1
|
Wang Y, Mang X, Li D, Wang Z, Chen Y, Cai Z, Tan F. Cold atmospheric plasma sensitizes head and neck cancer to chemotherapy and immune checkpoint blockade therapy. Redox Biol 2024; 69:102991. [PMID: 38103343 PMCID: PMC10764269 DOI: 10.1016/j.redox.2023.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Head and neck cancer (HNC) is the seventh most prevalent cancer globally, often characterized by chemo-resistance and immunosuppression, which significantly hampers treatment efficacy. Cold atmospheric plasma (CAP) has recently emerged as a promising adjuvant oncotherapy with substantial potential and advantages. In this study, Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. We aimed to investigate the effects of CAPPZ2 on various types of HNC cells and elucidate the underlying mechanisms. In addition, we endeavored to examine the efficacy of combining CAPPZ2 with chemotherapy drugs (i.e., cisplatin) or immune checkpoint blockade (ICB, i.e., PD1 antibody) in HNC treatment. Firstly, the results demonstrated that CAPPZ2 exerted anti-neoplastic functions through inhibiting cell proliferation, migration and invasion, and promoting apoptosis and autophagy. Secondly, using transcriptomic sequencing, Western blotting, and quantitative real-time PCR, the mechanisms underlying CAPPZ2 treatment in vitro was presumed to be a multitargeted blockade of major cancer survival pathways, such as redox balance, glycolysis, and PI3K/AKT/mTOR/HIF-1α signaling. Lastly, combinatorial thearpy containing CAPPZ2 and cisplatin or PD-1 antibody significantly suppressed tumor growth and prolonged recipient survival in vivo. Collectively, the synergistic effects of CAPPZ2 and cisplatin or PD-1 antibody could serve as a promising solution to enhance head and neck tumor elimination.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Danni Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China
| | - Yiliang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhenyu Cai
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200432, China; The Royal College of Surgeons in Ireland, Dublin, Ireland; The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
2
|
Jo A, Joh HM, Bae JH, Kim SJ, Chung JW, Chung TH. Plasma-Activated Media Produced by a Microwave-Excited Atmospheric Pressure Plasma Jet Is Effective against Cisplatin-Resistant Human Bladder Cancer Cells In Vitro. Int J Mol Sci 2024; 25:1249. [PMID: 38279247 PMCID: PMC10816804 DOI: 10.3390/ijms25021249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Media exposed to atmospheric pressure plasma (APP) produce reactive oxygen and nitrogen species (RONS), with hydrogen peroxide (H2O2), nitrite (NO2-), and nitrate (NO3-) being among the most detected species due to their relatively long lifetime. In this study, a standardized microwave-excited (ME) APP jet (APPJ) source was employed to produce gaseous RONS to treat liquid samples. The source was a commercially available plasma jet, which generated argon plasma utilizing a coaxial transmission line resonator at the operating frequency of 2.45 GHz. An ultraviolet-visible spectrophotometer was used to measure the concentrations of H2O2 and NO3- in plasma-activated media (PAM). Three different types of media (deionized water, Hank's balanced salt solution, and cell culture solution Dulbecco's modified eagles medium [DMEM]) were utilized as liquid samples. Among these media, the plasma-treated DMEM was observed to have the highest levels of H2O2 and NO3-. Subsequently, the feasibility of using argon ME-APPJ-activated DMEM (PAM) as an adjuvant to enhance the therapeutic effects of cisplatin on human bladder cancer cells (T-24) was investigated. Various cancer cell lines, including T-24 cells, treated with PAM were observed in vitro for changes in cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. A viability reduction was detected in the various cancer cells after incubation in PAM. Furthermore, the study's results revealed that PAM was effective against cisplatin-resistant T-24 cells in vitro. In addition, a possible connection between HER expression and cell viability was sketched.
