1
|
Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers (Basel) 2022; 14:4652. [PMID: 36230575 PMCID: PMC9562203 DOI: 10.3390/cancers14194652] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the deadliest skin cancer, whose morbidity and mortality indicators show an increasing trend worldwide. In addition to its great heterogeneity, melanoma has a high metastatic potential, resulting in very limited response to therapies currently available, which were restricted to surgery, radiotherapy and chemotherapy for many years. Advances in knowledge about the pathophysiological mechanisms of the disease have allowed the development of new therapeutic classes, such as immune checkpoint and small molecule kinase inhibitors. However, despite the incontestable progress in the quality of life and survival rates of the patients, effectiveness is still far from desired. Some adverse side effects and resistance mechanisms are the main barriers. Thus, the search for better options has resulted in many clinical trials that are now investigating new drugs and/or combinations. The low water solubility of drugs, low stability and rapid metabolism limit the clinical potential and therapeutic use of some compounds. Thus, the research of nanotechnology-based strategies is being explored as the basis for the broad application of different types of nanosystems in the treatment of melanoma. Future development focus on challenges understanding the mechanisms that make these nanosystems more effective.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
2
|
Szadai L, Velasquez E, Szeitz B, de Almeida NP, Domont G, Betancourt LH, Gil J, Marko-Varga M, Oskolas H, Jánosi ÁJ, Boyano-Adánez MDC, Kemény L, Baldetorp B, Malm J, Horvatovich P, Szász AM, Németh IB, Marko-Varga G. Deep Proteomic Analysis on Biobanked Paraffine-Archived Melanoma with Prognostic/Predictive Biomarker Read-Out. Cancers (Basel) 2021; 13:6105. [PMID: 34885218 PMCID: PMC8657028 DOI: 10.3390/cancers13236105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort's heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient's response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.
Collapse
Affiliation(s)
- Leticia Szadai
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - Erika Velasquez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (E.V.); (J.M.)
| | - Beáta Szeitz
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.S.); (A.M.S.)
| | - Natália Pinto de Almeida
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero 21941-901, Brazil;
| | - Gilberto Domont
- Chemistry Institute Federal, University of Rio de Janeiro, Rio de Janiero 21941-901, Brazil;
| | - Lazaro Hiram Betancourt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Matilda Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
| | - Henriett Oskolas
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Ágnes Judit Jánosi
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - Maria del Carmen Boyano-Adánez
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcala de Henares, 28801 Alcalá de Henares, Madrid, Spain;
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
- HCEMM-USZ Skin Research Group, University of Szeged, 6720 Szeged, Hungary
| | - Bo Baldetorp
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.H.B.); (J.G.); (H.O.); (B.B.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; (E.V.); (J.M.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, 9712 CP Groningen, The Netherlands;
| | - A. Marcell Szász
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.S.); (A.M.S.)
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary; (Á.J.J.); (L.K.); (I.B.N.)
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; (N.P.d.A.); (M.M.-V.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Surgery, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
3
|
Gil J, Rezeli M, Lutz EG, Kim Y, Sugihara Y, Malm J, Semenov YR, Yu KH, Nguyen N, Wan G, Kemény LV, Kárpáti S, Németh IB, Marko-Varga G. An Observational Study on the Molecular Profiling of Primary Melanomas Reveals a Progression Dependence on Mitochondrial Activation. Cancers (Basel) 2021; 13:6066. [PMID: 34885173 PMCID: PMC8657311 DOI: 10.3390/cancers13236066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma in advanced stages is one of the most aggressive tumors and the deadliest of skin cancers. To date, the histopathological staging focuses on tumor thickness, and clinical staging is a major estimate of the clinical behavior of primary melanoma. Here we report on an observational study with in-depth molecular profiling at the protein level including post-translational modifications (PTMs) on eleven primary tumors from melanoma patients. Global proteomics, phosphoproteomics, and acetylomics were performed on each sample. We observed an up-regulation of key mitochondrial functions, including the mitochondrial translation machinery and the down-regulation of structural proteins involved in cell adhesion, the cytoskeleton organization, and epidermis development, which dictates the progression of the disease. Additionally, the PTM level pathways related to RNA processing and transport, as well as chromatin organization, were dysregulated in relation to the progression of melanoma. Most of the pathways dysregulated in this cohort were enriched in genes differentially expressed at the transcript level when similar groups are compared or metastasis to primary melanomas. At the genome level, we found significant differences in the mutation profiles between metastatic and primary melanomas. Our findings also highlighted sex-related differences in the molecular profiles. Remarkably, primary melanomas in women showed higher levels of antigen processing and presentation, and activation of the immune system response. Our results provide novel insights, relevant for developing personalized precision treatments for melanoma patients.
