pathological progress associated with osteoarthritis. Therefore, interpretation about the role of Runx1 could enlarge our understanding of key marker genes in the skeletal development and an increased understanding of Runx1 could be helpful to identify treatments for osteoarthritis. This review provides the most up-to-date advances in the roles and bio-mechanisms of Runx1 in healthy joints and osteoarthritis from all currently published articles and gives novel insights in therapeutic approaches to OA based on Runx1.
Collapse
|
8
|
Recillas-Targa F. Cancer Epigenetics: An Overview. Arch Med Res 2022; 53:732-740. [PMID: 36411173 DOI: 10.1016/j.arcmed.2022.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a complex disease caused by genetic and epigenetic alterations in the control of cell division. Findings from the field of cancer genomics and epigenomics have increased our understanding of the origin and evolution of tumorigenic processes, greatly advancing our knowledge of the molecular etiology of cancer. Consequently, any contemporary view of cancer research must consider tumorigenesis as a cellular phenomenon that is a result of the interplay between genetic and epigenetic mutations and their interaction with environmental factors, including our microbiome, that influences cellular metabolism and proliferation rates. The integration and better knowledge of these processes will help us to improve diagnosis, prognosis, and future genetic and epigenetic therapies. Here, I present an overview of the epigenetic processes that are affected in cancer and how they contribute to the onset and progression of the disease. Finally, I discuss how the development of sophisticated experimental approaches and computational tools, including novel ways to exploit large data sets, could contribute to the better understanding and treatment of cancer.
Collapse
Affiliation(s)
- Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
9
|
PPP1R7 Is a Novel Translocation Partner of CBFB via t(2;16)(q37;q22) in Acute Myeloid Leukemia. Genes (Basel) 2022; 13:genes13081367. [PMID: 36011278 PMCID: PMC9407081 DOI: 10.3390/genes13081367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
In a subset of acute myeloid leukemia (AML) cases, the core binding factor beta subunit gene (CBFB) was rearranged via inv(16)(p13.1q22) or t(16;16)(p13.1;q22), in which the smooth muscle myosin heavy chain 11 gene (MYH11) was the partner (CBFB::MYH11). Rare variants of CBFB rearrangement occurring via non-classic chromosomal aberrations have been reported, such as t(1;16), t(2;16), t(3;16), t(5;16), and t(16;19), but the partners of CBFB have not been characterized. We report a case of AML with a complex karyotype, including t(2;16)(q37;q22), in which the protein phosphatase 1 regulatory subunit 7 gene (PPP1R7) at chromosome 2q37 was rearranged with CBFB (CBFB::PPP1R7). This abnormality was inconspicuous by conventional karyotype and interphase fluorescence in situ hybridization (FISH), thus leading to an initial interpretation of inv(16)(p13.1q22); however, metaphase FISH showed that the CBFB rearrangement involved chromosome 2. Using whole genome and Sanger sequencing, the breakpoints were identified as being located in intron 5 of CBFB and intron 7 of PPP1R7. A microhomology of CAG was found in the break and reconnection sites of CBFB and PPP1R7, thus supporting the formation of CBFB::PPP1R7 by microhomology-mediated end joining.