Collapse
Affiliation(s)
- Ara Jo
- Department of Biological Sciences, Dong-A University, Busan 49315, Republic of Korea;
| | - Hea-Min Joh
- Department of Physics, Dong-A University, Busan 49315, Republic of Korea (J.-H.B.); (S.-J.K.)
| | - Jin-Hee Bae
- Department of Physics, Dong-A University, Busan 49315, Republic of Korea (J.-H.B.); (S.-J.K.)
| | - Sun-Ja Kim
- Department of Physics, Dong-A University, Busan 49315, Republic of Korea (J.-H.B.); (S.-J.K.)
| | - Jin-Woong Chung
- Department of Biological Sciences, Dong-A University, Busan 49315, Republic of Korea;
| | - Tae-Hun Chung
- Department of Physics, Dong-A University, Busan 49315, Republic of Korea (J.-H.B.); (S.-J.K.)
| |
Collapse
|
3
|
Hasan N, Imran M, Sheikh A, Tiwari N, Jaimini A, Kesharwani P, Jain GK, Ahmad FJ. Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer. ENVIRONMENTAL RESEARCH 2023; 233:116454. [PMID: 37343751 DOI: 10.1016/j.envres.2023.116454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Non-melanoma skin cancer is one of the most common malignancies reported around the globe. Current treatment therapies fail to meet the desired therapeutic efficacy due to high degree of drug resistance. Thus, there is prominent demand in advancing the current conventional therapy to achieve desired therapeutic efficacy. To break the bottleneck, nanoparticles have been used as next generation vehicles that facilitate the efficient interaction with the cancer cells. Here, we developed combined therapy of 5-fluorouracil (5-FU) and cannabidiol (CBD)-loaded nanostructured lipid carrier gel (FU-CBD-NLCs gel). The current investigation has been designed to evaluate the safety and efficacy of developed 5-Flurouracil and cannabidiol loaded combinatorial lipid-based nanocarrier (FU-CBD NLCs) gel for the effective treatment of skin cancer. Initially, confocal microscopy study results showed excellent uptake and deposition at epidermal and the dermal layer. Irritation studies performed by IR camera and HET cam shows FU-CBD NLCs was much more tolerated and less irritant compared to conventional treatment. Furthermore, gamma scintigraphy evaluation shows the skin retention behavior of the formulation. Later, in-ovo tumor remission studies were performed, and it was found that prepared FU-CBD NLCs was able to reduce tumor volume significantly compared to conventional formulation. Thus, obtained results disclosed that permeation and disposition of 5-FU and CBD into different layers of the skin FU-CBD NLCs gel could be more potential carrier than conventional gel. Furthermore, prepared formulation showed greater tumor remission, better survival rate, reduction in tumor number, area, and volume with improved biochemical profile. Thus, prepared gel could serve as a promising formulation approach for the skin cancer treatment.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nidhi Tiwari
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India; Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Abhinav Jaimini
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organisation, Ministry of Defence, Govt. of India, Timarpur, 1100654, Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, Delhi, 110017, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
4
|
Palumbo C, Sisi F, Checchi M. CAM Model: Intriguing Natural Bioreactor for Sustainable Research and Reliable/Versatile Testing. BIOLOGY 2023; 12:1219. [PMID: 37759618 PMCID: PMC10525291 DOI: 10.3390/biology12091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We are witnessing the revival of the CAM model, which has already used been in the past by several researchers studying angiogenesis and anti-cancer drugs and now offers a refined model to fill, in the translational meaning, the gap between in vitro and in vivo studies. It can be used for a wide range of purposes, from testing cytotoxicity, pharmacokinetics, tumorigenesis, and invasion to the action mechanisms of molecules and validation of new materials from tissue engineering research. The CAM model is easy to use, with a fast outcome, and makes experimental research more sustainable since it allows us to replace, reduce, and refine pre-clinical experimentation ("3Rs" rules). This review aims to highlight some unique potential that the CAM-assay presents; in particular, the authors intend to use the CAM model in the future to verify, in a microenvironment comparable to in vivo conditions, albeit simplified, the angiogenic ability of functionalized 3D constructs to be used in regenerative medicine strategies in the recovery of skeletal injuries of critical size (CSD) that do not repair spontaneously. For this purpose, organotypic cultures will be planned on several CAMs set up in temporal sequences, and a sort of organ model for assessing CSD will be utilized in the CAM bioreactor rather than in vivo.