Collapse
Affiliation(s)
- Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden;
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 222 42 Lund, Sweden;
| | - Elmar G. Lutz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (E.G.L.); (L.V.K.); (S.K.)
| | - Yonghyo Kim
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Yutaka Sugihara
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden;
| | - Yevgeniy R. Semenov
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02110, USA; (Y.R.S.); (N.N.); (G.W.)
| | - Kun-Hsing Yu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Nga Nguyen
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02110, USA; (Y.R.S.); (N.N.); (G.W.)
| | - Guihong Wan
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02110, USA; (Y.R.S.); (N.N.); (G.W.)
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Lajos V. Kemény
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (E.G.L.); (L.V.K.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (E.G.L.); (L.V.K.); (S.K.)
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary;
| | - György Marko-Varga
- Division of Oncology, Department of Clinical Sciences, Lund University, 222 42 Lund, Sweden; (Y.K.); (Y.S.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- 1st Department of Surgery, Tokyo Medical University, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Jiang SL, Wang ZB, Zhu T, Jiang T, Fei JF, Liu C, Luo C, Cheng Y, Liu ZQ. The Downregulation of eIF3a Contributes to Vemurafenib Resistance in Melanoma by Activating ERK via PPP2R1B. Front Pharmacol 2021; 12:720619. [PMID: 34512348 PMCID: PMC8430041 DOI: 10.3389/fphar.2021.720619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Vemurafenib, a BRAF V600E inhibitor, provides therapeutic benefits for patients with melanoma, but the frequent emergence of drug resistance remains a challenge. An understanding of the mechanisms underlying vemurafenib resistance may generate novel therapeutic strategies for patients with melanoma. Here, we showed that eIF3a, a translational regulatory protein, was an important mediator involved in vemurafenib resistance. eIF3a was expressed at significantly lower levels in vemurafenib-resistant A375 melanoma cells (A375R) than in parental A375 cells. Overexpression of eIF3a enhanced the sensitivity to BRAF inhibitors by reducing p-ERK levels. Furthermore, eIF3a controlled ERK activity by regulating the expression of the phosphatase PPP2R1B via a translation mechanism, thus determining the sensitivity of melanoma cells to vemurafenib. In addition, a positive correlation between eIF3a and PPP2R1B expression was also observed in tumor samples from the Human Protein Atlas and TCGA databases. In conclusion, our studies reveal a previously unknown molecular mechanism of BRAF inhibitor resistance, which may provide a new strategy for predicting vemurafenib responses in clinical treatment.
Collapse
Affiliation(s)
- Shi-Long Jiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Tao Zhu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Ting Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Chong Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Chao Luo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Shanghai Mental Health Center, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
5
|
Betancourt LH, Gil J, Sanchez A, Doma V, Kuras M, Murillo JR, Velasquez E, Çakır U, Kim Y, Sugihara Y, Parada IP, Szeitz B, Appelqvist R, Wieslander E, Welinder C, de Almeida NP, Woldmar N, Marko‐Varga M, Eriksson J, Pawłowski K, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Lindberg H, Oskolas H, Lee B, Berge E, Sjögren M, Eriksson C, Kim D, Kwon HJ, Knudsen B, Rezeli M, Malm J, Hong R, Horvath P, Szász AM, Tímár J, Kárpáti S, Horvatovich P, Miliotis T, Nishimura T, Kato H, Steinfelder E, Oppermann M, Miller K, Florindi F, Zhou Q, Domont GB, Pizzatti L, Nogueira FCS, Szadai L, Németh IB, Ekedahl H, Fenyö D, Marko‐Varga G. The Human Melanoma Proteome Atlas-Complementing the melanoma transcriptome. Clin Transl Med 2021; 11:e451. [PMID: 34323402 PMCID: PMC8299047 DOI: 10.1002/ctm2.451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The MM500 meta-study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass-spectrometry-based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well-annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein-coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease.
