1
|
Ding LL, Zhang M, Zhang T, Liu H, Liu PF. MFGE8 promotes gastric cancer progression by activating the IL-6/JAK/STAT3 signaling. Cell Signal 2024; 125:111486. [PMID: 39490801 DOI: 10.1016/j.cellsig.2024.111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Gastric cancer is malignant cancer with high morbidity and mortality worldwide. Milk fat globule EGF and factor V/VIII domain containing (MFGE8) was involved in many cancers. Nevertheless, the role of MFGE8 in gastric cancer remained indistinct. To probe the role of MFGE8 in gastric cancer and further explore the regulating mechanism. METHODS GEPIA was employed for analysis of MFGE8 expression and survival of gastric cancer patients. MFGE8 expression in gastric cancer was determined by immunohistochemistry, PCR, and western blot. The effect of MFGE8 on gastric cancer cells were evaluated by a series of cell function experiments. The mechanism of MFGE8 on gastric cancer was analyzed by GSEA and verified by in vitro and in vivo experiments. RESULTS MFGE8 was over-expressed in gastric cancer. Silence of MFGE8 suppressed cell viability, proliferated ability, migrated and invasive ability, and EMT, but accelerated cell apoptosis. The opposite results were obtained in MFGE8-overexpressed gastric cancer cells. Zinc finger and BTB domain containing 7 A (ZBTB7A) was a transcription factor of MFGE8. ZBTB7A overexpression eliminated the effect of MFGE8 on gastric cancer cells. MFGE8 activated the IL-6/JAK/STAT3 signaling. Inhibition of IL-6/JAK/STAT3 signaling by Stattic (pathway inhibitor) could eliminate the promoting effect of MFGE8 on IL-6/JAK/STAT3 signaling. In addition, MFGE8 shRNA inhibited tumor growth. CONCLUSION MFGE8 promoted cell proliferation, EMT progress, and tumor growth of gastric cancer by activating the IL-6/JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Long-Long Ding
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China
| | - Meng Zhang
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China
| | - Tao Zhang
- Department of General Surgery, The First Hospital Affiliated with Shandong First Medical University, Jinan 250014, Shandong, China
| | - Hui Liu
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China.
| | - Peng-Fei Liu
- Department of Gastrointestinal surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257091, Shandong, China.
| |
Collapse
|
2
|
Liu W, Ren Y, Wang T, Wang M, Xu Y, Zhang J, Bi J, Wu Z, Lv Y, Wu R. MFG-E8 induces epithelial-mesenchymal transition and anoikis resistance to promote the metastasis of pancreatic cancer cells. Eur J Pharmacol 2024; 969:176462. [PMID: 38431242 DOI: 10.1016/j.ejphar.2024.176462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Pancreatic cancer is an extremely malignant tumor, and only a few clinical treatment options exist. MFG-E8 and kindlin-2 all play an important role in cancer progression. However, the specific mechanism occurring between MFG-E8, kindlin-2 and the migration and invasion of pancreatic cancer cells remains unelucidated. To unravel the specific mechanism, this study assessed the potential association between MFG-E8 and kindlin-2 as well as the involvement of MFG-E8 in pancreatic cancer using two pancreatic cancer cell lines (MiaPaCa-2 and PANC-1). Pancreatic cancer cells were treated with 0, 250, and 500 ng/ml MFG-E8, and the effects of MFG-E8 on the migration, invasion, and anoikis of pancreatic cancer cells were observed. To investigate the role of kindlin-2 in pancreatic cancer, kindlin-2-shRNAi was transfected to knock down its expression level in the two pancreatic cancer cell lines. Furthermore, cilengitide, a receptor blocker of MFG-E8, was used to explore the relationship between MFG-E8, kindlin-2, and pancreatic cancer progression. Our findings demonstrated that MFG-E8 promotes the migration and invasion of pancreatic cancer cells and induces cell anoikis resistance in a dose-dependent manner, which was effectively counteracted by cilengitide, a receptor blocker. Additionally, the knockdown of kindlin-2 expression nullified the effect of MFG-E8 on the migration and invasion of pancreatic cancer cells. Consequently, this study provides insights into the specific mechanism underlying the interplay between MFG-E8 and kindlin-2 in the progression of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wuming Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhou Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujia Xu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianbin Bi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Durán-Jara E, Del Campo M, Gutiérrez V, Wichmann I, Trigo C, Ezquer M, Lobos-González L. Lactadherin immunoblockade in small extracellular vesicles inhibits sEV-mediated increase of pro-metastatic