1
|
Jakobsen MZ, Brøndum RF, Gregersen H, Due H, Dybkær K. A systematic literature review on clonal evolution events preceding relapse in multiple myeloma. Crit Rev Oncol Hematol 2025; 205:104560. [PMID: 39549892 DOI: 10.1016/j.critrevonc.2024.104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Despite considerable treatment advances, multiple myeloma (MM) remains an incurable hematological cancer due to treatment resistance. A systematic literature search was conducted to identify determinants for clonal evolution driving relapse and drug resistance in MM. A total of 631 non-duplicate publications were screened of which 28 articles were included for data extraction. Genetic alterations, mutational signatures, evolutionary trajectories, and non-genetic determinants were identified as key topics to characterize clonal evolution in relapsed MM. A variety of factors led to clonal diversification and increased tumor mutation burden, such as MAPK-Ras mutations and incremental changes related to chromosomal bands 1 and 17, while mutational signature analyses revealed that APOBEC activity and melphalan treatment leave a distinct impact on the clonal composition in MM genomes. To capture and dissect tumor heterogeneity, our review suggests combining methods or using technical approaches with high resolution to assess the impact of clonal evolution.
Collapse
Affiliation(s)
- Maja Zimmer Jakobsen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Rasmus Froberg Brøndum
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Center for Clinical Data Science, Aalborg University, and Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Gregersen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Hanne Due
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.
| |
Collapse
|
2
|
Li J, Li X, Fu Y, Meng H, Xu D, Hou W. Visualizing immunotherapy for multiple myeloma worldwide from 2013 to 2023: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2433304. [PMID: 39639463 PMCID: PMC11633138 DOI: 10.1080/21645515.2024.2433304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Multiple myeloma (MM) is a malignant, clonal proliferative disease of plasma cells that remains incurable. This paper aims to analyze the current research status and emerging trends in immunotherapy for MM through bibliometric methods, thereby providing valuable references and guidance for future research and clinical practice. This study presents a bibliometric analysis of 1,018 English-language publications related to MM immunotherapy, which were published in the Web of Science (WoS) Core Collection database from 2013 to 2023. VOSviewer and CiteSpace were employed to visualize the research hotspots and trends within the field of MM immunotherapy. The United States had the highest number of publications (n = 432, 42.44%), followed by China (n = 177, 17.39%). Harvard University was the institution with the most publications (n = 85), while Anderson KC (n = 27) was the most prolific researcher in the field. The highly cited literature mainly focuses on the treatment regimen based on daratumumab, the application of BCMA CAR-T therapy and the management of relapsed/refractory MM (RRMM), which represent the current research hotspots in this field. Burst detection highlights that bispecific antibodies and preclinical activity as key areas of interest. The cooperation among countries, institutions, and authors in this field should be strengthened. The treatment regimen utilizing daratumumab, the implementation of BCMA CAR-T therapy, and the management of RRMM represent significant research focal points in this field. Additionally, the development and application of bispecific antibodies have emerged as a frontier in recent years.
Collapse
Affiliation(s)
- Jinqiao Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoxia Li
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yueyue Fu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongbin Meng
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Dan Xu
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wenyi Hou
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Sirera J, Sarlak S, Teisseire M, Carminati A, Nicolini VJ, Savy C, Brest P, Juel T, Bontoux C, Deckert M, Ohanna M, Giuliano S, Dufies M, Pages G, Luciano F. Disrupting USP39 deubiquitinase function impairs the survival and migration of multiple myeloma cells through ZEB1 degradation. J Exp Clin Cancer Res 2024; 43:335. [PMID: 39736693 DOI: 10.1186/s13046-024-03241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease. Deubiquitinases (DUBs), which regulate protein stability, interactions, and localization by removing ubiquitin modifications, have emerged as promising therapeutic targets in various cancers, including MM. METHODS Through a comprehensive loss-of-function screen, we identified USP39 as a critical survival factor for MM cells. Gene Set Enrichment Analysis (GSEA) was employed to correlate USP39 mRNA levels with clinical outcomes in MM patients. USP39 protein expression was evaluated via immunohistochemistry (IHC) on bone marrow samples from MM patients and healthy controls. The impact of USP39 knockdown via SiRNA was assessed through in vitro assays measuring cellular metabolism, clonogenic capacity, cell cycle progression, apoptosis, and sensitivity to BTZ. Co-immunoprecipitation and deubiquitination assays were conducted to elucidate the interaction and regulation of ZEB1 by USP39. Finally, in vitro and in vivo zebrafish experiments were used to characterize the biological consequences of ZEB1 regulation by USP39. RESULTS Our study found that elevated USP39 mRNA levels are directly associated with shorter survival in MM patients. USP39 protein expression is significantly higher in MM patient plasmocytes compared to healthy individuals. USP39 knockdown inhibits clonogenic capacity, induces cell cycle arrest, triggers apoptosis, and overcomes BTZ resistance. Gain-of-function assays revealed that USP39 stabilizes the transcription factor ZEB1, enhancing the proliferation and the trans-migratory potential of MM cells. CONCLUSIONS Our findings highlight the critical role of the deubiquitinase USP39, suggesting that the USP39/ZEB1 axis could serve as a potential diagnostic marker and therapeutic target in MM.
Collapse
Affiliation(s)
- Jessy Sirera
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Saharnaz Sarlak
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Manon Teisseire
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Alexandrine Carminati
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Victoria J Nicolini
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Coline Savy
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Patrick Brest
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Thierry Juel
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, University Côte d'Azur, Pasteur Hospital, Hospital-integrated Biobank (BB-0033-00025), FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Nice, 06001, France
- Department of Pathology, University Hospital of Toulouse, Cancer Biobank, Cancer University Institute of Toulouse-Oncopole, Toulouse, 31059, France
| | - Marcel Deckert
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Mickael Ohanna
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM, University Côte d'Azur, Nice, France
| | - Sandy Giuliano
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Maeva Dufies
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Gilles Pages
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France
| | - Frederic Luciano
- Institute for Research On Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, Nice, France.
| |
Collapse
|
4
|
Bergantim R, Geraldes C, João C, Lúcio P, Neves M, Trigo F, Pedrosa H, Ventura M, Santos S, Ramos D. The evolving treatment landscape of multiple myeloma in Portugal: A nation-wide retrospective cohort study of real-world clinical practice. EJHAEM 2024; 5:1144-1153. [PMID: 39691257 PMCID: PMC11647699 DOI: 10.1002/jha2.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 12/19/2024]
Abstract
Objectives To characterize variations in real-world treatment patterns in multiple myeloma (MM) in Portugal over a 5-year period. Methods A retrospective cohort multicenter study using secondary data of national hospital drug consumption database from 11 Portuguese public hospitals between 2017 and 2022. Results Number of MM-treated patients increased 53% over 5 years (from 825 to 1266 patients). Constant slight predominance of male patients (55%), 82% over 60 years old (median age, 70 years), and half of newly diagnosed patients were transplant-eligible. The highest growth rate was in second-line treatments, with a sixfold increase in patients in fourth-line or beyond. First-line treatment pattern remained stable both in transplant-eligible (bortezomib, cyclophosphamide and dexamethasone (VCd_, bortezomib, thalidomide and dexamethasone (VTd), and bortezomib, lenalidomide and dexamethasone (VRd)) and noneligible patients (bortezomib, melphalan and prednisolone (VMP), VCd, and lenalidomide, dexamethasone (Rd)). Maintenance therapy increased from 5% to 16%, shifting from thalidomide to lenalidomide. Second and third lines were dominated by daratumumab-based regimens after 5 years. No standard of care in fourth-line treatment. Treatment duration increased in transplant-eligible due to maintenance therapy and in noneligible due to fourth-line treatments. Patients moved from first- to second-line more rapidly over time. Conclusions There was an increase in MM patients reaching advanced treatment lines and significant changes in the treatment patterns, driven by access to more effective frontline treatments and longer duration of treatment.
Collapse
Affiliation(s)
- Rui Bergantim
- Hematology DepartmentULS São JoãoPortoPortugal
- i3S Instituto de Investigação e Inovação em SaúdeUniversity of PortoPortoPortugal
- Cancer Drug Resistance GroupInstitute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Clinical Hematology DepartmentFaculty of Medicine of the University of Porto (FMUP)PortoPortugal
| | - Catarina Geraldes
- Clinical Hematology DepartmentULS CoimbraCoimbraPortugal
- University Clinics of Hematology and Oncology and Laboratory of Oncobiology and Hematology (LOH), Faculty of MedicineUniversity of Coimbra (FMUC)CoimbraPortugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)—Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of MedicineUniversity of Coimbra (FMUC)CoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Cristina João
- Hemato‐Oncology Unit, Hematology DepartmentFundação ChampalimaudLisbonPortugal
| | - Paulo Lúcio
- Hemato‐Oncology Unit, Hematology DepartmentFundação ChampalimaudLisbonPortugal
| | - Manuel Neves
- Hemato‐Oncology Unit, Hematology DepartmentFundação ChampalimaudLisbonPortugal
| | | | | | | | | | - Diogo Ramos
- Johnson & Johnson Innovative MedicineLisbonPortugal
| |
Collapse
|
5
|
Elbahoty MH, Papineni B, Samant RS. Multiple myeloma: clinical characteristics, current therapies and emerging innovative treatments targeting ribosome biogenesis dynamics. Clin Exp Metastasis 2024; 41:829-842. [PMID: 39162964 PMCID: PMC11607061 DOI: 10.1007/s10585-024-10305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Multiple myeloma (MM) is a clinical disorder characterized by aberrant plasma cell growth in the bone marrow microenvironment. Globally, the prevalence of MM has been steadily increasing at an alarming rate. In the United States, more than 30,000 cases will be diagnosed in 2024 and it accounts for about 2% of cancer diagnoses and more than 2% of cancer deaths, more than double the worldwide figure. Both symptomatic and active MM are distinguished by uncontrolled plasma cell growth, which results in severe renal impairment, anemia, hypercalcemia, and bone loss. Multiple drugs have been approved by the FDA and are now widely used in clinical practice for MM. Although triplet and quadruplet induction regimens, autologous stem cell transplantation (ASCT), and maintenance treatment are used, MM continues to be an incurable illness characterized by relapses that may occur at various phases of its progression. MM patients with frailty, extramedullary disease, plasma cell leukemia, central nervous system recurrence, functional high risk, and the elderly are among those with the greatest current unmet needs. The high cost of care is an additional challenge. MM cells are highly protein secretary cells and thus are dependent on the activation of certain translation pathways. MM also has a high chance of altering ribosomal protein-encoding genes like MYC mutation. In this article we discuss the importance of ribosome biogenesis in promoting MM and RNA polymerase I inhibition as an upcoming treatment with potential promise for MM patients.