Collapse
Affiliation(s)
| | | | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia—Largo del Pozzo, 41124 Modena, Italy
| |
Collapse
|
5
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
6
|
Nitsch A, Qarqash S, Römer S, Schoon J, Ekkernkamp A, Niethard M, Reichert JC, Wassilew GI, Tzvetkov MV, Haralambiev L. Enhancing the Impact of Chemotherapy on Ewing Sarcoma Cells through Combination with Cold Physical Plasma. Int J Mol Sci 2023; 24:ijms24108669. [PMID: 37240019 DOI: 10.3390/ijms24108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Although Ewing's sarcoma (ES) is a rare, but very aggressive tumor disease affecting the musculoskeletal system, especially in children, it is very aggressive and difficult to treat. Although medical advances and the establishment of chemotherapy represent a turning point in the treatment of ES, resistance to chemotherapy, and its side effects, continue to be problems. New treatment methods such as the application of cold physical plasma (CPP) are considered potential supporting tools since CPP is an exogenous source of reactive oxygen and nitrogen species, which have similar mechanisms of action in the tumor cells as chemotherapy. This study aims to investigate the synergistic effects of CPP and commonly used cytostatic chemotherapeutics on ES cells. The chemotherapy drugs doxorubicin and vincristine, the most commonly used in the treatment of ES, were applied to two different ES cell lines (RD-ES and A673) and their IC20 and IC50 were determined. In addition, individual chemotherapeutics in combination with CPP were applied to the ES cells and the effects on cell growth, cell viability, and apoptosis processes were examined. A single CPP treatment resulted in the dose-dependent growth inhibition of ES cells. The combination of different cytostatics and CPP led to significant growth inhibition, a reduction in cell viability, and higher rates of apoptosis compared to cells not additionally exposed to CPP. The combination of CPP treatment and the application of cytostatic drugs to ES cells showed promising results, significantly enhancing the cytotoxic effects of chemotherapeutic agents. These preclinical in vitro data indicate that the use of CPP can enhance the efficacy of common cytostatic chemotherapeutics, and thus support the translation of CPP as an anti-tumor therapy in clinical routine.
Collapse
Affiliation(s)
- Andreas Nitsch
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sara Qarqash
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sarah Römer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Axel Ekkernkamp
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683 Berlin, Germany
| | - Maya Niethard
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Sarcoma Centre, HELIOS-Klinikum Berlin-Buch, Schwanebecker Chaussee 50, 13125 Berlin, Germany
| | - Johannes C Reichert
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Georgi I Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, 17487 Greifswald, Germany
| | - Lyubomir Haralambiev
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin, Warener Straße 7, 12683 Berlin, Germany
| |
Collapse
|
7
|
Miebach L, Mohamed H, Wende K, Miller V, Bekeschus S. Pancreatic Cancer Cells Undergo Immunogenic Cell Death upon Exposure to Gas Plasma-Oxidized Ringers Lactate. Cancers (Basel) 2023; 15:319. [PMID: 36612315 PMCID: PMC9818580 DOI: 10.3390/cancers15010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Survival rates among patients with pancreatic cancer, the most lethal gastrointestinal cancer, have not improved compared to other malignancies. Early tumor dissemination and a supportive, cancer-promoting tumor microenvironment (TME) limit therapeutic options and consequently impede tumor remission, outlining an acute need for effective treatments. Gas plasma-oxidized liquid treatment showed promising preclinical results in other gastrointestinal and gynecological tumors by targeting the tumor redox state. Here, carrier solutions are enriched with reactive oxygen (ROS) and nitrogen (RNS) species that can cause oxidative distress in tumor cells, leading to a broad range of anti-tumor effects. Unfortunately, clinical relevance is often limited, as many studies have forgone the use of medical-grade solutions. This study investigated the efficacy of gas plasma-oxidized Ringer's lactate (oxRilac), a physiological solution often used in clinical practice, on two pancreatic cancer cell lines to induce tumor toxicity and provoke immunogenicity. Tumor toxicity of the oxRilac solutions was further confirmed in three-dimensional tumor spheroids monitored over 72 h and in ovo using stereomicroscope imaging of excised GFP-expressing tumors. We demonstrated that cell death signaling was induced in a dose-dependent fashion in both cell lines and was paralleled by the increased surface expression of key markers of immunogenic cell death (ICD). Nuclear magnetic resonance (NMR) spectroscopy analysis suggested putative reaction pathways that may cause the non-ROS related effects. In summary, our study suggests gas plasma-deposited ROS in clinically relevant liquids as an additive option for treating pancreatic cancers via immune-stimulating and cytotoxic effects.