Collapse
|
6
|
Betancourt LH, Gil J, Kim Y, Doma V, Çakır U, Sanchez A, Murillo JR, Kuras M, Parada IP, Sugihara Y, Appelqvist R, Wieslander E, Welinder C, Velasquez E, de Almeida NP, Woldmar N, Marko‐Varga M, Pawłowski K, Eriksson J, Szeitz B, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Lindberg H, Oskolas H, Lee B, Berge E, Sjögren M, Eriksson C, Kim D, Kwon HJ, Knudsen B, Rezeli M, Hong R, Horvatovich P, Miliotis T, Nishimura T, Kato H, Steinfelder E, Oppermann M, Miller K, Florindi F, Zhou Q, Domont GB, Pizzatti L, Nogueira FCS, Horvath P, Szadai L, Tímár J, Kárpáti S, Szász AM, Malm J, Fenyö D, Ekedahl H, Németh IB, Marko‐Varga G. The human melanoma proteome atlas-Defining the molecular pathology. Clin Transl Med 2021; 11:e473. [PMID: 34323403 PMCID: PMC8255060 DOI: 10.1002/ctm2.473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/19/2023] Open
Abstract
The MM500 study is an initiative to map the protein levels in malignant melanoma tumor samples, focused on in-depth histopathology coupled to proteome characterization. The protein levels and localization were determined for a broad spectrum of diverse, surgically isolated melanoma tumors originating from multiple body locations. More than 15,500 proteoforms were identified by mass spectrometry, from which chromosomal and subcellular localization was annotated within both primary and metastatic melanoma. The data generated by global proteomic experiments covered 72% of the proteins identified in the recently reported high stringency blueprint of the human proteome. This study contributes to the NIH Cancer Moonshot initiative combining detailed histopathological presentation with the molecular characterization for 505 melanoma tumor samples, localized in 26 organs from 232 patients.
Collapse
|
7
|
Ito T, Tanaka Y, Murata M, Kaku-Ito Y, Furue K, Furue M. BRAF Heterogeneity in Melanoma. Curr Treat Options Oncol 2021; 22:20. [PMID: 33558987 DOI: 10.1007/s11864-021-00818-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
OPINION STATEMENT In the era of molecular targeted therapy, the accurate detection of BRAF mutation in melanoma has become increasingly important. With the advances of molecular analyses and immunohistochemistry, the presence of BRAF mutational heterogeneity in melanoma has been widely recognized. Although most patients with melanoma have a homogeneous BRAF mutation status because the BRAF mutation occurs at an early stage of melanoma development and acts as a driver gene mutation, BRAF mutational heterogeneity does exist, among different tumor sites of a single patient (intertumor heterogeneity) and/or even within a single tumor (intratumor heterogeneity). To summarize the published reports, about 10% of melanoma patients may show intertumorally discordant BRAF status and about 15% of BRAF-mutated melanomas may have intratumor BRAF heterogeneity, although the reported results vary strikingly among the studies and methods used. Considering the BRAF heterogeneity of melanoma, a single biopsy from a single tumor may not be sufficient to uncover the entire BRAF status of a patient. Multiple samples from different sites may be preferable to assess the indication of BRAF/MEK inhibitors, as recommended by the current clinical guidelines. The impact of BRAF heterogeneity on patient survival or the response to treatment with BRAF/MEK inhibitors is an interesting issue, but requires further investigation.
Collapse
Affiliation(s)
- Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka, 812-8582, Japan.