Collapse
Affiliation(s)
- Mohamed H Elbahoty
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Bhavyasree Papineni
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- , WTI 320E, 1824 6th Ave South, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
An H, Chen S, Zhang X, Ke S, Ke J, Lu Y. PHF19 before and post induction treatment possess favorable potency of reflecting treatment response to protease inhibitors, event-free survival, and overall survival in multiple myeloma patients. Hematology 2024; 29:2331389. [PMID: 38511642 DOI: 10.1080/16078454.2024.2331389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE Plant homeodomain finger protein 19 (PHF19) regulates hematopoietic stem cell differentiation and promotes multiple myeloma (MM) progression. This study intended to explore the potency of PHF19 at baseline and post induction treatment in estimating treatment response to protease inhibitors and survival in MM patients. METHODS This retrospective study screened 69 MM patients who received protease inhibitors with bone marrow (BM) samples available at both baseline and post induction treatment. Twenty healthy BM donors were included as healthy controls (HCs). PHF19 in plasma cells from BM was quantified by reverse transcription-quantitative polymerase chain reaction. RESULTS PHF19 at baseline and post induction treatment in MM patients were increased than in HCs. In MM patients, PHF19 was declined post induction treatment. Elevated PHF19 at baseline and post induction treatment were correlated with renal impairment, beta-2-microglobulin ≥5.5 mg/L, t (4; 14), higher international staging system (ISS) stage, and higher revised ISS (R-ISS) stage. Concerning treatment response, PHF19 at baseline and post induction treatment were negatively associated with complete response and overall response rate. Notably, abnormal PHF19 (above 95% quantile value of PHF19 in HCs) at baseline and post induction treatment were linked with shortened event-free survival (EFS) and overall survival (OS). After adjustment, abnormal PHF19 post induction treatment was independently related to shortened EFS (hazard ratio = 2.474) and OS (hazard ratio = 3.124). CONCLUSION PHF19 is aberrantly high and declines post induction therapy, which simultaneously reflects unfavorable treatment response to protease inhibitors as well as shorter EFS and OS in MM patients.
Collapse
Affiliation(s)
- Hongyu An
- Department of Hematology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, People's Republic of China
| | - Shiming Chen
- Department of Hematology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, People's Republic of China
| | - Xin Zhang
- Department of Hematology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, People's Republic of China
| | - Shandong Ke
- Department of Hematology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, People's Republic of China
| | - Jinyong Ke
- Department of Hematology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, People's Republic of China
| | - Yalan Lu
- Department of Hematology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, 435000, People's Republic of China
| |
Collapse
|
7
|
Ishida T, Kuroda Y, Matsue K, Komeno T, Ishiguro T, Ishikawa J, Ito T, Kosugi H, Sunami K, Nishikawa K, Shibayama K, Aida K, Yamazaki H, Inagaki M, Kobayashi H, Iida S. A Phase 1/2 study of teclistamab, a humanized BCMA × CD3 bispecific Ab in Japanese patients with relapsed/refractory MM. Int J Hematol 2024:10.1007/s12185-024-03884-z. [PMID: 39607603 DOI: 10.1007/s12185-024-03884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
We characterized the safety and efficacy of the bispecific antibody teclistamab in Japanese patients with relapsed/refractory multiple myeloma (RRMM). Patients were pretreated with a proteasome inhibitor (PI), immunomodulatory drug (IMiD), and anti-CD38 monoclonal antibody (mAb). The primary endpoint was frequency and type of treatment-emergent adverse events (TEAEs) in phase 1, and overall response rate (ORR; ≥ partial response [PR]) in phase 2. In phase 1, 14 patients received once-weekly (QW) subcutaneous teclistamab (0.72 mg/kg [n = 5]; 1.5 mg/kg [n = 5]; 3 mg/kg [n = 4]). No dose-limiting toxicities were observed. As of April 2024, 26 phase-2 patients received the recommended phase-2 dose (QW) (RP2D: 1.5 mg/kg) of teclistamab. Biweekly (Q2W) dosing was allowed after maintaining response for ≥ 6 months. At a median follow-up of 14.32 months, ORR was 76.9% (≥ very good PR: 76.9%; ≥ complete response: 65.4%). Median duration of response, progression-free survival, and overall survival were not reached. Common TEAEs included CRS (grade ≤ 2), neutropenia, and infections. No patient had immune effector cell-associated neurotoxicity syndrome (ICANS) and dose reductions. Teclistamab demonstrated deep and durable responses in Japanese patients with RRMM, consistent with the global pivotal MajesTEC-1 study, supporting the potential for a new standard of care for Japanese RRMM patients.
Collapse
Affiliation(s)
- Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yoshiaki Kuroda
- Department of Hematology, NHO Hiroshimanishi Medical Center, Otake, Japan
| | - Kosei Matsue
- Department of Internal Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Takuya Komeno
- Department of Hematology, NHO Mito Medical Center, Mito, Japan
| | - Takuro Ishiguro
- Department of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Japan
| | - Jun Ishikawa
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Toshiro Ito
- Department of Hematology, NHO Matsumoto Medical Center, Matsumoto, Japan
| | - Hiroshi Kosugi
- Department of Hematology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Kazutaka Sunami
- Department of Hematology, NHO Okayama Medical Center, Okayama, Japan
| | - Kazuko Nishikawa
- Research and Development Division, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Kazuhiro Shibayama
- Research and Development Division, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Kensuke Aida
- Research and Development Division, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Hiroshi Yamazaki
- Research and Development Division, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Mitsuo Inagaki
- Research and Development Division, Janssen Pharmaceutical K.K, Tokyo, Japan
| | - Hisanori Kobayashi
- Research and Development Division, Janssen Pharmaceutical K.K, Tokyo, Japan.
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
8
|
Chng WJ, Nagarajan C, Huang SY, Malhotra P, Hwang YY, Blunk V, Singh M, Wang L. A systematic review on the epidemiology and treatment options of multiple Myeloma in Asia. Heliyon 2024; 10:e39698. [PMID: 39553611 PMCID: PMC11566861 DOI: 10.1016/j.heliyon.2024.e39698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Multiple myeloma (MM) accounts for almost 15 % of all neoplastic malignancies around the globe. This systematic review intends to analyse data on the treatment and management of MM in selected regions in Asia to identify and prioritize areas that need attention. A comprehensive review of original articles, published in English from 2005 to 2022, derived from the PubMed/MEDLINE database was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. There were 98 studies from select regions of Asia (China, India, Taiwan, Hong Kong, and Singapore) on newly diagnosed MM and relapsed/refractory MM. This review evaluated the trends in disease outcomes with the gradual shift in treatment regimens from doublet to triplet. Additionally, this review also explored autologous stem cell transplant outcome and anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T-cell therapy in MM patients. This is the first systematic review attempting to collect data on the utility and comparison of innovative agents and modifications in treatment regimens in the context of the Asian population. This review established that the body of evidence for the management of MM was generally of poor quality and there is a need for more versatile studies in the region. Novel and innovative drug regimens may help in combating the illness but consorted efforts by researchers, industry partners, policymakers, and the government are key factors in the long-term survival of MM patients. In the current systematic review, the authors have tried to give a comprehensive account of the available treatments, trends in MM management and prognosis for MM in Asia.
Collapse
Affiliation(s)
- Wee-Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Chandramouli Nagarajan
- Department of Haematology, SingHealth Duke-NUS Blood Cancer Centre, National Cancer Centre, Singapore
- Department of Haematology, Singapore General Hospital, Singapore
| | | | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yu-Yan Hwang
- Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Vivian Blunk
- Medical Affairs, Pfizer Emerging Markets, Sao Paulo, Brazil
| | | | - Lin Wang
- Medical Affairs, Pfizer Hong Kong Ltd, Hong Kong, China
| |
Collapse
|
9
|
Li JR, Parthasarathy AK, Kannappan AS, Arsang-Jang S, Dong J, Cheng C. Characterization of driver mutations identifies gene signatures predictive of prognosis and treatment sensitivity in multiple myeloma. Oncologist 2024; 29:e1552-e1564. [PMID: 39250742 PMCID: PMC11639189 DOI: 10.1093/oncolo/oyae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
In multiple myeloma (MM), while frequent mutations in driver genes are crucial for disease progression, they traditionally offer limited insights into patient prognosis. This study aims to enhance prognostic understanding in MM by analyzing pathway dysregulations in key cancer driver genes, thereby identifying actionable gene signatures. We conducted a detailed quantification of mutations and pathway dysregulations in 10 frequently mutated cancer driver genes in MM to characterize their comprehensive mutational impacts on the whole transcriptome. This was followed by a systematic survival analysis to identify significant gene signatures with enhanced prognostic value. Our systematic analysis highlighted 2 significant signatures, TP53 and LRP1B, which notably outperformed mere mutation status in prognostic predictions. These gene signatures remained prognostically valuable even when accounting for clinical factors, including cytogenetic abnormalities, the International Staging System (ISS), and its revised version (R-ISS). The LRP1B signature effectively distinguished high-risk patients within low/intermediate-risk categories and correlated with significant changes in the tumor immune microenvironment. Additionally, the LRP1B signature showed a strong association with proteasome inhibitor pathways, notably predicting patient responses to bortezomib and the progression from monoclonal gammopathy of unknown significance to MM. Through a rigorous analysis, this study underscores the potential of specific gene signatures in revolutionizing the prognostic landscape of MM, providing novel clinical insights that could influence future translational oncology research.
Collapse
Affiliation(s)
- Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | - Shahram Arsang-Jang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jing Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
- Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, United States
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, United States
- The Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
10
|
Jewell RC, Mills RJ, Farrell C, Visser SAG. Belantamab mafodotin concentration-QTc relationships in patients with relapsed or refractory multiple myeloma from the DREAMM-1 and -2 studies. Br J Clin Pharmacol 2024; 90:2571-2581. [PMID: 38924122 DOI: 10.1111/bcp.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS To evaluate relationships between plasma concentrations of belantamab mafodotin, total monoclonal antibody, and its payload and changes in electrocardiogram (ECG) parameters in patients with relapsed or refractory multiple myeloma from the DREAMM-1 and DREAMM-2 studies. METHODS Hysteresis plots and linear regression analyses of pharmacokinetic (PK) analyte (belantamab mafodotin, total monoclonal antibody, and cytotoxic cysteine-maleimidocaproyl monomethyl auristatin F payload) concentrations vs. time-matched ECG parameters (absolute/change from baseline in QT interval corrected for RR interval [QTc/ΔQTc] and QT interval corrected for heart rate by Fridericia's formula [QTcF/ΔQTcF]) were performed. Concentrations of PK analyte required for a 10-ms increase in QTc in DREAMM-2 were calculated via simulation, as was the probability of ΔQTc/ΔQTcF exceeding 10 ms for the expected Cmax of PK analyte concentrations associated with the doses (2.5 and 3.4 mg/kg) administered in DREAMM-2. RESULTS Time-matched PK and ECG data from 290 patients (DREAMM-1, n = 73; DREAMM-2, n = 217) were analysed. Hysteresis plots did not clearly indicate any concentration-related prolongation in QTc or QTcF; regression analyses indicated a very small rate of increase in ΔQTc and ΔQTcF with increasing concentrations of PK analytes. Calculated concentrations of PK analyte required for a 10-ms prolongation in QTc were higher than the maximum analyte concentrations observed following treatment with belantamab mafodotin in DREAMM-2; the probability that each dose would prolong ΔQTc and ΔQTcF by >10 ms was 0 and <0.25%, respectively. CONCLUSION This study of belantamab mafodotin and its payload did not provide evidence of QT prolongation in patients with relapsed or refractory multiple myeloma at clinically relevant doses.