Collapse
Affiliation(s)
- Lea Miebach
- Department of General, Thoraxic, Vascular, and Visceral Surgery, Greifswald University Medical Center, 17489 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Hager Mohamed
- Emergex Vaccines Holding Limited, Doylestown, PA 18902, USA
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kristian Wende
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Vandana Miller
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
8
|
Miebach L, Berner J, Bekeschus S. In ovo model in cancer research and tumor immunology. Front Immunol 2022; 13:1006064. [PMID: 36248802 PMCID: PMC9556724 DOI: 10.3389/fimmu.2022.1006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- *Correspondence: Sander Bekeschus,
| |
Collapse
|
9
|
Mateu-Sanz M, Ginebra MP, Tornín J, Canal C. Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer. Free Radic Biol Med 2022; 189:32-41. [PMID: 35843475 DOI: 10.1016/j.freeradbiomed.2022.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
High-dose systemic chemotherapy constitutes a main strategy in the management of bone metastases, employing drugs like doxorubicin (DOX), related with severe side effects. To solve this issue, Cold Atmospheric Plasmas (CAP) have been proposed as potential non-invasive anti-cancer agents capable of improving the efficacy of traditional drugs. Here, we investigate the cytotoxic effects of Plasma Conditioned Medium (PCM) in combination with DOX in prostate cancer cells from bone metastases (PC-3) as well as in non-malignant bone-cells. PCM was able to enhance the cytotoxic potential of DOX both in monolayer and in a 3D bioengineered model mimicking the bone matrix. The combined treatment of PCM + DOX resulted in a profound downregulation of the redox defenses (CAT1, SOD2, GPX1) and drug resistance genes (MRP1, MDR1, BCRP1), resulting in an enhanced uptake of DOX coupled to an overload of intracellular ROS. Besides, PCM improved the cytotoxic potential of DOX interfering on the migratory and clonogenic potential of PC-3 cells. Importantly, non-malignant bone cells were unaffected by the combination of PCM + DOX. Overall, these new findings may represent a new therapeutic approach for the management of bone metastatic prostate cancer in the future.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain; Sarcomas and Experimental Therapeutics Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain.
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Materials Science and Engineering Department, and Research Center for Biomedical Engineering, Universitat Politècnica de Catalunya (UPC), Escola d'Enginyeria Barcelona Est (EEBE), c/Eduard Maristany 14, 08019, Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| |
Collapse
|
10
|
Limanowski R, Yan D, Li L, Keidar M. Preclinical Cold Atmospheric Plasma Cancer Treatment. Cancers (Basel) 2022; 14:cancers14143461. [PMID: 35884523 PMCID: PMC9316208 DOI: 10.3390/cancers14143461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cold atmospheric plasma (CAP) is generated in a rapid yet low-energy input streamer-discharge process at atmospheric pressure conditions. CAP is an ionized gas with a low ionization level and plenty of reactive species and radicals. These reactive components, and their near-room temperature nature, make CAP a powerful tool in medical applications, particularly cancer therapy. Here, we summarized the latest development and status of preclinical applications of CAP in cancer therapy, which may guide further clinical studies of CAP-based cancer therapy. Abstract CAP is an ionized gas generated under atmospheric pressure conditions. Due to its reactive chemical components and near-room temperature nature, CAP has promising applications in diverse branches of medicine, including microorganism sterilization, biofilm inactivation, wound healing, and cancer therapy. Currently, hundreds of in vitro demonstrations of CAP-based cancer treatments have been reported. However, preclinical studies, particularly in vivo studies, are pivotal to achieving a final clinical application. Here, we comprehensively introduced the research status of the preclinical usage of CAP in cancer treatment, by primarily focusing on the in vivo studies over the past decade. We summarized the primary research strategies in preclinical and clinical studies, including transdermal CAP treatment, post-surgical CAP treatment, CAP-activated solutions treatment, and sensitization treatment to drugs. Finally, the underlying mechanism was discussed based on the latest understanding.