capacities. Biol Res 2024; 57:1. [PMID: 38173019 PMCID: PMC10763369 DOI: 10.1186/s40659-023-00477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Tumor-derived small extracellular vesicles (sEVs) can promote tumorigenic and metastatic capacities in less aggressive recipient cells mainly through the biomolecules in their cargo. However, despite recent advances, the specific molecules orchestrating these changes are not completely defined. Lactadherin is a secreted glycoprotein typically found in the milk fat globule membrane. Its overexpression has been associated with increased tumorigenesis and metastasis in breast cancer (BC) and other tumors. However, neither its presence in sEVs secreted by BC cells, nor its role in sEV-mediated intercellular communication have been described. The present study focused on the role of lactadherin-containing sEVs from metastatic MDA-MB-231 triple-negative BC (TNBC) cells (sEV-MDA231) in the promotion of pro-metastatic capacities in non-tumorigenic and non-metastatic recipient cells in vitro, as well as their pro-metastatic role in a murine model of peritoneal carcinomatosis. RESULTS We show that lactadherin is present in sEVs secreted by BC cells and it is higher in sEV-MDA231 compared with the other BC cell-secreted sEVs measured through ELISA. Incubation of non-metastatic recipient cells with sEV-MDA231 increases their migration and, to some extent, their tumoroid formation capacity but not their anchorage-independent growth. Remarkably, lactadherin blockade in sEV-MDA231 results in a significant decrease of those sEV-mediated changes in vitro. Similarly, intraperitoneally treatment of mice with MDA-MB-231 BC cells and sEV-MDA231 greatly increase the formation of malignant ascites and tumor micronodules, effects that were significantly inhibited when lactadherin was previously blocked in those sEV-MDA231. CONCLUSIONS As to our knowledge, our study provides the first evidence on the role of lactadherin in metastatic BC cell-secreted sEVs as promoter of: (i) metastatic capacities in less aggressive recipient cells, and ii) the formation of malignant ascites and metastatic tumor nodules. These results increase our understanding on the role of lactadherin in sEVs as promoter of metastatic capacities which can be used as a therapeutic option for BC and other malignancies.
Collapse
Affiliation(s)
- Eduardo Durán-Jara
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Matías Del Campo
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Valentina Gutiérrez
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Ignacio Wichmann
- Division of Obstetrics and Gynecology, Department of Obstetrics, Escuela de Medicina, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile
| | - César Trigo
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Lorena Lobos-González
- Center for Regenerative Medicine, Institute for Sciences and Innovation in Medicine, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago, Chile.
| |
Collapse
|
4
|
Chaung W, Ma G, Jacob A, Brenner M, Wang P. Human cell-expressed tag-free rhMFG-E8 as an effective radiation mitigator. Sci Rep 2023; 13:22186. [PMID: 38092894 PMCID: PMC10719321 DOI: 10.1038/s41598-023-49499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and the possibility of antigenicity, E. coli-expressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 will have suitable structural and functional properties to be developed as a safe and effective novel biologic to treat inflammatory diseases including radiation injury. We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing an experimental rodent model of radiation injury, i.e., partial body irradiation (PBI). HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE with the standard human MFG-E8 loaded as control and, mass spectrometry followed by analysis using MASCOT for peptide mass fingerprint. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with a terminal elimination half-life in circulation of at least 1.45 h. In the 15 Gy PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 calculated using probit analysis was 1.058. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI suggesting it as a potential therapeutic candidate for a medical countermeasure for radiation injury. Our new human cell-expressed tag-free rhMFG-E8 has proper structural and functional properties to be further developed as a safe and effective therapy to treat victims of severe acute radiation injury.
Collapse
Affiliation(s)
- Wayne Chaung
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Gaifeng Ma
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Max Brenner
- TheraSource LLC, 350 Community Drive, Manhasset, NY, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Hempstead, NY, USA.