Collapse
|
10
|
Zhang S, Pan C, Shang Q, Wang W, Hu T, Liu P, Chen S, Wang J, Fang Q. Overexpressed mitogen-and stress-activated protein kinase 1 promotes the resistance of cytarabine in acute myeloid leukemia through brahma related gene 1-mediated upregulation of heme oxygenase-1. Eur J Pharmacol 2022; 917:174722. [PMID: 34953799 DOI: 10.1016/j.ejphar.2021.174722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
Drug resistance remains a major challenge in the current treatment of acute myeloid leukemia (AML). Finding specific molecules responsible for mediating drug resistance in AML contributes to the effective reversal of drug resistance. Recent studies have found that mitogen- and stress-activated protein kinase 1 (MSK1) is of great significance in the occurrence and development of tumors. In the current study, MSK1 was found highly expressed in drug-resistant AML patients. Heme oxygenase-1 (HO-1) has been previously validated to be associated with drug resistance in AML. Our study revealed a positive correlation between MSK1 and HO-1 in patient samples. In vitro experiments revealed that the sensitivity of AML cell lines THP-1 and U937 to cytarabine (Ara-C) significantly decreased after overexpression of MSK1. Meanwhile, downregulation of MSK1 by siRNA transfection or treatment of pharmacological inhibitor SB-747651A in AML cell lines and primary AML cells enhanced the sensitivity to Ara-C. Flow cytometry analysis showed that downregulation of MSK1 in AML cells accelerated apoptosis and arrested cell cycle progression in G0/G1 phase. However, the increased cell sensitivity induced by MSK1 downregulation was reversed by the induction of HO-1 inducer Hemin. Through further mechanism exploration, real-time PCR, immunofluorescence and Western blot analysis demonstrated that brahma related gene 1 (BRG1) was involved in the regulatory effect of MSK1 on HO-1. High expression of MSK1 could promote the resistance of AML through BRG1-mediated upregulation of HO-1. Downregulation of MSK1 enhanced the sensitivity of AML cells to Ara-C. Our findings provide novel ideas for developing effective anti-AML targets.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Up-Regulation/drug effects
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Apoptosis/drug effects
- Apoptosis/genetics
- Male
- Cell Line, Tumor
- Female
- U937 Cells
- Middle Aged
- THP-1 Cells
- Gene Expression Regulation, Leukemic/drug effects
- Adult
Collapse
Affiliation(s)
- Siyu Zhang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China; Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China
| | - Chengyun Pan
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Qin Shang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weili Wang
- Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Tianzhen Hu
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ping Liu
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Siyu Chen
- Department of Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jishi Wang
- Laboratory of Hematopoietic Stem Cell Transplantation Centre of Guizhou Province, Guiyang, Guizhou, China; Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China.
| | - Qin Fang
- College of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China; Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
11
|
Fan Y, Peng X, Wang Y, Li B, Zhao G. Comprehensive Analysis of HDAC Family Identifies HDAC1 as a Prognostic and Immune Infiltration Indicator and HDAC1-Related Signature for Prognosis in Glioma. Front Mol Biosci 2021; 8:720020. [PMID: 34540896 PMCID: PMC8442956 DOI: 10.3389/fmolb.2021.720020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/19/2021] [Indexed: 01/24/2023] Open
Abstract
Background: The histone deacetylase (HDAC) family limited accessibility to chromatin containing tumor suppressor genes by removing acetyl groups, which was deemed a path for tumorigenesis. Considering glioma remained one of the most common brain cancers with a dichotomy prognosis and limited therapy responses, HDAC inhibitors were an area of intensive research. However, the expression profiles and prognostic value of the HDACs required more elucidation. Methods: Multiple biomedical databases were incorporated, including ONCOMINE, GEPIA, TCGA, CGGA, GEO, TIMER, cBioPortal, and Metascape, to study expression profiles, prognostic value, immune infiltration, mutation status, and enrichment of HDACs in glioma. STRING and GeneMANIA databases were used to identify HDAC1-related molecules. LASSO regression, Cox regression, Kaplan-Meier plot, and receiver operating characteristic (ROC) analyses were performed for HDAC1-related signature construction and validation. Results: HDAC1 was significantly overexpressed in glioma, while HDAC11 was downregulated in glioblastoma. Except for HDAC 6/9/10, the HDAC family expression was significantly associated with glioma grade. Most of the HDAC family also correlated with glioma genetic mutations. Higher HDAC1 expression level predicted more dismal overall survival (OS) (p < 0.0001) and disease-free survival (DFS) (p < 0.0001), but a higher level of HDAC11 held more favorable OS (p = 2.1e-14) and DFS (p = 4.8e-08). HDAC4 displayed the highest mutation ratio, at 2.6% of the family. The prognostic value of HDAC1 was validated with ROC achieving 0.70, 0.77, 0.75, and 0.80 as separability for 1-, 3-, 5-, and 10-years OS predictions in glioma, respectively. Moreover, HDAC1 expression positively correlated with neutrophil (r = 0.60, p = 2.88e-47) and CD4+ T cell infiltration (r = 0.52, p = 3.96e-35) in lower-grade glioma. The final HDAC1-related signature comprised of FKBP3, HDAC1 (Hazard Ratio:1.49, 95%Confidence Interval:1.20-1.86), PHF21A, RUNX1T1, and RBL1, and was verified by survival analysis (p < 0.0001) and ROC with 0.80, 0.84, 0.83, and 0.88 as separability for 1-, 3-, 5-, and 10-years OS predictions, respectively. The signature was enriched in chromatin binding. Conclusion: HDAC family was of clinical significance for glioma. Most of the HDAC family significantly correlated with the glioma grade, IDH1 mutation, and 1p/19q codeletion. HDAC1 was both a prognostic and immune infiltration indicator and a central component of the HDAC1-related signature for precise prognosis prediction in glioma.