Collapse
Affiliation(s)
- Ruby Limanowski
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA;
| | - Dayun Yan
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| | - Lin Li
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, USA;
- Correspondence: (D.Y.); (M.K.)
| |
Collapse
|
11
|
Solé-Martí X, Vilella T, Labay C, Tampieri F, Ginebra MP, Canal C. Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: a case study with methylcellulose. Biomater Sci 2022; 10:3845-3855. [PMID: 35678531 DOI: 10.1039/d2bm00308b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogels have been recently proposed as suitable materials to generate reactive oxygen and nitrogen species (RONS) upon gas-plasma treatment, and postulated as promising alternatives to conventional cancer therapies. Acting as delivery vehicles that allow a controlled release of RONS to the diseased site, plasma-treated hydrogels can overcome some of the limitations presented by plasma-treated liquids in in vivo therapies. In this work, we optimized the composition of a methylcellulose (MC) hydrogel to confer it with the ability to form a gel at physiological temperatures while remaining in the liquid phase at room temperature to allow gas-plasma treatment with suitable formation of plasma-generated RONS. MC hydrogels demonstrated the capacity for generation, prolonged storage and release of RONS. This release induced cytotoxic effects on the osteosarcoma cancer cell line MG-63, reducing its cell viability in a dose-response manner. These promising results postulate plasma-treated thermosensitive hydrogels as good candidates to provide local anticancer therapies.
Collapse
Affiliation(s)
- Xavi Solé-Martí
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Tània Vilella
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain
| | - Cédric Labay
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Francesco Tampieri
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri i Reixach 10-12, 08028 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, and Research Centre for Biomedical Engineering (CREB), Universitat Politècnica de Catalunya (UPC), c/Eduard Maristany 14, 08019 Barcelona, Spain. .,Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
12
|
Razzokov J, Fazliev S, Kodirov A, AttrI P, Chen Z, Shiratani M. Mechanistic Insight into Permeation of Plasma-Generated Species from Vacuum into Water Bulk. Int J Mol Sci 2022; 23:6330. [PMID: 35683009 PMCID: PMC9181481 DOI: 10.3390/ijms23116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Due to their potential benefits, cold atmospheric plasmas (CAPs), as biotechnological tools, have been used for various purposes, especially in medical and agricultural applications. The main effect of CAP is associated with reactive oxygen and nitrogen species (RONS). In order to deliver these RONS to the target, direct or indirect treatment approaches have been employed. The indirect method is put into practice via plasma-activated water (PAW). Despite many studies being available in the field, the permeation mechanisms of RONS into water at the molecular level still remain elusive. Here, we performed molecular dynamics simulations to study the permeation of RONS from vacuum into the water interface and bulk. The calculated free energy profiles unravel the most favourable accumulation positions of RONS. Our results, therefore, provide fundamental insights into PAW and RONS chemistry to increase the efficiency of PAW in biological applications.
Collapse
Affiliation(s)
- Jamoliddin Razzokov
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan;
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
- College of Engineering, Akfa University, Milliy Bog Street 264, Tashkent 111221, Uzbekistan
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany;
- Faculty of Chemistry and Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Akbar Kodirov
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan;
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
| | - Pankaj AttrI
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (P.A.); (M.S.)
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Zhitong Chen
- Center for Advanced Therapy, National Innovation Center for Advanced Medical Devices, Shenzhen 518000, China;
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan; (P.A.); (M.S.)
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Laroussi M, Bekeschus S, Keidar M, Bogaerts A, Fridman A, Lu XP, Ostrikov KK, Hori M, Stapelmann K, Miller V, Reuter S, Laux C, Mesbah A, Walsh J, Jiang C, Thagard SM, Tanaka H, Liu DW, Yan D, Yusupov M. Low Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3135118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9916796. [PMID: 35284036 PMCID: PMC8906949 DOI: 10.1155/2021/9916796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
Collapse
|
15
|
Freund E, Bekeschus S. Gas Plasma-Oxidized Liquids for Cancer Treatment: Preclinical Relevance, Immuno-Oncology, and Clinical Obstacles. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3029982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
17
|
Fang K, Qu H, Wang J, Tang D, Yan C, Ma J, Gao L. Characterization of Modification Patterns, Biological Function, Clinical Implication, and Immune Microenvironment Association of m 6A Regulators in Pancreatic Cancer. Front Genet 2021; 12:702072. [PMID: 34603372 PMCID: PMC8484796 DOI: 10.3389/fgene.2021.702072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023] Open
Abstract
Objective: N6-methyladenosine (m6A) modification may modulate various biological processes. Nonetheless, clinical implications of m6A modification in pancreatic cancer are undefined. Herein, this study comprehensively characterized the m6A modification patterns in pancreatic cancer based on m6A regulators. Methods: Genetic mutation and expression pattern of 21 m6A regulators and their correlations were assessed in pancreatic cancer from TCGA dataset. m6A modification patterns were clustered using unsupervised clustering analysis in TCGA and ICGC datasets. Differences in survival, biological functions and immune cell infiltrations were assessed between modification patterns. A m6A scoring system was developed by principal component analysis. Genetic mutations and TIDE scores were compared between high and low m6A score groups. Results: ZC3H13 (11%), RBM15B (9%), YTHDF1 (8%), and YTHDC1 (6%) frequently occurred mutations among m6A regulators. Also, most of regulators were distinctly dysregulated in pancreatic cancer. There were tight crosslinks between regulators. Two m6A modification patterns were constructed, with distinct prognoses, immune cell infiltration and biological functions. Furthermore, we quantified m6A score in each sample. High m6A scores indicated undesirable clinical outcomes. There were more frequent mutations in high m6A score samples. Lower TIDE score was found in high m6A score group, with AUC = 0.61, indicating that m6A scores might be used for predicting the response to immunotherapy. Conclusion: Collectively, these data demonstrated that m6A modification participates pancreatic cancer progress and ornaments immune microenvironment, providing an insight into pancreatic cancer pathogenesis and facilitating precision medicine development.