Collapse
Affiliation(s)
- Roxanne C Jewell
- Clinical Pharmacology Modeling & Simulation, GSK, Durham, NC, USA
| | - Richard J Mills
- Quantitative Pharmacology and Pharmacometrics, ICON Plc, Reading, UK
| | - Colm Farrell
- Quantitative Pharmacology and Pharmacometrics, ICON Plc, Reading, UK
| | - Sandra A G Visser
- Clinical Pharmacology Modeling & Simulation, GSK, Collegeville, PA, USA
| |
Collapse
|
11
|
Matour E, Asadi ZT, Deilami AA, Azandeh SS, Taheri B. MiR-34c-5p Inhibition Affects Bax/Bcl2 Expression and Reverses Bortezomib Resistance in Multiple Myeloma Cells. Indian J Hematol Blood Transfus 2024; 40:596-603. [PMID: 39469181 PMCID: PMC11512978 DOI: 10.1007/s12288-024-01742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/24/2024] [Indexed: 10/30/2024] Open
Abstract
Developing resistance to anticancer drugs complicates the clinical treatment of multiple myeloma patients. Previous studies revealed a link between the unfolded protein response (UPR) and miRNAs with acquired drug resistance. This study aimed to determine the expression profile of XBP1, hsa-miR-34c-5p, hsa-miR-214, and hsa-miR-30c-2* in resistant and sensitive multiple myeloma cell lines to a proteasome inhibitor, bortezomib. After establishing bortezomib-resistant cells, the expression level of XBP1, hsa-miR-214, hsa-miR-34c-5p, and hsa-miR-30c-2* in both cell lines were assessed by qRT-PCR. Hsa-miR-34c-5p was suppressed to study its effect on the expression profile of Bax/Bcl-2. Statistical analysis was done by t-test in two clinically resistant and sensitive cells to bortezomib. MTT assay confirmed the creation of the resistant cell line. The qRT-PCR screening showed a significant difference between XBP1 and miR-34c-5p levels in resistant and sensitive cells. Following hsa-miR-34c-5p blockage, while Bax was overexpressed, Bcl-2 expression was reduced in the resistant cell line, overcoming cells resistant to bortezomib. Our findings demonstrate miR-34c-5p is differentially expressed between bortezomib-sensitive and -resistant MM cells. Inhibiting miR-34c-5p re-sensitized resistant cells to bortezomib by modulating Bax/Bcl-2 expression, suggesting this miRNA regulates apoptosis and drug resistance and may be a promising therapeutic target for overcoming proteasome inhibitor resistance in MM.
Collapse
Affiliation(s)
- Emad Matour
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zari Tahannejad Asadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh Deilami
- Department of Internal Medicine, School of Medicine, Firoogar General Hospital, Iran University of Medical Science, Tehran, Iran
| | - Seyed Saeed Azandeh
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrouz Taheri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Maray I, Álvarez-Asteinza C, Fernández-Laguna CL, Macía-Rivas L, Carbajales-Álvarez M, Lozano-Blazquez A. Dose reduction and toxicity of lenalidomide-dexamethasone in multiple myeloma: A machine-learning prediction model. J Oncol Pharm Pract 2024; 30:1051-1056. [PMID: 37670612 DOI: 10.1177/10781552231200795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
PURPOSE Lenalidomide remains an effective drug for multiple myeloma, but it is often associated with adverse events and requires dose adjustments. The objective of this study was to propose a model for predicting whether a patient would require dose adjustment. METHODS This retrospective observational study included patients treated with lenalidomide and dexamethasone from June 2014 to September 2018 at a tertiary hospital. Demographic variables, patient functional status, disease, analytical data specific to myeloma, and treatment-related variables were collected. Univariate and machine learning (logistic regression and classification and regression trees model) analyses were also performed. Kaplan-Meier analysis was used to determine the time of toxicity onset. Only lenalidomide (and not dexamethasone) related dose reductions are included. RESULTS A total of 64 patients received lenalidomide-dexamethasone. 69% (44) required dose reduction or discontinuation of treatment due to lenalidomide-related adverse events. The median time between treatment beginning and lenalidomide dose reduction or discontinuation was 8.0 months (95% CI: 6.0-17.0). Age, platelet count, and neutrophil count were related to dose reduction in the univariate model. In the multivariate models, age and neutrophil count were significant in the logistic regression model, renal clearance, and neutrophil count in the classification and regression trees model. CONCLUSION Elderly patients and those with low bone marrow reserves are prone to dose-limiting adverse events. This study can aid in making follow-up, prophylaxis, and dosing decisions to achieve better pharmacotherapeutic results.
Collapse
Affiliation(s)
- Iván Maray
- Department of Pharmacy, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Lola Macía-Rivas
- Department of Pharmacy, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Ana Lozano-Blazquez
- Department of Pharmacy, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
13
|
Deng K, Li Q, Lu L, Wang L, Cheng Z, Wang S. Proteasome and PARP1 dual-target inhibitor for multiple myeloma: Fluzoparib. Biochem Biophys Rep 2024; 39:101781. [PMID: 39071914 PMCID: PMC11279668 DOI: 10.1016/j.bbrep.2024.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
One of the current mainstream treatments for multiple myeloma (MM) is chemotherapy. However, due to the high clonal heterogeneity and genomic complexity of MM, single-target drugs have limited efficacy and are prone to drug resistance. Therefore, there is an urgent need to develop multi-target drugs against MM. We screened drugs that simultaneously inhibit poly(ADP-ribose) polymerase 1 (PARP1) and 20S proteasome through computer-aided drug discovery (CADD) techniques, and explored the binding mode and dynamic stability of selected inhibitor to proteasome through Molecular biology (MD) simulation method. Thus, the dual-target inhibition effect of fluzoparib was proposed for the first time, and the ability of dual-target inhibition and tumor killing was explored at the enzyme, cell and animal level, respectively. This provides a theoretical and experimental basis for exploring multi-target inhibitory drugs for cancers.
Collapse
Affiliation(s)
- Kai Deng
- Department of Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Qiongqiong Li
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Lina Lu
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Luting Wang
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhiyong Cheng
- Department of Hematology, Baoding No.1 Hospital, Baoding, Hebei, China
| | - Suyun Wang
- Department of Hematology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Tyrna P, Procyk G, Szeleszczuk Ł, Młynarczuk-Biały I. Different Strategies to Overcome Resistance to Proteasome Inhibitors-A Summary 20 Years after Their Introduction. Int J Mol Sci 2024; 25:8949. [PMID: 39201634 PMCID: PMC11354503 DOI: 10.3390/ijms25168949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Proteasome inhibitors (PIs), bortezomib, carfilzomib, and ixazomib, are the first-line treatment for multiple myeloma (MM). They inhibit cytosolic protein degradation in cells, which leads to the accumulation of misfolded and malfunctioned proteins in the cytosol and endoplasmic reticulum, resulting in cell death. Despite being a breakthrough in MM therapy, malignant cells develop resistance to PIs via different mechanisms. Understanding these mechanisms drives research toward new anticancer agents to overcome PI resistance. In this review, we summarize the mechanism of action of PIs and how MM cells adapt to these drugs to develop resistance. Finally, we explore these mechanisms to present strategies to interfere with PI resistance. The strategies include new inhibitors of the ubiquitin-proteasome system, drug efflux inhibitors, autophagy disruption, targeting stress response mechanisms, affecting survival and cell cycle regulators, bone marrow microenvironment modulation, and immunotherapy. We list potential pharmacological targets examined in in vitro, in vivo, and clinical studies. Some of these strategies have already provided clinicians with new anti-MM medications, such as panobinostat and selinexor. We hope that further exploration of the subject will broaden the range of therapeutic options and improve patient outcomes.
Collapse
Affiliation(s)
- Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| | - Izabela Młynarczuk-Biały
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
15
|
Ye JC, Biran N, Nair S, Lin X, Qi K, Londhe A, Ammann E, Renaud T, Kane C, Parekh T, Gray K, Peterson S, Costa LJ. Talquetamab Versus Real-World Physician's Choice Treatment: Comparative Effectiveness in Patients With Triple-Class Exposed Relapsed/Refractory Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)00295-7. [PMID: 39271448 DOI: 10.1016/j.clml.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Talquetamab is approved for treatment of triple-class exposed (TCE) patients with relapsed/refractory multiple myeloma (RRMM). We evaluated the comparative effectiveness of talquetamab in the MonumenTAL-1 study versus real-world physician's choice (RW) treatment. MATERIALS AND METHODS An external control arm for MonumenTAL-1 was created from patients in the Flatiron Health database who satisfied MonumenTAL-1 eligibility criteria (n = 629 with 1169 eligible lines of therapy). Patient-level data from MonumenTAL-1 were included for patients who received subcutaneous talquetamab 0.4 mg/kg QW (n = 143) and 0.8 mg/kg Q2W (n = 145). After adjusting for baseline covariate imbalances, comparative effectiveness was assessed for progression-free survival (PFS), time to next treatment (TTNT), and overall survival (OS). RESULTS Baseline covariates were comparable across cohorts after adjustment. Talquetamab 0.4 mg/kg QW and 0.8 mg/kg Q2W cohorts, respectively, showed significant improvement in PFS (HR, 0.55 [95% CI, 0.44-0.69; P < .0001; median, 7.5 vs. 4.0 months] and 0.40 [95% CI, 0.31-0.53; P < .0001; median, 14.2 vs. 4.0 months]), TTNT (HR, 0.59 [95% CI, 0.47-0.74; P < .0001; median, 9.1 vs. 5.1 months] and 0.45 [95% CI, 0.35-0.59; P < .0001; median, 13.3 vs. 5.1 months]), and OS (HR, 0.56 [95% CI, 0.40-0.78; P = .0007; median, NR vs. 16.5 months] and 0.48 [95% CI, 0.33-0.70; P = 0.0002; median NR vs. 15.9 months]) versus RW treatment. CONCLUSION Both talquetamab schedules demonstrated superior effectiveness over RW treatment for all outcomes assessed. These data suggest talquetamab as an effective immunotherapy option in patients with TCE RRMM.
Collapse
Affiliation(s)
| | - Noa Biran
- Hackensack University Medical Center, Hackensack, NJ
| | | | - Xiwu Lin
- Janssen Global Services, Horsham, PA
| | - Keqin Qi
- Janssen Research & Development, Titusville, NJ
| | - Anil Londhe
- Janssen Research & Development, Titusville, NJ
| | | | | | - Colleen Kane
- Janssen Research & Development, Spring House, PA
| | | | | | | | | |
Collapse
|
16
|
Gunes EG, Gunes M, Yu J, Janakiram M. Targeting cancer stem cells in multiple myeloma. Trends Cancer 2024; 10:733-748. [PMID: 38971642 DOI: 10.1016/j.trecan.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy of bone marrow (BM) plasma cells with excessive clonal expansion and is associated with the overproduction of light-chain or monoclonal immunoglobulins (Igs). MM remains incurable, with high rates of relapses and refractory disease after first-line treatment. Cancer stem cells (CSCs) have been implicated in drug resistance in MM; however, the evidence for CSCs in MM is not adequate, partly due to a lack of uniformity in the definitions of multiple myeloma stem cells (MMSCs). We review advances in understanding MMSCs and their role in drug resistance to MM therapies. We also discuss novel therapeutic strategies to overcome MMSC-mediated relapses and drug resistance.