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka, 812-8582, Japan
| | - Maho Murata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka, 812-8582, Japan
| | - Yumiko Kaku-Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka, 812-8582, Japan
| | - Kazuhisa Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka, 812-8582, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka, 812-8582, Japan
| |
Collapse
|
8
|
Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik YK, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun 2020; 11:5301. [PMID: 33067450 PMCID: PMC7568584 DOI: 10.1038/s41467-020-19045-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
Collapse
Affiliation(s)
- Subash Adhikari
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Edouard C Nice
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Faculty of Medicine, Nursing and Health Sciences, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Eric W Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Lydie Lane
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA
| | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Young-Ki Paik
- Yonsei Proteome Research Center, 50 Yonsei-ro, Sudaemoon-ku, Seoul, 120-749, South Korea
| | | | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, 28049, Madrid, Spain
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jennifer E Van Eyk
- Cedars Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Los Angeles, CA, 90048, USA
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Cecilia Lindskog
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Amos Bairoch
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - James C Waddington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, Microbiology and Diagnostics, Fahrenheitstrasse, 428359, Bremen, Germany
| | - Peipei Ping
- Cardiac Proteomics and Signaling Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Stewart
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Sudhir Srivastava
- Cancer Biomarkers Research Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Suite 5E136, Rockville, MD, 20852, USA
| | - Fabio C S Nogueira
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Gilberto B Domont
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Yves Vandenbrouck
- University of Grenoble Alpes, Inserm, CEA, IRIG-BGE, U1038, 38000, Grenoble, France
| | - Maggie P Y Lam
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Juan Antonio Vizcaino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marc Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0404, La Jolla, CA, 92093-0404, USA
| | | | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, UT Health, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Charles Pineau
- University of Rennes, Inserm, EHESP, IREST, UMR_S 1085, F-35042, Rennes, France
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Magnus Palmblad
- Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ruedi Aebersold
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Mark S Baker
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Dornan MH, Petrenyov D, Simard JM, Boudjemeline M, Mititelu R, DaSilva JN, Belanger AP. Synthesis of a 11C-Isotopologue of the B-Raf-Selective Inhibitor Encorafenib Using In-Loop [ 11C]CO 2 Fixation. ACS OMEGA 2020; 5:20960-20966. [PMID: 32875231 PMCID: PMC7450646 DOI: 10.1021/acsomega.0c02419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/28/2020] [Indexed: 05/07/2023]
Abstract
The serine/threonine kinase B-Raf is an essential regulator of cellular growth, differentiation, and survival. B-Raf protein expression is elevated throughout melanoma progression, making it an attractive target for noninvasive imaging using positron-emission tomography. Encorafenib is a potent and highly selective inhibitor of B-Raf used in the clinical management of melanoma. In this study, the radiosynthesis of a 11C-isotopologue of encorafenib was developed using an in-loop [11C]CO2 fixation reaction. Optimization of reaction conditions reduced the formation of a radiolabeled side product and improved the isolated yields of [11C]encorafenib (14.5 ± 2.4% radiochemical yield). The process was fully automated using a commercial radiosynthesizer for the production of 6845 ± 888 MBq of [11C]encorafenib in high molar activity (177 ± 5 GBq μmol-1), in high radiochemical purity (99%), and in a formulation suitable for animal injection. An in vitro cellular binding experiment demonstrated saturable binding of the radiotracer to A375 melanoma cells.
Collapse
Affiliation(s)
- Mark H. Dornan
- Department
of Imaging, Dana-Farber Cancer Institute & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Laboratoire
de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal & Département
de Radiologie, radiooncologie et médecine nucléaire,
Faculté de médecine, Université
de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Daniil Petrenyov
- Laboratoire
de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal & Département
de Radiologie, radiooncologie et médecine nucléaire,
Faculté de médecine, Université
de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - José-Mathieu Simard
- Laboratoire
de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal & Département
de Radiologie, radiooncologie et médecine nucléaire,
Faculté de médecine, Université
de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Mehdi Boudjemeline
- Laboratoire
de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal & Département
de Radiologie, radiooncologie et médecine nucléaire,
Faculté de médecine, Université
de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Roxana Mititelu
- Division
of Dermatology, Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Jean N. DaSilva
- Laboratoire
de Radiochimie et Cyclotron, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal & Département
de Radiologie, radiooncologie et médecine nucléaire,
Faculté de médecine, Université
de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Anthony P. Belanger
- Department
of Imaging, Dana-Farber Cancer Institute & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Metastasis of Uveal Melanoma with Monosomy-3 Is Associated with a Less Glycogenetic Gene Expression Profile and the Dysregulation of Glycogen Storage. Cancers (Basel) 2020; 12:cancers12082101. [PMID: 32751097 PMCID: PMC7463985 DOI: 10.3390/cancers12082101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged storage of glucose as glycogen can promote the quiescence of tumor cells, whereas the accumulation of an aberrant form of glycogen without the primer protein glycogenin can induce the metabolic switch towards a glycolytic phenotype. Here, we analyzed the expression of n = 67 genes involved in glycogen metabolism on the uveal melanoma (UM) cohort of the Cancer Genome Atlas (TCGA) study and validated the differentially expressed genes in an independent cohort. We also evaluated the glycogen levels with regard to the prognostic factors via a differential periodic acid-Schiff (PAS) staining. UMs with monosomy-3 exhibited a less glycogenetic and more insulin-resistant gene expression profile, together with the reduction of glycogen levels, which were associated with the metastases. Expression of glycogenin-1 (Locus: 3q24) was lower in the monosomy-3 tumors, whereas the complementary isoform glycogenin-2 (Locus: Xp22.33) was upregulated in females. Remarkably, glycogen was more abundant in the monosomy-3 tumors of male versus female patients. We therefore provide the first evidence to the dysregulation of glycogen metabolism as a novel factor that may be aggravating the course of UM particularly in males.