Collapse
Affiliation(s)
- Kun Fang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Hairong Qu
- Department of Gynaecology, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Jiapei Wang
- Department of Pathology, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Desheng Tang
- Central Laboratory, Department of Gastroenterology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changsheng Yan
- Central Laboratory, Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiamin Ma
- Central Laboratory, Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Gao
- Central Laboratory, Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
18
|
Antitumor Effects in Gas Plasma-Treated Patient-Derived Microtissues—An Adjuvant Therapy for Ulcerating Breast Cancer? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite global research and continuous improvement in therapy, cancer remains a challenging disease globally, substantiating the need for new treatment avenues. Medical gas plasma technology has emerged as a promising approach in oncology in the last years. Several investigations have provided evidence of an antitumor action in vitro and in vivo, including our recent work on plasma-mediated reduction of breast cancer in mice. However, studies of gas plasma exposure on patient-derived tumors with their distinct microenvironment (TME) are scarce. To this end, we here investigated patient-derived breast cancer tissue after gas plasma-treated ex vivo. The tissues were disjoint to pieces smaller than 100 µm, embedded in collagen, and incubated for several days. The viability of the breast cancer tissue clusters and their outgrowth into their gel microenvironment declined with plasma treatment. This was associated with caspase 3-dependent apoptotic cell death, paralleled by an increased expression of the anti-metastatic adhesion molecule epithelial (E)-cadherin. Multiplex chemokine/cytokine analysis revealed a marked decline in the release of the interleukins 6 and 8 (IL-6, IL-8) and monocyte-chemoattractant-protein 1 (MCP) known to promote a cancer-promoting milieu in the TME. In summary, we provide here, for the first time, evidence of a beneficial activity of gas plasma exposure on human patient-derived breast cancer tissue.
Collapse
|
19
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
20
|
Plasma-Treated Solutions (PTS) in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071737. [PMID: 33917469 PMCID: PMC8038720 DOI: 10.3390/cancers13071737] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. Abstract Cold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indicated that the PTS has immuno-stimulatory properties. Two different routes of application are currently envisaged in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising results have been achieved so far, several obstacles, such as the standardized generation of large volumes of sterile PTS, remain to be addressed.
Collapse
|
21
|
The amino acid metabolism is essential for evading physical plasma-induced tumour cell death. Br J Cancer 2021; 124:1854-1863. [PMID: 33767419 PMCID: PMC8144554 DOI: 10.1038/s41416-021-01335-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent studies have emphasised the important role of amino acids in cancer metabolism. Cold physical plasma is an evolving technology employed to target tumour cells by introducing reactive oxygen species (ROS). However, limited understanding is available on the role of metabolic reprogramming in tumour cells fostering or reducing plasma-induced cancer cell death. METHODS The utilisation and impact of major metabolic substrates of fatty acid, amino acid and TCA pathways were investigated in several tumour cell lines following plasma exposure by qPCR, immunoblotting and cell death analysis. RESULTS Metabolic substrates were utilised in Panc-1 and HeLa but not in OVCAR3 and SK-MEL-28 cells following plasma treatment. Among the key genes governing these pathways, ASCT2 and SLC3A2 were consistently upregulated in Panc-1, Miapaca2GR, HeLa and MeWo cells. siRNA-mediated knockdown of ASCT2, glutamine depletion and pharmacological inhibition with V9302 sensitised HeLa cells to the plasma-induced cell death. Exogenous supplementation of glutamine, valine or tyrosine led to improved metabolism and viability of tumour cells following plasma treatment. CONCLUSION These data suggest the amino acid influx driving metabolic reprogramming in tumour cells exposed to physical plasma, governing the extent of cell death. This pathway could be targeted in combination with existing anti-tumour agents.