Collapse
Affiliation(s)
- Emine Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA 91010, USA; Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Murali Janakiram
- Department of Hematology, Division of Myeloma, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| |
Collapse
|
17
|
Tagami N, Uchiyama M, Suzuki K, Shirai H, Seto T, Nishina S, Iida S. Isatuximab with pomalidomide-dexamethasone in relapsed/refractory multiple myeloma: post-marketing surveillance in Japan. Int J Hematol 2024; 120:217-228. [PMID: 38811413 PMCID: PMC11284182 DOI: 10.1007/s12185-024-03800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
This post-marketing surveillance assessed the safety and effectiveness of isatuximab plus pomalidomide and dexamethasone (Isa-Pd) for relapsed or refractory multiple myeloma (RRMM) during real-world use in Japan. Data from 211 individuals with RRMM treated with Isa-Pd in Japan between October 2020 and October 2021 were collected, with follow-up for up to 12 months after initiation of Isa-Pd or until treatment discontinuation. The incidence of adverse drug reactions (ADRs), ADRs of special interest (infusion reactions, bone marrow suppression, infections, cardiac disorders, other ADRs of Grade ≥ 3), and serious ADRs was assessed. Best overall response and overall response rate (ORR) were determined. In the safety analysis set (n = 120), ADR incidence was 57.5%. Most ADRs were hematologic, and serious ADRs occurred in 28.3%. Bone marrow suppression occurred in 46.7% of participants (19.2% serious), infusion reactions in 18.3% (6.7% serious), infections in 11.7% (8.3% serious), and a serious cardiac disorder in one participant; other Grade ≥ 3 ADRs were reported in 3.3% (1.7% serious). In the effectiveness analysis set (n = 108), the most common best overall response was very good partial response (24.1%), and ORR was 51.9%. These findings support the safety and effectiveness of Isa-Pd for RRMM in real-life settings in Japan.
Collapse
Affiliation(s)
- Nami Tagami
- Oncology Medical in Specialty Care, Sanofi K.K., Tokyo, Japan
| | - Michihiro Uchiyama
- Department of Hematology, Japanese Red Cross Society Suwa Hospital, Suwa, Japan
| | - Kenshi Suzuki
- Myeloma/Amyloidosis Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Heigoroh Shirai
- Oncology Medical in Specialty Care, Sanofi K.K., Tokyo, Japan
| | - Takeshi Seto
- Medical Affairs, Post-Authorization Regulatory Studies, Sanofi K.K., Tokyo, Japan
| | - Satoshi Nishina
- Medical Affairs, Post-Authorization Regulatory Studies, Sanofi K.K., Tokyo, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Institute of Medical and Pharmaceutical Sciences, Nagoya City University, Kawasaki 1, Mizuno-cho, Mizuno-ku, Nagoya City, Aichi, 467-8601, Japan.
| |
Collapse
|
18
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
19
|
Mafi A, Hedayati N, Milasi YE, Kahkesh S, Daviran M, Farahani N, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A. The function and mechanism of circRNAs in 5-fluorouracil resistance in tumors: Biological mechanisms and future potential. Pathol Res Pract 2024; 260:155457. [PMID: 39018926 DOI: 10.1016/j.prp.2024.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
5-Fluorouracil (5-FU) is a well-known chemotherapy drug extensively used in the treatment of breast cancer. It works by inhibiting cancer cell proliferation and inducing cell death through direct incorporation into DNA and RNA via thymidylate synthase (TS). Circular RNAs (circRNAs), a novel family of endogenous non-coding RNAs (ncRNAs) with limited protein-coding potential, contribute to 5-FU resistance. Their identification and targeting are crucial for enhancing chemosensitivity. CircRNAs can regulate tumor formation and invasion by adhering to microRNAs (miRNAs) and interacting with RNA-binding proteins, regulating transcription and translation. MiRNAs can influence enzymes responsible for 5-FU metabolism in cancer cells, affecting their sensitivity or resistance to the drug. In the context of 5-FU resistance, circRNAs can target miRNAs and regulate biological processes such as cell proliferation, cell death, glucose metabolism, hypoxia, epithelial-to-mesenchymal transition (EMT), and drug efflux. This review focuses on the function of circRNAs in 5-FU resistance, discussing the underlying molecular pathways and biological mechanisms. It also presents recent circRNA/miRNA-targeted cancer therapeutic strategies for future clinical application.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minoo Daviran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
20
|
Panahizadeh R, Vatankhah MA, Safari A, Danesh H, Nazmi N, Gholizadeh P, Soozangar N, Jeddi F. The interplay between microRNAs and Nrf2 signaling in human cancers. Cancer Cell Int 2024; 24:234. [PMID: 38970040 PMCID: PMC11225148 DOI: 10.1186/s12935-024-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
MicroRNAs (miRNAs), as a class of nonprotein-coding RNAs, post-transcriptionally regulate the expression of target genes by base pairing to 3'-untranslated regions (3'-UTRs). Nuclear factor E2-related factor 2 (Nrf2) has been identified as a critical component of the antioxidant defense mechanism. Dysregulation is associated with chemoresistance and radioresistance in cancerous cells. MiRNA-mediated regulation of the Nrf2 signaling pathway has been shown to have important implications for the development of various cancers. In this article, we review the roles of miRNAs as regulators of the Nrf2 pathway in different human cancers. Ras-associated binding (Rab) proteins have an essential role regulation of vesicle transport, as well as oncogenic functions in preventing chemotherapy efficacy and cancer development. More importantly, increased evidence indicated that the interaction between miRNAs and Rabs has been determined to play critical roles in cancer therapy. However, the significant limitations in using miRNAs for therapeutic applications include cross-targeting and instability of miRNAs. The detailed aspect of the interaction of miRNAs and Rabs is not clearly understood. In the current review, we highlighted the involvement of these molecules as regulators of the Nrf2 pathway in cancer pathogenesis. Potential methods and several obstacles in developing miRNAs as an anticancer therapy are also mentioned.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Ali Safari
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hesam Danesh
- Department of Orthopedics, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Nazmi
- School of Medicine, Islamic Azad University, Ardabil, Iran
| | - Pourya Gholizadeh
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Narges Soozangar
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
21
|
Barton BE, Collins MK, Chau CH, Choo-Wosoba H, Venzon DJ, Steinebach C, Garchitorena KM, Shah B, Sarin EL, Gütschow M, Figg WD. Preclinical Evaluation of a Novel Series of Polyfluorinated Thalidomide Analogs in Drug-Resistant Multiple Myeloma. Biomolecules 2024; 14:725. [PMID: 38927128 PMCID: PMC11201495 DOI: 10.3390/biom14060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Immunomodulatory imide drugs (IMiDs) play a crucial role in the treatment landscape across various stages of multiple myeloma. Despite their evident efficacy, some patients may exhibit primary resistance to IMiD therapy, and acquired resistance commonly arises over time leading to inevitable relapse. It is critical to develop novel therapeutic options to add to the treatment arsenal to overcome IMiD resistance. We designed, synthesized, and screened a new class of polyfluorinated thalidomide analogs and investigated their anti-cancer, anti-angiogenic, and anti-inflammatory activity using in vitro and ex vivo biological assays. We identified four lead compounds that exhibit potent anti-myeloma, anti-angiogenic, anti-inflammatory properties using three-dimensional tumor spheroid models, in vitro tube formation, and ex vivo human saphenous vein angiogenesis assays, as well as the THP-1 inflammatory assay. Western blot analyses investigating the expression of proteins downstream of cereblon (CRBN) reveal that Gu1215, our primary lead candidate, exerts its activity through a CRBN-independent mechanism. Our findings demonstrate that the lead compound Gu1215 is a promising candidate for further preclinical development to overcome intrinsic and acquired IMiD resistance in multiple myeloma.
Collapse
Affiliation(s)
- Blaire E. Barton
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K. Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyoyoung Choo-Wosoba
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J. Venzon
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Kathleen M. Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bhruga Shah
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Eric L. Sarin
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Abildgaard N, Anttila P, Waage A, Rubin KH, Ørstavik S, Bent-Ennakhil N, Gavini F, Ma Y, Freilich J, Hansson M. Real-world treatment patterns and outcomes for patients with multiple myeloma in Denmark, Finland and Sweden: An analysis using linked Nordic registries. Eur J Cancer 2024; 201:113921. [PMID: 38377776 DOI: 10.1016/j.ejca.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
AIM The Health outcomes and Understanding of MyelomA multi-National Study (HUMANS) was a large-scale, retrospective study conducted across Denmark, Finland and Sweden using linked data from national registries. We describe the characteristics, treatment patterns and clinical outcomes for patients with newly diagnosed multiple myeloma (NDMM) over 2010-2018. METHODS Patients with NDMM who received MM-specific, first-line treatments, were categorised by treatment (autologous stem cell transplantation [ASCT] or a combination chemotherapy regimen based on bortezomib, lenalidomide or melphalan-prednisolone-thalidomide). RESULTS 11,023 patients received treatment over 2010-2018. Time between diagnosis and treatment was shortest in Denmark (0.9 months), then Sweden (2.9 months) and Finland (4.6 months). Around one third of patients underwent ASCT. Lenalidomide-based regimens were prescribed to 23-28% of patients in Denmark and Finland, versus 12% in Sweden. Patients receiving lenalidomide had the longest wait for treatment, from 3.2 months (Denmark) to 12.1 months (Sweden). Treatment persistence was highest among patients receiving melphalan-prednisolone-thalidomide (7-8 months) in Finland and Sweden and lowest among those receiving bortezomib (3.5 months) in Finland. Overall survival (OS) was longest among patients with ASCT (7-10 years). Among patients receiving chemotherapy, OS (from diagnosis/treatment initiation), varied between cohorts. In a sensitivity analysis excluding patients with smouldering MM, OS decreased for all; for patients receiving bortezomib or lenalidomide, OS from diagnosis was 40-49 and 27-54 months, respectively. CONCLUSIONS This population-based study of patients with NDMM receiving first-line MM-specific treatment, provides real-world data on treatment patterns and outcomes to complement data from randomised clinical trials.