| |
Collapse
|
5
|
Li N, Wang Y, Liu L, Wang P, Wu X. Effects of MFG-E8 expression on the biological characteristics of ovarian cancer cells via the AKT/mTOR/S6K signalling pathway. J OBSTET GYNAECOL 2023; 43:2151354. [PMID: 36484512 DOI: 10.1080/01443615.2022.2151354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we assessed the effects of MFG-E8 on the biological characteristics of ovarian cancer cells and explored the underlying mechanisms. Human ovarian cancer SKOV3 cells were transfected with MFG-E8 siRNA or NC siRNA. CCK-8, cell adhesion, scratch-wound, and Transwell assays were used to detect changes in cell metastatic processes. Effects of MFG-E8 silencing on the proteins involved in AKT/mTOR/S6K signalling pathway were assessed using qRT-PCR and Western blotting. Transient silencing of MFG-E8 in SKOV3 cells decreased cell proliferation and downregulated the expression of CDK4, cyclin D1, and caspase-3 proteins. Cell adhesion, migration, and invasion were also suppressed. p-AKT, p-mTORC1, and p-p70S6K levels decreased following MFG-E8 knockdown. Hence, MFG-E8 enhances carcinogenesis and affects the AKT/mTOR/S6K signalling pathway in ovarian cancer cells. In conclusion, our results suggested that MFG-E8 could promote ovarian cancer via AKT/mTOR/S6K signalling pathway which improved our understanding of the molecular mechanisms involved in ovarian cancer.IMPACT STATEMENTWhat is already known on this subject? Milk fat globule-epidermal growth factor 8 (MFG-E8) is expressed in several types of cancers such as oesophageal, breast, and liver. However, the mechanism of MFG-E8 involving in EOC remains unknown. We previously found that MFG-E8 expression was related to pathological staging, tissue differentiation, platinum sensitivity, ascites state, and other clinicopathological characteristics.What the results of this study add? Due to a series of in vitro studies, we confirmed that MFG-E8 is involved in the process of proliferation, invasion and metastasis. Our results show that silencing MFG-E8 can significantly inhibit the expression of cyclin D1 and CDK4 in EOC SKOV3 cells. MFG-E8 enhances carcinogenesis and affects the AKT/mTOR/S6K signaling pathway in ovarian cancer.What the implications are of these findings for clinical practice and/or further research? Taken together, our findings suggest that MFG-E8 may be an oncogene in EOC and provide new insights into the mechanism of MFG-E8 in the progression of EOC.
Collapse
Affiliation(s)
- Na Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Yazhuo Wang
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Pei Wang
- Department of Gynaecology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Xiaohua Wu
- Teaching and Research Section of Obstetrics and Gynaecology, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
6
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
7
|
Cheng L, Weng B, Jia C, Zhang L, Hu B, Deng L, Mou N, Sun F, Hu J. The expression and significance of efferocytosis and immune checkpoint related molecules in pancancer samples and the correlation of their expression with anticancer drug sensitivity. Front Pharmacol 2022; 13:977025. [PMID: 36059952 PMCID: PMC9437300 DOI: 10.3389/fphar.2022.977025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The efferocytosis-related molecules have been considered to be correlated with the resistance to cancer chemotherapy. The aim of this study was to investigate the expression and significance of efferocytosis-related molecules in cancers and the correlation of their expression with anticancer drug sensitivity, and provide new potential targets and treatment options for cancers.Methods: We investigated the differential expression of 15 efferocytosis-related molecules (Axl, Tyro3, MerTK, CX3CL1, Tim-4, BAI1, Stab2, Gas6, IDO1, Rac1, MFGE8, ICAM-1, CD47, CD31, and PD-L1) and other 12 common immune checkpoint-related molecules in tumor and normal tissues, the correlation between their expression and various clinicopathological features in 16 types of cancers using publicly available pancancer datasets in The Cancer Genome Atlas. We also analyzed the correlation of the expression of efferocytosis and immune checkpoint related molecules with 126 types of anticancer drugs sensitivity using drug-RNA-seq data.Results: There is a panel of circulating molecules among the 27 molecules. Based on the results of differential expression and correlation with various clinicopathological features of efferocytosis-related molecules in cancers, we identified new potential therapeutic targets for anticancer therapy, such as Axl for kidney renal clear cell carcinoma, Tyro3 for liver hepatocellular carcinoma, and