Collapse
|
22
|
Mateu-Sanz M, Tornín J, Ginebra MP, Canal C. Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy. J Clin Med 2021; 10:893. [PMID: 33672274 PMCID: PMC7926371 DOI: 10.3390/jcm10040893] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Juan Tornín
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d’Enginyeria Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), 08930 Barcelona, Spain; (M.M.-S.); (J.T.); (M.-P.G.)
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08930 Barcelona, Spain
- Research Centre for Biomedical Engineering (CREB), UPC, 08034 Barcelona, Spain
| |
Collapse
|
23
|
Miebach L, Freund E, Horn S, Niessner F, Sagwal SK, von Woedtke T, Emmert S, Weltmann KD, Clemen R, Schmidt A, Gerling T, Bekeschus S. Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen. Sci Rep 2021; 11:136. [PMID: 33420228 PMCID: PMC7794240 DOI: 10.1038/s41598-020-80512-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.,Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.,Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Stefan Horn
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Felix Niessner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.,Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
24
|
Privat-Maldonado A, Bogaerts A. Plasma in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12092617. [PMID: 32937802 PMCID: PMC7564655 DOI: 10.3390/cancers12092617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
|
25
|
Liu R, Yan H, Jiang J, Li J, Liang X, Yang D, Pan L, Xie T, Ma Z. Synthesis, Characterization, Photoluminescence, Molecular Docking and Bioactivity of Zinc (II) Compounds Based on Different Substituents. Molecules 2020; 25:molecules25153459. [PMID: 32751372 PMCID: PMC7436059 DOI: 10.3390/molecules25153459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023] Open
Abstract
Six new zinc(II) complexes were prepared by the reaction of ZnBr2 or ZnI2 with 4′-(substituted-phenyl)-2,2′:6′,2′′-terpyridine compounds, bearing p-methylsulfonyl (L1), p-methoxy (L2) and p-methyl (L3), which were characterized by elemental analysis, FT-IR, NMR and single crystal X-ray diffraction. The antiproliferative properties against Eca-109, A549 and Bel-7402 cell lines and the cytotoxicity test on RAW-264.7 of these compounds were monitored using a CCK-8 assay, and the studies indicate that the complexes show higher antiproliferative activities than cisplatin. The interactions of these complexes with CT-DNA and proteins (BSA) were studied by UV-Vis, circular dichroism (CD) and fluorescent spectroscopy, respectively. The results indicate that the interaction of these zinc(II) complexes with CT-DNA is achieved through intercalative binding, and their strong binding affinity to BSA is fulfilled through a static quenching mechanism. The simulation of the complexes with the CT-DNA fragment and BSA was studied by using molecular docking software. It further validates that the complexes interact with DNA through intercalative binding mode and that they have a strong interaction with BSA.
Collapse
Affiliation(s)
- Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
| | - Hao Yan
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Tisan Xie
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China;
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (R.L.); (J.J.); (J.L.); (X.L.)
- Correspondence: (L.P.); (T.X.); (Z.M.); Tel.: +86-0771-250-3980 (L.P.)