Collapse
Affiliation(s)
- Niels Abildgaard
- Hematology Research Unit, Department of Hematology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Pekka Anttila
- Comprehensive Cancer Center, Department of Hematology, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Anders Waage
- Department of Hematology, St Olav's University Hospital, Trondheim, Norway
| | - Katrine Hass Rubin
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | | | - François Gavini
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Yuanjun Ma
- Parexel International, Stockholm, Sweden
| | - Jonatan Freilich
- Parexel International, Stockholm, Sweden; Department of Public Health and Clinical Medicine, Dermatology, Umeå University, Umeå, Sweden
| | - Markus Hansson
- Sahlgrenska Academy and Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
23
|
Yeşilaltay A, Muz D, Erdal B. Oncolytic Myxoma virus Increases Autophagy in Multiple Myeloma. Turk J Haematol 2024; 41:16-25. [PMID: 38258554 PMCID: PMC10918390 DOI: 10.4274/tjh.galenos.2024.2023.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/23/2024] [Indexed: 01/24/2024] Open
Abstract
Objective Multiple myeloma, which affects plasma cells, is the second most common hematological malignancy. Despite the development of new drugs and treatment protocols, patient survival has not reached the desired level. In this study, we investigated the effects of Myxoma virus (MYXV), an oncolytic virus, on autophagy in myeloma cells. Materials and Methods We analyzed protein expressions of ATG-5, p62, Beclin-1, LC3B, and the apoptosis marker Bcl-2 as autophagy markers in human U-266 and mouse MOPC-315 myeloma cell lines subjected to different doses of MYXV. In addition, autophagic images of myeloma cells were investigated using transmission electron microscopy (TEM). Results In the first 24 h, which is the early stage of autophagy, ATG-5 and Beclin-1 expression levels were increased in the U-266 and MOPC-315 cell lines in the groups that had received MYXV at a multiplicity of infection of 15. At 48 h, a significant increase was detected in the expression of LC3B, which is a late indicator. Autophagosomes were observed in myeloma cells by TEM. Conclusion MYXV shows an antimyeloma effect by increasing autophagy in myeloma cells.
Collapse
Affiliation(s)
- Alpay Yeşilaltay
- Başkent University İstanbul Hospital, Department of Hematology, İstanbul, Türkiye
| | - Dilek Muz
- Tekirdağ Namık Kemal University Faculty of Veterinary Medicine, Department of Virology, Tekirdağ, Türkiye
| | - Berna Erdal
- Tekirdağ Namık Kemal University Faculty of Medicine, Department of Microbiology, Tekirdağ, Türkiye
| |
Collapse
|
24
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
25
|
Del Dosso A, Tadevosyan E, Berenson JR. Preclinical and clinical evaluation of the Janus Kinase inhibitor ruxolitinib in multiple myeloma. Oncotarget 2024; 15:65-75. [PMID: 38319731 PMCID: PMC10852065 DOI: 10.18632/oncotarget.28547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Multiple myeloma (MM) is the most common primary malignancy of the bone marrow. No established curative treatment is currently available for patients diagnosed with MM. In recent years, new and more effective drugs have become available for the treatment of this B-cell malignancy. These new drugs have often been evaluated together and in combination with older agents. However, even these novel combinations eventually become ineffective; and, thus, novel therapeutic approaches are necessary to help overcome resistance to these treatments. Recently, the Janus Kinase (JAK) family of tyrosine kinases, specifically JAK1 and JAK2, has been shown to have a role in the pathogenesis of MM. Preclinical studies have demonstrated a role for JAK signaling in direct and indirect growth of MM and downregulation of anti-tumor immune responses in these patients. Also, inhibition of JAK proteins enhances the anti-MM effects of other drugs used to treat MM. These findings have been confirmed in clinical studies which have further demonstrated the safety and efficacy of JAK inhibition as a means to overcome resistance to currently available anti-MM therapies. Additional studies will provide further support for this promising new therapeutic approach for treating patients with MM.
Collapse
Affiliation(s)
- Ashley Del Dosso
- ONCOtherapeutics, West Hollywood, CA 90069, USA
- These authors contributed equally to this work
| | - Elizabeth Tadevosyan
- Berenson Cancer Center, West Hollywood, CA 90069, USA
- These authors contributed equally to this work
| | - James R. Berenson
- ONCOtherapeutics, West Hollywood, CA 90069, USA
- Berenson Cancer Center, West Hollywood, CA 90069, USA
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA 90069, USA
| |
Collapse
|
26
|
Wei X, Zhang Y, Wang Z, He Y, Ju S, Fu J. Bone marrow adipocytes is a new player in supporting myeloma cells proliferation and survival in myeloma microenvironment. Transl Oncol 2024; 40:101856. [PMID: 38134840 PMCID: PMC10776777 DOI: 10.1016/j.tranon.2023.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple myeloma (MM) is a lethal B cell neoplasm characterized by clonal expansion of malignant plasma cells in the bone marrow and remains incurable due to disease relapse and drug resistance. Bone marrow adipocytes (BMAs) are emerging as playing active functions that can support myeloma cell growth and survival. The aim of this study is to investigate myeloma-mesenchymal stem cells (MSCs) interaction and the impact of such interactions on the pathogenesis of MM using in vitro co-culture assay. Here we provide evidence that MM cell up-regulated MSCs to express PPAR-γ and pushes MSCs differentiation toward adipocytes at the expense of osteoblasts in co-culture manner. The increased BMAs can effectively enhance MM cell to proliferation, migration, and chemoresistance via cell-cell contact and/or cytokines release regulated by PPAR-γ signal pathway. This effect was partially reversed in medium containing PPAR-γ antagonist G3335 and indicated that G3335 distorts the maturation of MSC-derived adipocytes and cytokines release by adipocytes through inhibition of PPAR-γ, a key transcriptional factor for the activation of adipogenesis, or cell to cell contact, or both. In meantime, we observed higher expression of adipocyte differentiation associated genes DLK1, DGAT1, FABP4, and FASN both in MSCs and MSC derived adipocytes, but the osteoblast differentiation-associated gene ALP was down regulated in MSCs. These finding mean that direct consequence of MM/MSC interaction that play a role in MM pathogenesis. Consistent with those in vitro results, our primary clinical observation also showed that bone marrow samples from MM patients had significantly higher bone adiposity in comparison with controls and the number of adipocytes decreased in those who were response to anti-MM therapy. Our finding suggested that BMAs may have an important contribution to MM progression, particularly in drugs resistant of MM cells, and plays an important contribution in MM bone disease and treatment failure, but more clinical studies are needed to confirm its role.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yangmin Zhang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Ziyan Wang
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Yuanning He
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China
| | - Songguang Ju
- Institute of Biotechnology, Soochow University, Suzhou 215007, PR China
| | - Jinxiang Fu
- Hematology Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China.
| |
Collapse
|
27
|
Zhang CW, Wang YN, Ge XL. Lenalidomide use in multiple myeloma (Review). Mol Clin Oncol 2024; 20:7. [PMID: 38125742 PMCID: PMC10729307 DOI: 10.3892/mco.2023.2705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Lenalidomide is a second-generation new immunomodulatory medication used to treat multiple myeloma (MM). Its mechanism of action involves affecting the expression of vascular endothelial growth factor, interleukin-6, cytochrome c, caspase-8, as well as other factors including immunological modulation and the direct killing of cells, among others, rendering it a fundamental medication, useful for the treatment of MM. Combining lenalidomide with other medications such dexamethasone, bortezomib, ixazomib, carfilzomib and daratumumab can markedly alleviate MM. When autologous-hematopoietic stem cell transplantation (ASCT) cannot be utilized to treat newly diagnosed individuals with MM (NDMM), monotherapy maintenance following lenalidomide and dexamethasone may be employed. Following ASCT, single-agent maintenance with lenalidomide can be performed as an additional treatment. The combination of bortezomib and lenalidomide has been demonstrated to be associated with favorable response rates, tolerable toxicity, and therapeutic benefits although caution is warranted to prevent the onset of peripheral neuropathy with its use. A new-generation oral drug with an excellent safety profile, ixazomib, is more practical and therapeutically applicable in relapsed refractory MM. However, the frequent occurrence of cardiovascular events, hematocrit, and infections with it require flexible adjustment in its clinical application. Carfilzomib produces a rapid and profound response in patients with NDMM eligible for transplantation, but its cardiovascular side effects need to be closely monitored. The primary aim of the present review was to examine the pharmacological properties and pharmacokinetics of lenalidomide, as well as the efficacy and safety of lenalidomide-based treatments with reference to data from clinical trials and real-world studies.
Collapse
Affiliation(s)
- Chao-Wei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ya-Nan Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xue-Ling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
28
|
Zhou Q, Wen J, Xu F, Yue J, Zhang Y, Su J, Liu Y. Efficacy Analysis of Bortezomib Combined with Lenalidomide in Newly Diagnosed Multiple Myeloma with 1q21 Gain/Amp. Technol Cancer Res Treat 2024; 23:15330338241252605. [PMID: 38759699 PMCID: PMC11102689 DOI: 10.1177/15330338241252605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVE 1q21 gain/Amp is one of the most common cytogenetic abnormalities. There are controversies about its effects on prognosis and may be associated with inferior outcomes in patients with newly diagnosed multiple myeloma (NDMM). To explore the optimal induction treatment, we analyzed and compared the efficacy of combinations of bortezomib-lenalidomide-dexamethasone (VRD) and only bortezomib-based triplet regimens without lenalidomide (only bortezomib-based) as induction therapy in patients with NDMM with 1q21 gain/Amp. METHODS Seventy-six NDMM patients with 1q21 gain/Amp who were admitted to our center from 2016 to 2022 were retrospectively analyzed in this study. The progression and efficacy of the patients were observed. RESULTS Within our study group, the overall survival rate stood at 75.0%, and the progression-free survival (PFS) rate reached 40.8% in NDMM patients with 1q21 gain/Amp. The best outcome assessment was that 17.1% achieved complete response (CR) and 44.7% achieved very good partial response (VGPR). Patients in the VRD group had a deeper response (VGPR: 63.6% vs 37.0%, P = 0.034), lower disease progression rate (31.8% vs 70.3%, P = 0.002), longer sustained remission (median 49.7 months vs 18.3 months, P = 0.030), and longer PFS (median 61.9 months vs 22.9 months, P = 0.032) than those treated with only bortezomib-based induction therapy. No significant differences were found among patients with partial response or better (86.4% vs 77.8%, P = 0.532) or CR (27.3% vs 13.0%, P = 0.180). Multivariate analysis showed that only bortezomib-based induction therapy (P = 0.003, HR 0.246, 95% CI 0.097-0.620), International Staging System stage III (P = 0.003, HR 3.844, 95% CI 1.588-9.308) and LMR <3.6 (P = 0.032, HR 0.491, 95% CI 0.257-0.940) were significantly associated with adverse PFS. CONCLUSIONS When compared with the sequential administration of bortezomib and lenalidomide or only bortezomib-based protocols, NDMM patients with 1q21 gain/Amp may benefit more from VRD as initial treatments.