Collapse
|
11
|
Liu C, He S, Zhang J, Li S, Chen J, Han C. Silencing TCF4 Sensitizes Melanoma Cells to Vemurafenib Through Inhibiting GLUT3-Mediated Glycolysis. Onco Targets Ther 2020; 13:4905-4915. [PMID: 32581551 PMCID: PMC7269014 DOI: 10.2147/ott.s245531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Vemurafenib is a selective BRAF inhibitor with significant early effects in melanoma, but resistance will develop with the duration of treatment. Therefore, overcoming vemurafenib resistance can effectively improve the survival rate of melanoma. The transcriptional activity of TCF4 is necessary to maintain the malignant phenotype of cancer cells. However, the effect of TCF4 on melanoma sensitivity to vemurafenib and the underlying mechanism is unclear. Methods Vemurafenib-resistant A375 (A375/Vem) and SK-Mel-28 (SK-Mel-28/Vem) cells were constructed by administering increasing concentrations of vemurafenib, and the expression of TCF4 was examined in parent and vemurafenib-resistant cells. TCF4 loss-function cells models were established in A375/Vem and SK-Mel-28/Vem cells, respectively. Cell survival, clone formation, and cell apoptosis were assessed. The downstream target gene of TCF4 was verified by chromatin immunoprecipitation. Finally, the effect of TCF4 on melanoma cells glycolysis was investigated and were performed. Results TCF4 expression was increased in vemurafenib-resistant melanoma cells, and knocking down TCF4 could promote the sensitivity of melanoma cells to vemurafenib. Mechanism investigation revealed that TCF4 could interact with GLUT3 and silencing TCF4 could inhibit GLUT3 expression. In addition, overexpression of GLUT3 reversed the growth and glycolysis of tumor cells that were inhibited by TCF4 knockdown. Conclusion Our study demonstrates that TCF4 downregulation sensitizes melanoma cells to vemurafenib through inhibiting GLUT3-mediated glycolysis. These findings support TCF4 as an oncogene and provide new mechanism by which TCF4 confers chemotherapy resistance in melanoma.
Collapse
Affiliation(s)
- Can Liu
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Siqi He
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jianfei Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital of South China University, Hengyang, Hunan 421001, People's Republic of China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Jian Chen
- Department of Burns and Plastic Surgery, The First Hospital of Putian City, Putian, Fujian 351100, People's Republic of China
| | - Chaofei Han
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
12
|
Kim Y, Gil J, Pla I, Sanchez A, Betancourt LH, Lee B, Appelqvist R, Ingvar C, Lundgren L, Olsson H, Baldetorp B, Kwon HJ, Oskolás H, Rezeli M, Doma V, Kárpáti S, Szasz AM, Németh IB, Malm J, Marko-Varga G. Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers (Basel) 2020; 12:E767. [PMID: 32213878 PMCID: PMC7140007 DOI: 10.3390/cancers12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Collapse
Affiliation(s)
- Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital Lund, 222 42 Lund, Sweden;
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Henriett Oskolás
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Viktoria Doma
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Department of Bioinformatics, Semmelweis University, 1091 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| |
Collapse
|