Collapse
Affiliation(s)
- Yuxiang Fan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Peng
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yubo Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang J, Gao X, Yu L. Roles of Histone Deacetylases in Acute Myeloid Leukemia With Fusion Proteins. Front Oncol 2021; 11:741746. [PMID: 34540702 PMCID: PMC8440836 DOI: 10.3389/fonc.2021.741746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Accurate orchestration of gene expression is critical for the process of normal hematopoiesis, and dysregulation is closely associated with leukemogenesis. Epigenetic aberration is one of the major causes contributing to acute myeloid leukemia (AML), where chromosomal rearrangements are frequently found. Increasing evidences have shown the pivotal roles of histone deacetylases (HDACs) in chromatin remodeling, which are involved in stemness maintenance, cell fate determination, proliferation and differentiation, via mastering the transcriptional switch of key genes. In abnormal, these functions can be bloomed to elicit carcinogenesis. Presently, HDAC family members are appealing targets for drug exploration, many of which have been deployed to the AML treatment. As the majority of AML events are associated with chromosomal translocation resulting in oncogenic fusion proteins, it is valuable to comprehensively understand the mutual interactions between HDACs and oncogenic proteins. Therefore, we reviewed the process of leukemogenesis and roles of HDAC members acting in this progress, providing an insight for the target anchoring, investigation of hyperacetylated-agents, and how the current knowledge could be applied in AML treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
13
|
Simeoni F, Romero-Camarero I, Camera F, Amaral FMR, Sinclair OJ, Papachristou EK, Spencer GJ, Lie-A-Ling M, Lacaud G, Wiseman DH, Carroll JS, Somervaille TCP. Enhancer recruitment of transcription repressors RUNX1 and TLE3 by mis-expressed FOXC1 blocks differentiation in acute myeloid leukemia. Cell Rep 2021; 36:109725. [PMID: 34551306 PMCID: PMC8480281 DOI: 10.1016/j.celrep.2021.109725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Despite absent expression in normal hematopoiesis, the Forkhead factor FOXC1, a critical mesenchymal differentiation regulator, is highly expressed in ∼30% of HOXAhigh acute myeloid leukemia (AML) cases to confer blocked monocyte/macrophage differentiation. Through integrated proteomics and bioinformatics, we find that FOXC1 and RUNX1 interact through Forkhead and Runt domains, respectively, and co-occupy primed and active enhancers distributed close to differentiation genes. FOXC1 stabilizes association of RUNX1, HDAC1, and Groucho repressor TLE3 to limit enhancer activity: FOXC1 knockdown induces loss of repressor proteins, gain of CEBPA binding, enhancer acetylation, and upregulation of nearby genes, including KLF2. Furthermore, it triggers genome-wide redistribution of RUNX1, TLE3, and HDAC1 from enhancers to promoters, leading to repression of self-renewal genes, including MYC and MYB. Our studies highlight RUNX1 and CEBPA transcription factor swapping as a feature of leukemia cell differentiation and reveal that FOXC1 prevents this by stabilizing enhancer binding of a RUNX1/HDAC1/TLE3 transcription repressor complex to oncogenic effect.