Collapse
Affiliation(s)
- Qiaolin Zhou
- Hematology Department, Mianyang Central Hospital, School of Medicine. University of Electronic Science and Technology of China, Mianyang, China
| | - Jingjing Wen
- Hematology Department, Mianyang Central Hospital, School of Medicine. University of Electronic Science and Technology of China, Mianyang, China
| | - Fang Xu
- Hematology Department, Mianyang Central Hospital, School of Medicine. University of Electronic Science and Technology of China, Mianyang, China
| | - Jing Yue
- Hematology Department, Mianyang Central Hospital, School of Medicine. University of Electronic Science and Technology of China, Mianyang, China
| | - Ya Zhang
- Hematology Department, Mianyang Central Hospital, School of Medicine. University of Electronic Science and Technology of China, Mianyang, China
| | - Jing Su
- Hematology Department, Mianyang Central Hospital, School of Medicine. University of Electronic Science and Technology of China, Mianyang, China
| | - Yiping Liu
- Hematology Department, Mianyang Central Hospital, School of Medicine. University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
29
|
Kozalak G, Koşar A. Autophagy-related mechanisms for treatment of multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:838-857. [PMID: 38239705 PMCID: PMC10792488 DOI: 10.20517/cdr.2023.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Multiple myeloma (MM) is a type of hematological cancer that occurs when B cells become malignant. Various drugs such as proteasome inhibitors, immunomodulators, and compounds that cause DNA damage can be used in the treatment of MM. Autophagy, a type 2 cell death mechanism, plays a crucial role in determining the fate of B cells, either promoting their survival or inducing cell death. Therefore, autophagy can either facilitate the progression or hinder the treatment of MM disease. In this review, autophagy mechanisms that may be effective in MM cells were covered and evaluated within the contexts of unfolded protein response (UPR), bone marrow microenvironment (BMME), drug resistance, hypoxia, DNA repair and transcriptional regulation, and apoptosis. The genes that are effective in each mechanism and research efforts on this subject were discussed in detail. Signaling pathways targeted by new drugs to benefit from autophagy in MM disease were covered. The efficacy of drugs that regulate autophagy in MM was examined, and clinical trials on this subject were included. Consequently, among the autophagy mechanisms that are effective in MM, the most suitable ones to be used in the treatment were expressed. The importance of 3D models and microfluidic systems for the discovery of new drugs for autophagy and personalized treatment was emphasized. Ultimately, this review aims to provide a comprehensive overview of MM disease, encompassing autophagy mechanisms, drugs, clinical studies, and further studies.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabancı University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
30
|
Feng Y, Huang J, Wang F, Lin Z, Luo H, Li Q, Wang X, Liu X, Zhai X, Gao Q, Li L, Zhang Y, Wen J, Zhang L, Niu T, Zheng Y. Methylcrotonyl-CoA carboxylase subunit 1 (MCCA) regulates multidrug resistance in multiple myeloma. Life Sci 2023; 333:122157. [PMID: 37805164 DOI: 10.1016/j.lfs.2023.122157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
AIMS This study aimed to investigate the effect and mechanism of methylcrotonyl-CoA carboxylase subunit 1 (MCCA) on multidrug resistance in multiple myeloma (MM). MATERIALS AND METHODS The apoptosis kit and CCK-8 reagent were used to detect drug-induced cell apoptosis and viability. Immunoprecipitation, immunofluorescence staining, and protein structural simulation were used to detect the interaction between MCCA and Bad. Immunodeficient mice were injected with ARD cells and treated with bortezomib. Changes in tumor burden were recorded by bioluminescence imaging, and κ light chain content in the blood of mice was detected by enzyme-linked immunoassay. KEY FINDINGS Patients with high MCCA expression from a primary MM dataset had superior overall survival. After treatment with different anti-MM drugs, MCCA knockdown MM (MCCA-KD) cells had higher survival rates than control knockdown (CTR-KD) cells (p < 0.05). Mechanistic studies have revealed that MCCA-KD cells had dysfunctional mitochondria with decreased Bax and Bad levels and increased Bcl-xl and Mcl-1 levels. Furthermore, that MCCA and Bad demonstrated protein-protein interactions. The half-life of Bad in MCCA-KD cells is significantly shorter than that in CTR-KD cells (7.34 vs. 2.42 h, p < 0.05). In a human MM xenograft mouse model, we confirmed that MCCA-KD tumors had a poor response to anti-MM drugs in vivo. Finally, we showed that MCCA might contribute to multidrug resistance in different human cancers, particularly in solid tumors. SIGNIFICANCE Our findings demonstrated a novel function of MCCA in multidrug resistance. The lack of MCCA expression promoted antiapoptotic cell signaling in MM cells.
Collapse
Affiliation(s)
- Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, The Affiliated Hospital of Chengdu University, China
| | - Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qianwen Gao
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Lingfeng Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, Mian-yang Central Hospital, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, China.
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, China.
| |
Collapse
|
31
|
Wang L, Yi W, Ma L, Lecea E, Hazlehurst LA, Adjeroh DA, Hu G. Inflammatory Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma: Transcriptional Signature and In Vitro Modeling. Cancers (Basel) 2023; 15:5148. [PMID: 37958322 PMCID: PMC10650304 DOI: 10.3390/cancers15215148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BM MSCs) play a tumor-supportive role in promoting drug resistance and disease relapse in multiple myeloma (MM). Recent studies have discovered a sub-population of MSCs, known as inflammatory MSCs (iMSCs), exclusive to the MM BM microenvironment and implicated in drug resistance. Through a sophisticated analysis of public expression data from unexpanded BM MSCs, we uncovered a positive association between iMSC signature expression and minimal residual disease. While in vitro expansion generally results in the loss of the iMSC signature, our meta-analysis of additional public expression data demonstrated that cytokine stimulation, including IL1-β and TNF-α, as well as immune cells such as neutrophils, macrophages, and MM cells, can reactivate the signature expression of iMSCs to varying extents. These findings underscore the importance and potential utility of cytokine stimulation in mimicking the gene expression signature of early passage of iMSCs for functional characterizations of their tumor-supportive roles in MM.
Collapse
Affiliation(s)
- Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Weijun Yi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Li Ma
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Emily Lecea
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
| | - Lori A. Hazlehurst
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA;
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (L.W.); (W.Y.); (L.M.); (E.L.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
32
|
Che F, Ye X, Wang Y, Wang X, Ma S, Tan Y, Mao Y, Luo Z. METTL3 facilitates multiple myeloma tumorigenesis by enhancing YY1 stability and pri-microRNA-27 maturation in m 6A-dependent manner. Cell Biol Toxicol 2023; 39:2033-2050. [PMID: 35038059 DOI: 10.1007/s10565-021-09690-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
Multiple myeloma (MM) is a pernicious plasma cell disorder and has a poor prognosis. N6-methyladenosine (m6A) is an abundant epigenetic RNA modification and is important in cancer progression. Nevertheless, the function of m6A and its regulator METTL3 in MM are rarely reported. Here, we identified the m6A "writers", METTL3, was enhanced in MM and found that Yin Yang 1 (YY1) and primary-miR-27a-3p were the potential target for METTL3. METTL3 promoted primary-miR-27a-3p maturation and YY1 mRNA stability in an m6A manner. YY1 also was found to facilitate miR-27a-3p transcription. METTL3 affected the growth, apoptosis, and stemness of MM cells through accelerating the stability of YY1 mRNA and the maturation of primary-miR-27a-3p in vitro and in vivo. Our results reveal the key function of the METTL3/YY1/miR-27a-3p axis in MM and may provide fresh insights into MM therapy.
Collapse
Affiliation(s)
- Feifei Che
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, No.32 West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| | - Xuemei Ye
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Yu Wang
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Xuemei Wang
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Shuyue Ma
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Yawen Tan
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Yan Mao
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| | - Ziyue Luo
- Department of Hematology, Dongli Medical District of Sichuan People's Hospital, Chengdu, 610051, Sichuan, China
| |
Collapse
|
33
|
Matsushita M, Kashiwazaki S, Kamiko S, Kobori M, Osada M, Kunieda H, Hirao M, Ichikawa D, Hattori Y. Immunomodulatory Effect of Proteasome Inhibitors via the Induction of Immunogenic Cell Death in Myeloma Cells. Pharmaceuticals (Basel) 2023; 16:1367. [PMID: 37895838 PMCID: PMC10609901 DOI: 10.3390/ph16101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Several anti-cancer drugs are known to have immunomodulatory effects, including immunogenic cell death (ICD) of cancer cells. ICD is a form of apoptosis which is caused by the release of damage-associated molecular patterns (DAMPs), the uptake of cancer antigens by dendritic cells, and the activation of acquired immunity against cancer cells. ICD was originally reported in solid tumors, and there have been few reports on ICD in multiple myeloma (MM). Here, we showed that proteasome inhibitors, including carfilzomib, induce ICD in myeloma cells via an unfolded protein response pathway distinct from that in solid tumors. Additionally, we demonstrated the potential impact of ICD on the survival of patients with myeloma. ICD induced by proteasome inhibitors is expected to improve the prognosis of MM patients not only by its cytotoxic effects, but also by building strong immune memory response against MM cells in combination with other therapies, such as chimeric antigen receptor-T cell therapy.
Collapse
Affiliation(s)
- Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Sho Kashiwazaki
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Satoshi Kamiko
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Michio Kobori
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Makoto Osada
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan; (M.O.)
| | - Hisako Kunieda
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan; (M.O.)
| | - Maki Hirao
- Department of Health Science, Faculty of Sports and Health Science, Daito Bunka University, Saitama 355-8501, Japan
| | - Daiju Ichikawa
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yutaka Hattori
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
- Department of Hematology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan; (M.O.)
| |
Collapse
|
34
|
Khaliq N, Riaz R, Hasan A, Alauddin S. "A beacon of hope for relapsed multiple myeloma patients: TALVEY™". Rare Tumors 2023; 15:20363613231205749. [PMID: 37780814 PMCID: PMC10536835 DOI: 10.1177/20363613231205749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Nawal Khaliq
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Rumaisa Riaz
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Aleeza Hasan
- Department of Internal Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Sara Alauddin
- Department of Internal Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| |
Collapse
|
35
|
Matchett EC, Kornbluth J. Extracellular vesicles derived from immortalized human natural killer cell line NK3.3 as a novel therapeutic for multiple myeloma. Front Immunol 2023; 14:1265101. [PMID: 37818374 PMCID: PMC10560732 DOI: 10.3389/fimmu.2023.1265101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Over the last decade, there have been many advancements in the therapeutic treatment of multiple myeloma (MM), including the use of natural killer (NK) cells. However, despite promising results from clinical trials, there are concerns over the use of NK cell-based therapy. Cells often undergo growth arrest, limiting their experimental utility; donor cells are extremely heterogeneous, resulting in content variability; and patients receiving allogeneic cells are at risk for graft-versus-host disease and/or cytokine release syndrome. Extracellular vesicles (EVs) have emerged as a new natural therapeutic tool. EVs are known to carry cargo derived from the parent cell from which they originate. NK cells play an important role in the innate immune system, targeting and killing tumor cells. This has led many researchers to isolate EVs from NK cells for their cytotoxic potential. Methods In this study, we isolated EVs from the NK cell line, NK3.3, which was derived from the peripheral blood of a healthy donor. Currently, it is the only normal human NK cell line reported with all the functional characteristics of healthy NK cells. To address the issue of growth arrest, we immortalized NK3.3 cells with lentivirus encoding the catalytic subunit of human telomerase htert (NK3.3-LTV). EVs from these cells were isolated using a modified polyethylene glycol (PEG)-acetate precipitation protocol to simplify processing and increase EV yield. Results and conclusions We demonstrated that NK3.3-LTV EVs target both sensitive and drug-resistant MM cell lines as well as primary patient MM cells in vitro, decreasing proliferation and inducing apoptotic cell death as well as or better than EVs from non-immortalized cells with no toxicity towards normal cells. This study is the first step towards developing an immunotherapeutic product designed to treat patients with relapsed/refractory MM.