IDO1 for renal papillary cell carcinoma. Except for BAI1, CD31, and MerTK, the enhanced expressions of Axl, Tyro3, Gas6, MFGE8, Stab2, Tim-4, CX3CL1, IDO1, Rac1, and PD-L1 were associated with decreased sensitivity of the cancer cells to many anti-cancer drugs; however, for other common immune checkpoint-related molecules, only enhanced expressions of PD-1, CD28, CTLA4, and HVEM were associated with decreased sensitivity of the cancer cells to a few drugs.Conclusion: The efferocytosis-related molecules were significantly associated with clinical outcomes in many types of cancers and played important roles in resistance to chemotherapy. Combination therapy targeting efferocytosis-related molecules and other immune checkpoint-related molecules is necessary to reduce resistance to chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Hu
- *Correspondence: Fengjun Sun, ; Jing Hu,
| |
Collapse
|
8
|
MFG-E8 Knockout Aggravated Nonalcoholic Steatohepatitis by Promoting the Activation of TLR4/NF- κB Signaling in Mice. Mediators Inflamm 2022; 2022:5791915. [PMID: 35769208 PMCID: PMC9236848 DOI: 10.1155/2022/5791915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the common liver disease characterized by hepatic steatosis, inflammation, and fibrosis; there are no approved drugs to treat this disease because of incomplete understanding of pathophysiological mechanisms of NASH. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a multifunctional glycoprotein, has shown anti-inflammation and antifibrosis. Here, MFG-E8 was shown to play a key role in NASH progression. Using methionine and choline deficient (MCD) diet-fed mice, we found MFG-E8 knockout exacerbated hepatic damage and steatosis as indicated by increased plasma transaminases activities and hepatic histopathologic change, higher hepatic triglycerides (TGs), and lipid accumulation. Moreover, liver fibrosis and inflammation elicited by MCD were aggravated in MFG-E8 knockout mice. Mechanistically, MFG-E8 knockout facilitated activation of hepatic toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in MCD-fed mice. In vitro experiment, the TLR4 specific antagonist TAK-242 rescued palmitic acid- (PA-) primed lipid formation and inflammation in MFG-E8 knockout primary murine hepatocytes. These findings indicated that MFG-E8 is involved in the progression of NASH and the possible mechanism by which MFG-E8 knockout exacerbated NASH in mice is associated with activation of the TLR4/NF-κB signaling pathway.
Collapse
|
9
|
Durán-Jara E, Vera-Tobar T, Lobos-González LDL. Lactadherin: From a Well-Known Breast Tumor Marker to a Possible Player in Extracellular Vesicle-Mediated Cancer Progression. Int J Mol Sci 2022; 23:3855. [PMID: 35409215 PMCID: PMC8998968 DOI: 10.3390/ijms23073855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lactadherin is a secreted glycoprotein associated with the milk fat globule membrane, which is highly present in the blood and in the mammary tissue of lactating women. Several biological functions have been associated with this protein, mainly attributable to its immunomodulatory role promoting phagocyte-mediated clearance of apoptotic cells. It has been shown that lactadherin also plays important roles in cell adhesion, the promotion of angiogenesis, and tissue regeneration. On the other hand, this protein has been used as a marker of breast cancer and tumor progression. Recently, high levels of lactadherin has been associated with poor prognosis and decreased survival, not only in breast cancer, but also in melanoma, ovarian, colorectal, and other types of cancer. Although the mechanisms responsible for the tumor-promoting effects attributed to lactadherin have not been fully elucidated, a growing body of literature indicates that lactadherin could be a promising therapeutic target and/or biomarker for breast and other tumors. Moreover, recent studies have shown its presence in extracellular vesicles derived from cancer cell lines and cancer patients, which was associated with cancer aggressiveness and worse prognosis. Thus, this review will focus on the link between lactadherin and cancer development and progression, its possible use as a cancer biomarker and/or therapeutic target, concluding with a possible role of this protein in cellular communication mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Eduardo Durán-Jara
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (E.D.-J.); (T.V.-T.)
| | - Tamara Vera-Tobar
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (E.D.-J.); (T.V.-T.)
| | - Lorena De Lourdes Lobos-González
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7710162, Chile; (E.D.-J.); (T.V.-T.)