Collapse
Affiliation(s)
- Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Oliver J Sinclair
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | | | - Gary J Spencer
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield SK10 4TG, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield SK10 4TG, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, Manchester M20 4GJ, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4GJ, UK.
| |
Collapse
|
14
|
Defining the Transcriptional Control of Pediatric AML Highlights RARA as a Super-Enhancer Regulated Druggable Dependency. Blood Adv 2021; 5:4864-4876. [PMID: 34543389 PMCID: PMC9153032 DOI: 10.1182/bloodadvances.2020003737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 07/11/2021] [Indexed: 11/26/2022] Open
Abstract
The first enhancer mapping of pediatric AML reveals that the most common SE-associated signature is one driven by RARA. A RARA SE is common in pediatric AML and correlates to sensitivity to the retinoid tamibarotene both in vitro and in vivo.
Somatic mutations are rare in pediatric acute myeloid leukemia (pAML), indicating that alternate strategies are needed to identify targetable dependencies. We performed the first enhancer mapping of pAML in 22 patient samples. Generally, pAML samples were distinct from adult AML samples, and MLL (KMT2A)–rearranged samples were also distinct from non–KMT2A-rearranged samples. Focusing specifically on superenhancers (SEs), we identified SEs associated with many known leukemia regulators. The retinoic acid receptor alpha (RARA) gene was differentially regulated in our cohort, and a RARA-associated SE was detected in 64% of the study cohort across all cytogenetic and molecular subtypes tested. RARA SE+ pAML cell lines and samples exhibited high RARA messenger RNA levels. These samples were specifically sensitive to the synthetic RARA agonist tamibarotene in vitro, with slowed proliferation, apoptosis induction, differentiation, and upregulated retinoid target gene expression, compared with RARA SE− samples. Tamibarotene prolonged survival and suppressed the leukemia burden of an RARA SE+ pAML patient-derived xenograft mouse model compared with a RARA SE− patient-derived xenograft. Our work shows that examining chromatin regulation can identify new, druggable dependencies in pAML and provides a rationale for a pediatric tamibarotene trial in children with RARA-high AML.
Collapse
|
15
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
16
|
Chen Y, Wang L, Lin X, Zhang Q, Xu Y, Lin D, Xu J, Feng S, Hu J. Cytological and spectroscopic characteristics of c-KIT N822K mutation in core binding factor acute myeloid leukemia cells. JOURNAL OF BIOPHOTONICS 2020; 13:e202000103. [PMID: 32390317 DOI: 10.1002/jbio.202000103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The frequency of N822K mutation is high in the A-loop region of c-KIT which is highly associated with poor prognosis of core binding factor acute myeloid leukemia. The current work used common assays including cell cycle, apoptosis, clone formation and western blot to perform cytological detection for HL60 (wild type), NB4 (carrying t[15;17] chromosome translocation) and Kasumi-1 (with c-KIT N822K mutation); and meanwhile, the laser tweezers Raman spectroscopy (LTRS) was also used to perform label-free detection of single living cells. The results demonstrated that Kasumi-1 cell line bearing c-KIT N822K mutation has a stable cell cycle, while there was a significant difference between early and late apoptosis within 48 hours. The LTRS detection initially reflected the spectral differences induced by genetic abnormalities and highlighted progressive patterns of DNA and amino acids band contents which were appropriately consistent with that of cell clone ratio and the c-KIT phosphorylation level. It is concluded that methodology of LTRS-based single living cell characterization could be potential and effective to reveal gene mutation-induced cell differentiation.
Collapse
Affiliation(s)
- Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Lingyan Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xindi Lin
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Qian Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Yunchao Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Donghong Lin
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Jianping Xu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianda Hu
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|