Collapse
Affiliation(s)
- Emily C. Matchett
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Research and Education Service, VA St. Louis Health Care System, St. Louis, MO, United States
| |
Collapse
|
36
|
Hussain M, Yellapragada S, Al Hadidi S. Differential Diagnosis and Therapeutic Advances in Multiple Myeloma: A Review Article. Blood Lymphat Cancer 2023; 13:33-57. [PMID: 37731771 PMCID: PMC10508231 DOI: 10.2147/blctt.s272703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the abnormal clonal proliferation of plasma cells that may result in focal bone lesions, renal failure, anemia, and/or hypercalcemia. Recently, the diagnosis and treatment of MM have evolved due to a better understanding of disease pathophysiology, improved risk stratification, and new treatments. The incorporation of new drugs, including proteasome inhibitors, immunomodulatory drugs, anti-CD38 antibodies and high-dose chemotherapy followed by hematopoietic stem cell transplantation, has resulted in a significant improvement in patient outcomes and QoL. In this review, we summarize differential diagnoses and therapeutic advances in MM.
Collapse
Affiliation(s)
- Munawwar Hussain
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarvari Yellapragada
- Michael E. DeBakey VA Medical Center and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
37
|
Jia Y, Liu R, Shi L, Feng Y, Zhang L, Guo N, He A, Kong G. Integrative analysis of the prognostic value and immune microenvironment of mitophagy-related signature for multiple myeloma. BMC Cancer 2023; 23:859. [PMID: 37700273 PMCID: PMC10496355 DOI: 10.1186/s12885-023-11371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a fatal malignant tumor in hematology. Mitophagy plays vital roles in the pathogenesis and drug sensitivity of MM. METHODS We acquired transcriptomic expression data and clinical index of MM patients from NCI public database, and 36 genes involved in mitophagy from the gene set enrichment analysis (GSEA) database. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was conducted to construct a risk score prognostic model. Kaplan-Meier survival analysis and receiver operation characteristic curves (ROC) were conducted to identify the efficiency of prognosis and diagnosis. ESTIMATE algorithm and immune-related single-sample gene set enrichment analysis (ssGSEA) was performed to uncover the level of immune infiltration. QRT-PCR was performed to verify gene expression in clinical samples of MM patients. The sensitivity to chemotherapy drugs was evaluated upon the database of the genomics of drug sensitivity in cancer (GDSC). RESULTS Fifty mitophagy-related genes were differently expressed in two independent cohorts. Ten out of these genes were identified to be related to MM overall survival (OS) rate. A prognostic risk signature model was built upon on these genes: VDAC1, PINK1, VPS13C, ATG13, and HUWE1, which predicted the survival of MM accurately and stably both in training and validation cohorts. MM patients suffered more adverse prognosis showed more higher risk core. In addition, the risk score was considered as an independent prognostic element for OS of MM patients by multivariate cox regression analysis. Functional pathway enrichment analysis of differentially expressed genes (DEGs) based on risk score showed terms of cell cycle, immune response, mTOR pathway, and MYC targets were obviously enriched. Furthermore, MM patients with higher risk score were observed lower immune scores and lower immune infiltration levels. The results of qRT-PCR verified VDAC1, PINK1, and HUWE1 were dysregulated in new diagnosed MM patients. Finally, further analysis indicated MM patients showed more susceptive to bortezomib, lenalidomide and rapamycin in high-risk group. CONCLUSION Our research provided a neoteric prognostic model of MM based on mitophagy genes. The immune infiltration level based on risk score paved a better understanding of the participation of mitophagy in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ni Guo
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
38
|
Noori M, Yazdanpanah N, Rezaei N. Safety and efficacy of T-cell-redirecting bispecific antibodies for patients with multiple myeloma: a systematic review and meta-analysis. Cancer Cell Int 2023; 23:193. [PMID: 37670301 PMCID: PMC10478206 DOI: 10.1186/s12935-023-03045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND In recent years, several bispecific antibodies (BsAbs) have been introduced that revolutionized the treatment approach for patients with multiple myeloma (MM). In the present study, we sought for conducting a systematic review and meta-analysis with the aim of evaluating the safety and efficacy of BsAbs in MM patients. METHODS PubMed, Scopus, Web of Science, and Embase databases were systematically searched on June 10, 2022. Two steps of title/abstract and full-text screening were performed for selecting the relevant articles. The primary endpoint was considered to evaluate the safety of BsAbs by examining the rate of hematologic and non-hematologic adverse effects (AEs). The secondary outcome was set at the efficacy of BsAbs through pooling objective response rate (ORR), (stringent) complete response (sCR/CR), very good partial response (VGPR), and partial response (PR). RESULTS Eleven publications with a total of nine evaluable BsAbs were included for qualitative and quantitative data synthesis. Hematologic AEs were more common among patients than non-hematologic events, with the most frequent events being anemia (41.4%), neutropenia (36.4%), and thrombocytopenia (26.3%). The most common non-hematological AE was infection, which occurred in 39.9% of patients, followed by dysgeusia (28.3%), fatigue (26.5%), and diarrhea (25.8%). Besides, 8.1% of patients experienced immune effector cell-associated neurotoxicity syndrome and neurotoxicity occurred in 5.1% of them. Moreover, 59.8% of patients experienced cytokine release syndrome. The pooled rate of deaths attributable to BsAbs was estimated at 0.1%. In terms of efficacy measures, the ORR was achieved in 62.6% of MM patients, and the pooled rates of sCR/CR, VGPR, and PR were 22.7%, 23.0%, and 12.1%, respectively. CONCLUSIONS In an era with several emerging promising treatments for MM, BsAbs have achieved a high ORR and tolerable AEs in heavily pretreated patients. However, there is still room for developing BsAbs with a lower rate of AEs and capable of bypassing tumor evasion mechanisms.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Malek E, Wang GM, Tatsuoka C, Cullen J, Madabhushi A, Driscoll JJ. Machine Learning Approach for Rapid, Accurate Point-of-Care Prediction of M-Spike Values in Multiple Myeloma. JCO Clin Cancer Inform 2023; 7:e2300078. [PMID: 37738540 DOI: 10.1200/cci.23.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE The gold standard for monitoring response status in patients with multiple myeloma (MM) is serum and urine protein electrophoresis which quantify M-spike proteins; however, the turnaround time for results is 3-7 days which delays treatment decisions. We hypothesized that machine learning (ML) could integrate readily available clinical and laboratory data to rapidly and accurately predict patient M-spike values. METHODS A retrospective chart review was performed using the deidentified, electronic medical records of 171 patients with MM. RESULTS Random forest (RF) analysis identified the weighted value of each independent variable (N = 43) integrated into the ML algorithm. Pearson and Spearman coefficients indicated that the ML-predicted M-spike values correlated highly with laboratory-measured serum protein electrophoresis values. Feature selected RF modeling revealed that only two variables-the first lagged M-spike and serum total protein-accurately predicted the M-spike. CONCLUSION Taken together, our results demonstrate the feasibility and prognostic potential of ML tools that integrate electronic data to longitudinally monitor disease burden. ML tools support the seamless, secure exchange of patient information to expedite and personalize clinical decision making and overcome geographic, financial, and social barriers that currently limit the access of underserved populations to cancer care specialists so that the benefits of medical progress are not limited to selected groups.
Collapse
Affiliation(s)
- Ehsan Malek
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH
- University Hospitals Cleveland Medical Center, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Gi-Ming Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Curtis Tatsuoka
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH
- Cancer Epidemiology and Prevention, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA
| | - Jennifer Cullen
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA
- Atlanta Veterans Administration Medical Center, Atlanta, GA
| | - James J Driscoll
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH
- University Hospitals Cleveland Medical Center, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
40
|
Ochiai M, Fierstein S, XsSali F, DeVito N, Purkey LR, May R, Correa-Medina A, Kelley M, Page TD, DeCicco-Skinner K. Unlocking Drug Resistance in Multiple Myeloma: Adipocytes as Modulators of Treatment Response. Cancers (Basel) 2023; 15:4347. [PMID: 37686623 PMCID: PMC10486466 DOI: 10.3390/cancers15174347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy characterized by the clonal proliferation of malignant plasma cells. Despite the development of a diverse array of targeted drug therapies over the last decade, patients often relapse and develop refractory disease due to multidrug resistance. Obesity is a growing public health threat and a risk factor for multiple myeloma, although the mechanisms by which obesity contributes to MM growth and progression have not been fully elucidated. In the present study, we evaluated whether crosstalk between adipocytes and MM cells promoted drug resistance and whether this was amplified by obesity. Human adipose-derived stem cells (ASCs) from nineteen normal (BMI = 20-25 kg/m2), overweight (25-30 kg/m2), or obese (30-35 kg/m2) patients undergoing elective liposuction were utilized. Cells were differentiated into adipocytes, co-cultured with RPMI 8226 or U266B1 multiple myeloma cell lines, and treated with standard MM therapies, including bortezomib or a triple combination of bortezomib, dexamethasone, and lenalidomide. We found that adipocytes from overweight and obese individuals increased cell adhesion-mediated drug resistance (CAM-DR) survival signals in MM cells, and P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) drug transporter expression. Further, co-culture enhanced in vitro angiogenesis, MMP-2 activity, and protected MM cells from drug-induced decreases in viability. In summary, we provide an underlying mechanism by which obesity can impair the drug response to MM and allow for recurrence and/or disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kathleen DeCicco-Skinner
- Department of Biology, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA
| |
Collapse
|
41
|
Boulos JC, Chatterjee M, Shan L, Efferth T. In Silico, In Vitro, and In Vivo Investigations on Adapalene as Repurposed Third Generation Retinoid against Multiple Myeloma and Leukemia. Cancers (Basel) 2023; 15:4136. [PMID: 37627164 PMCID: PMC10452460 DOI: 10.3390/cancers15164136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The majority of hematopoietic cancers in adults are incurable and exhibit unpredictable remitting-relapsing patterns in response to various therapies. The proto-oncogene c-MYC has been associated with tumorigenesis, especially in hematological neoplasms. Therefore, targeting c-MYC is crucial to find effective, novel treatments for blood malignancies. To date, there are no clinically approved c-MYC inhibitors. In this study, we virtually screened 1578 Food and Drug Administration (FDA)-approved drugs from the ZINC15 database against c-MYC. The top 117 compounds from PyRx-based screening with the best binding affinities to c-MYC were subjected to molecular docking studies with AutoDock 4.2.6. Retinoids consist of synthetic and natural vitamin A derivatives. All-trans-retinoic acid (ATRA) were highly effective in hematological malignancies. In this study, adapalene, a third-generation retinoid usually used to treat acne vulgaris, was selected as a potent c-MYC inhibitor as it robustly bound to c-MYC with a lowest binding energy (LBE) of -7.27 kcal/mol, a predicted inhibition constant (pKi) of 4.69 µM, and a dissociation constant (Kd value) of 3.05 µM. Thus, we examined its impact on multiple myeloma (MM) cells in vitro and evaluated its efficiency in vivo using a xenograft tumor zebrafish model. We demonstrated that adapalene exerted substantial cytotoxicity against a panel of nine MM and two leukemic cell lines, with AMO1 cells being the most susceptible one (IC50 = 1.76 ± 0.39 µM) and, hence, the focus of this work. Adapalene (0.5 × IC50, 1 × IC50, 2 × IC50) decreased c-MYC expression and transcriptional activity in AMO1 cells in a dose-dependent manner. An examination of the cell cycle revealed that adapalene halted the cells in the G2/M phase and increased the portion of cells in the sub-G0/G1 phase after 48 and 72 h, indicating that cells failed to initiate mitosis, and consequently, cell death was triggered. Adapalene also increased the number of p-H3(Ser10) positive AMO1 cells, which is a further proof of its ability to prevent mitotic exit. Confocal imaging demonstrated that adapalene destroyed the tubulin network of U2OS cells stably transfected with a cDNA coding for α-tubulin-GFP, refraining the migration of malignant cells. Furthermore, adapalene induced DNA damage in AMO1 cells. It also induced apoptosis and autophagy, as demonstrated by flow cytometry and western blotting. Finally, adapalene impeded tumor growth in a xenograft tumor zebrafish model. In summary, the discovery of the vitamin A derivative adapalene as a c-MYC inhibitor reveals its potential as an avant-garde treatment for MM.