- Advanced Center for Chronic Diseases (ACCDiS), Independencia, Santiago 8380000, Chile
| |
Collapse
|
10
|
Wang MY, Huang M, Wang CY, Tang XY, Wang JG, Yang YD, Xiong X, Gao CW. Transcriptome Analysis Reveals MFGE8-HAPLN3 Fusion as a Novel Biomarker in Triple-Negative Breast Cancer. Front Oncol 2021; 11:682021. [PMID: 34211850 PMCID: PMC8239224 DOI: 10.3389/fonc.2021.682021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a highly aggressive cancer with poor prognosis. The lack of effective targeted therapies for TNBC remains a profound clinical challenge. Fusion transcripts play critical roles in carcinogenesis and serve as valuable diagnostic and therapeutic targets in cancer. The present study aimed to identify novel fusion transcripts in TNBC. Methods We analyzed the RNA sequencing data of 360 TNBC samples to identify and filter fusion candidates through SOAPfuse and ChimeraScan analysis. The characteristics, including recurrence, fusion type, chromosomal localization, TNBC subgroup distribution, and clinicopathological correlations, were analyzed in all candidates. Furthermore, we selected the promising fusion transcript and predicted its fusion type and protein coding capacity. Results Using the RNA sequencing data, we identified 189 fusion transcripts in TNBC, among which 22 were recurrent fusions. Compared to para-tumor tissues, TNBC tumor tissues accumulated more fusion events, especially in high-grade tumors. Interestingly, these events were enriched at specific chromosomal loci, and the distribution pattern varied in different TNBC subtypes. The vast majority of fusion partners were discovered on chromosomes 1p, 11q, 19p, and 19q. Besides, fusion events mainly clustered on chromosome 11 in the immunomodulatory subtype and chromosome 19 in the luminal androgen receptor subtype of TNBC. Considering the tumor specificity and frameshift mutation, we selected MFGE8-HAPLN3 as a novel biomarker and further validated it in TNBC samples using PCR and Sanger sequencing. Further, we successfully identified three types of MFGE8-HAPLN3 (E6-E2, E5-E3, and E6-E3) and predicted the ORF of E6-E2, which could encode a protein of 712 amino acids, suggesting its critical role in TNBC. Conclusions Improved bioinformatic stratification and comprehensive analysis identified the fusion transcript MFGE8-HAPLN3 as a novel biomarker with promising clinical application in the future.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Man Huang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chao-Yi Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiao-Ying Tang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Jian-Gen Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yong-De Yang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xin Xiong
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chao-Wei Gao
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
11
|
Datta R, Lizama CO, Soltani AK, Mckleroy W, Podolsky MJ, Yang CD, Huynh TL, Cautivo KM, Wang B, Koliwad SK, Abumrad NA, Atabai K. Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin. Proc Natl Acad Sci U S A 2021; 118:e2102171118. [PMID: 33903257 PMCID: PMC8106306 DOI: 10.1073/pnas.2102171118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvβ5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/β5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvβ5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/β5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvβ5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.
Collapse
Affiliation(s)
- Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Amin K Soltani
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
| | - William Mckleroy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Michael J Podolsky
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Tony L Huynh
- Department of Radiology and Biomedical imaging, University of California, San Francisco, CA 94107
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Biao Wang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Suneil K Koliwad
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Diabetes Center, University of California, San Francisco, CA 94143
| | - Nada A Abumrad
- Diabetes Research Center, Department of Medicine and Cell Biology, Washington University in St. Louis, St. Louis, MO 63110
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158;
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94158
| |
Collapse
|
12
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
13
|
Verma AK, Ali SA, Singh P, Kumar S, Mohanty AK. Transcriptional Repression of MFG-E8 Causes Disturbance in the Homeostasis of Cell Cycle Through DOCK/ZP4/STAT Signaling in Buffalo Mammary Epithelial Cells. Front Cell Dev Biol 2021; 9:568660. [PMID: 33869165 PMCID: PMC8047144 DOI: 10.3389/fcell.2021.568660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The mammary gland is a unique apocrine gland made up of a branching network of ducts that end in alveoli. It is an ideal system to study the molecular mechanisms associated with cell proliferation, differentiation, and oncogenesis. MFG-E8, also known as Lactadherin, is a vital glycoprotein related to the milk fat globule membrane and initially identified to get secreted in bovine milk. Our previous report suggests that a high level of MFG-E8 is indicative of high milk yield in dairy animals. Here, we showed that MFG-E8 controls the cell growth and morphology of epithelial cells through a network of regulatory transcription factors. To understand the comprehensive action, we downregulated its expression in MECs by MFG-E8 specific shRNA. We generated a knockdown proteome profile of differentially expressed proteins through a quantitative iTRAQ experiment on a high-resolution mass spectrometer (Q-TOF). The downregulation of MFG-E8 resulted in reduced phagocytosis and cell migration ability, whereas it also leads to more lifespan to knockdown vis-a-vis healthy cells, which is confirmed through BrdU, MTT, and Caspase 3/7. The bioinformatics analysis revealed that MFG-E8 knockdown perturbs a large number of intracellular signaling, eventually leading to cessation in cell growth. Based on the directed network analysis, we found that MFG-E8 is activated by CX3CL1, TP63, and CSF2 and leads to the activation of SOCS3 and CCL2 for the regulation of cell proliferation. We further proved that the depletion of MFG-E8 resulted in activated cytoskeletal remodeling by MFG-E8 knockdown, which results in the activation of three independent pathways ZP4/JAK-STAT5, DOCK1/STAT3, and PIP3/AKT/mTOR. Overall, this study suggests that MFG-E8 expression in mammary epithelial cells is an indication of intracellular deterioration in cell health. To date, to the best of our knowledge, this is the first study that explores the downstream targets of MFG-E8 involved in the regulation of mammary epithelial cell health.
Collapse
|