| |
Collapse
|
26
|
Bekeschus S, Ressel V, Freund E, Gelbrich N, Mustea A, B. Stope M. Gas Plasma-Treated Prostate Cancer Cells Augment Myeloid Cell Activity and Cytotoxicity. Antioxidants (Basel) 2020; 9:E323. [PMID: 32316245 PMCID: PMC7222373 DOI: 10.3390/antiox9040323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent improvements in cancer treatment, with many of them being related to foster antitumor immunity, tumor-related deaths continue to be high. Novel avenues are needed to complement existing therapeutic strategies in oncology. Medical gas plasma technology recently gained attention due to its antitumor activity. Gas plasmas act via the local deposition of a plethora of reactive oxygen species (ROS) that promote the oxidative cancer cell death. The immunological consequences of plasma-mediated tumor cell death are only poorly understood, however. To this end, we exposed two prostate cancer cell lines (LNCaP, PC3) to gas plasma in vitro, and investigated the immunomodulatory effects of the supernatants in as well as of direct co-culturing with two human myeloid cell lines (THP-1, HL-60). After identifying the cytotoxic action of the kINPen plasma jet, the supernatants of plasma-treated prostate cancer cells modulated myeloid cell-related mitochondrial ROS production and their metabolic activity, proliferation, surface marker expression, and cytokine release. Direct co-culture amplified differentiation-like surface marker expression in myeloid cells and promoted their antitumor-toxicity in the gas plasma over the untreated control conditions. The results suggest that gas plasma-derived ROS not only promote prostate cancer cell death but also augment myeloid cell activity and cytotoxicity.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (V.R.); (E.F.)
| | - Verena Ressel
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (V.R.); (E.F.)
- Department of Urology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany; (V.R.); (E.F.)
- Department of General, Visceral and Thoracic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nadine Gelbrich
- Department of Urology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (A.M.); (M.B.S.)
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany; (A.M.); (M.B.S.)
| |
Collapse
|
27
|
Cold Atmospheric Plasma Treatment of Chondrosarcoma Cells Affects Proliferation and Cell Membrane Permeability. Int J Mol Sci 2020; 21:ijms21072291. [PMID: 32225067 PMCID: PMC7177321 DOI: 10.3390/ijms21072291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma is the second most common malign bone tumor in adults. Surgical resection of the tumor is recommended because of its resistance to clinical treatment such as chemotherapy and radiation therapy. Thus, the prognosis for patients mainly depends on sufficient surgical resection. Due to this, research on alternative therapies is needed. Cold atmospheric plasma (CAP) is an ionized gas that contains various reactive species. Previous studies have shown an anti-oncogenic potential of CAP on different cancer cell types. The current study examined the effects of treatment with CAP on two chondrosarcoma cell lines (CAL-78, SW1353). Through proliferation assay, the cell growth after CAP-treatment was determined. A strong antiproliferative effect for both cell lines was detected. By fluorescein diacetate (FDA) assay and ATP release assay, alterations in the cell membrane and associated translocation of low molecular weight particles through the cytoplasmic membrane were observed. In supernatant, the non-membrane-permeable FDA and endogenously synthesized ATP detected suggest an increased membrane permeability after CAP treatment. Similar results were shown by the dextran-uptake assay. Furthermore, fluorescence microscopic G-/F-actin assay was performed. G- and F-actin were selectively dyed, and the ratio was measured. The presented results indicate CAP-induced changes in cell membrane function and possible alterations in actin-cytoskeleton, which may contribute to the antiproliferative effects of CAP.
Collapse
|
28
|
Medical Gas Plasma Treatment in Head and Neck Cancer—Challenges and Opportunities. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite progress in oncotherapy, cancer is still among the deadliest diseases in the Western world, emphasizing the demand for novel treatment avenues. Cold physical plasma has shown antitumor activity in experimental models of, e.g., glioblastoma, colorectal cancer, breast carcinoma, osteosarcoma, bladder cancer, and melanoma in vitro and in vivo. In addition, clinical case reports have demonstrated that physical plasma reduces the microbial contamination of severely infected tumor wounds and ulcerations, as is often seen with head and neck cancer patients. These antimicrobial and antitumor killing properties make physical plasma a promising tool for the treatment of head and neck cancer. Moreover, this type of cancer is easily accessible from the outside, facilitating the possibility of several rounds of topical gas plasma treatment of the same patient. Gas plasma treatment of head and neck cancer induces diverse effects via the deposition of a plethora of reactive oxygen and nitrogen species that mediate redox-biochemical processes, and ultimately, selective cancer cell death. The main advantage of medical gas plasma treatment in oncology is the lack of adverse events and significant side effects compared to other treatment modalities, such as surgical approaches, chemotherapeutics, and radiotherapy, making plasma treatment an attractive strategy for the adjuvant and palliative treatment of head and neck cancer. This review outlines the state of the art and progress in investigating physical plasma as a novel treatment modality in the therapy of head and neck squamous cell carcinoma.
Collapse
|