Collapse
Affiliation(s)
- Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Manik Chatterjee
- Translational Oncology, Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
42
|
Jia Y, Yu X, Liu R, Shi L, Jin H, Yang D, Zhang X, Shen Y, Feng Y, Zhang P, Yang Y, Zhang L, Zhang P, Li Z, He A, Kong G. PRMT1 methylation of WTAP promotes multiple myeloma tumorigenesis by activating oxidative phosphorylation via m6A modification of NDUFS6. Cell Death Dis 2023; 14:512. [PMID: 37558663 PMCID: PMC10412649 DOI: 10.1038/s41419-023-06036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Epigenetic modifications play important roles during the pathogenesis of multiple myeloma (MM). Herein, we found that protein arginine methyltransferase 1 (PRMT1) was highly expressed in MM patients, which was positively correlated with MM stages. High PRMT1 expression was correlated with adverse prognosis in MM patients. We further showed that silencing PRMT1 inhibited MM proliferation and tumorigenesis in vitro and in vivo. Mechanistically, we revealed that the knockdown of PRMT1 reduced the oxidative phosphorylation (OXPHOS) of MM cells through NDUFS6 downregulation. Meanwhile, we identified that WTAP, a key component of the m6A methyltransferase complex, was methylated by PRMT1, and NDUFS6 was identified as a bona fide m6A target of WTAP. Finally, we found that the combination of PRMT1 inhibitor and bortezomib synergistically inhibited MM progression. Collectively, our results demonstrate that PRMT1 plays a crucial role during MM tumorigenesis and suggeste that PRMT1 could be a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Yachun Jia
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiao Yu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Hua Jin
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dan Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xiaofeng Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ying Shen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yuandong Feng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Peihua Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yi Yang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Linlin Zhang
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Pengyu Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Aili He
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
43
|
Figueroa-Espada CG, Guimarães PPG, Riley RS, Xue L, Wang K, Mitchell MJ. siRNA Lipid-Polymer Nanoparticles Targeting E-Selectin and Cyclophilin A in Bone Marrow for Combination Multiple Myeloma Therapy. Cell Mol Bioeng 2023; 16:383-392. [PMID: 37810998 PMCID: PMC10550899 DOI: 10.1007/s12195-023-00774-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/20/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Multiple myeloma (MM) is a hematological blood cancer of the bone marrow that remains largely incurable, in part due to its physical interactions with the bone marrow microenvironment. Such interactions enhance the homing, proliferation, and drug resistance of MM cells. Specifically, adhesion receptors and homing factors, E-selectin (ES) and cyclophilin A (CyPA), respectively, expressed by bone marrow endothelial cells enhance MM colonization and dissemination. Thus, silencing of ES and CyPA presents a potential therapeutic strategy to evade MM spreading. However, small molecule inhibition of ES and CyPA expressed by bone marrow endothelial cells remains challenging, and blocking antibodies induce further MM propagation. Therefore, ES and CyPA are promising candidates for inhibition via RNA interference (RNAi). Methods Here, we utilized a previously developed lipid-polymer nanoparticle for RNAi therapy, that delivers siRNA to the bone marrow perivascular niche. We utilized our platform to co-deliver ES and CyPA siRNAs to prevent MM dissemination in vivo. Results Lipid-polymer nanoparticles effectively downregulated ES expression in vitro, which decreased MM cell adhesion and migration through endothelial monolayers. Additionally, in vivo delivery of lipid-polymer nanoparticles co-encapsulating ES and CyPA siRNA extended survival in a xenograft mouse model of MM, either alone or in combination with the proteasome inhibitor bortezomib. Conclusions Our combination siRNA lipid-polymer nanoparticle therapy presents a vascular microenvironment-targeting strategy as a potential paradigm shift for MM therapies, which could be extended to other cancers that colonize the bone marrow. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00774-y.
Collapse
Affiliation(s)
- Christian G. Figueroa-Espada
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA
| | - Pedro P. G. Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Rachel S. Riley
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 USA
| | - Lulu Xue
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA 19122 USA
| | - Michael J. Mitchell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104 USA
- Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104 USA
- Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104 USA
- Perelman School of Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Perelman School of Medicine, Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104 USA
- Perelman School of Medicine, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
44
|
Eseonu KC, Panchmatia JR, Streetly MJ, Grauer JN, Fakouri B. The role of Vertebral Augmentation Procedures in the management of vertebral compression fractures secondary to multiple myeloma. Hematol Oncol 2023; 41:323-334. [PMID: 36440820 DOI: 10.1002/hon.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
Abstract
Multiple myeloma (MM) is a systemic disorder characterised by proliferation of B-lymphocytes and plasma cells in the bone marrow. The primary aims of the management of spinal lesions in MM are pain control and fracture stabilisation. Vertebral augmentation procedures (VAP) can be subdivided into percutaneous vertebroplasty (VP) and balloon kyphoplasty (BKP). BKP involves the placement of orthopaedic balloons into the fractured vertebral body, creating a void into which polymethylmethacrylate bone cement is injected. This review outlines the management of spinal lesions in patients with MM, with a focus on the comparative risks and efficacy of vertebroplasty (VP) and balloon kyphoplasty (BKP). Soft tissue masses in MM are highly radiosensitive. Bisphosphonates and newer oncological therapies have decreased the indications for palliative radiotherapy, while spinal bracing can be utilised in selected cases to provide stability. BKP and VP provide equivalent long term pain control after MM vertebral compression fractures (VCF). BKP is superior to non-operative management and VP for restoration of vertebral body height and prevention of segmental kyphosis. Current evidence suggests a greater degree of correction of kyphotic deformity and restoration of mid vertebral height (MVH) with BKP when compared with VP. The literature supports the use of BKP even in the presence of posterior vertebral body wall (PVBW) fractures, a group previously considered a contraindication to VAP. Superior functional outcomes have been reported in patients undergoing early versus delayed BKP (<6-8 weeks). Current evidence supports a lower risk of cement extrusion with BKP than with VP, but serious complications following VAP are rare. MM spinal pathology should be managed in a multidisciplinary setting. Surgical decompression and instrumentation are rarely indicated, due to the radio-sensitivity of soft tissue lesions in MM. BKP is a safe and effective procedure for VCF secondary to MM.
Collapse
|
45
|
Dunphy K, Bazou D, Henry M, Meleady P, Miettinen JJ, Heckman CA, Dowling P, O’Gorman P. Proteomic and Metabolomic Analysis of Bone Marrow and Plasma from Patients with Extramedullary Multiple Myeloma Identifies Distinct Protein and Metabolite Signatures. Cancers (Basel) 2023; 15:3764. [PMID: 37568580 PMCID: PMC10417544 DOI: 10.3390/cancers15153764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Multiple myeloma (MM) is an incurable haematological malignancy of plasma cells in the bone marrow. In rare cases, an aggressive form of MM called extramedullary multiple myeloma (EMM) develops, where myeloma cells enter the bloodstream and colonise distal organs or soft tissues. This variant is associated with refractoriness to conventional therapies and a short overall survival. The molecular mechanisms associated with EMM are not yet fully understood. Here, we analysed the proteome of bone marrow mononuclear cells and blood plasma from eight patients (one serial sample) with EMM and eight patients without extramedullary spread. The patients with EMM had a significantly reduced overall survival with a median survival of 19 months. Label-free mass spectrometry revealed 225 proteins with a significant differential abundance between bone marrow mononuclear cells (BMNCs) isolated from patients with MM and EMM. This plasma proteomics analysis identified 22 proteins with a significant differential abundance. Three proteins, namely vascular cell adhesion molecule 1 (VCAM1), pigment epithelium derived factor (PEDF), and hepatocyte growth factor activator (HGFA), were verified as the promising markers of EMM, with the combined protein panel showing excellent accuracy in distinguishing EMM patients from MM patients. Metabolomic analysis revealed a distinct metabolite signature in EMM patient plasma compared to MM patient plasma. The results provide much needed insight into the phenotypic profile of EMM and in identifying promising plasma-derived markers of EMM that may inform novel drug development strategies.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, Maynooth University, W23 F2K8 Kildare, Ireland;
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland; (D.B.); (P.O.)
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland; (M.H.); (P.M.)
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland; (M.H.); (P.M.)
| | - Juho J. Miettinen
- Institute for Molecular Medicine Finland-FIMM, HiLIFE–Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00290 Helsinki, Finland; (J.J.M.); (C.A.H.)
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE–Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00290 Helsinki, Finland; (J.J.M.); (C.A.H.)
| | - Paul Dowling
- Department of Biology, Maynooth University, W23 F2K8 Kildare, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 AX57 Dublin, Ireland; (D.B.); (P.O.)
| |
Collapse
|
46
|
Liu Z, Yang C, Liu X, Xu X, Zhao X, Fu R. Therapeutic strategies to enhance immune response induced by multiple myeloma cells. Front Immunol 2023; 14:1169541. [PMID: 37275861 PMCID: PMC10232766 DOI: 10.3389/fimmu.2023.1169541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple myeloma (MM)as a haematological malignancy is still incurable. In addition to the presence of somatic genetic mutations in myeloma patients, the presence of immunosuppressive microenvironment greatly affects the outcome of treatment. Although the discovery of immunotherapy makes it possible to break the risk of high toxicity and side effects of traditional chemotherapeutic drugs, there are still obstacles of ineffective treatment or disease recurrence. In this review, we discuss therapeutic strategies to further enhance the specific anti-tumor immune response by activating the immunogenicity of MM cells themselves. New ideas for future myeloma therapeutic approaches are provided.
Collapse
|
47
|
Zhang Q, Duan H, Yang W, Liu H, Tao X, Zhang Y. Circ_0005615 restrains the progression of multiple myeloma through modulating miR-331-3p and IGF1R regulatory cascade. J Orthop Surg Res 2023; 18:356. [PMID: 37173768 PMCID: PMC10176712 DOI: 10.1186/s13018-023-03832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Circular RNAs are implicated in modulating the progression of various malignant tumors. However, the function and underlying mechanisms of circ_0005615 in multiple myeloma (MM) remain unclear. METHODS The expression levels of circ_0005615, miR-331-3p and IGF1R were tested by quantitative real-time polymerase chain reaction or western blot assay. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine (EdU) assay were performed for cell proliferation detection. Cell apoptosis and cell cycle were measured by flow cytometry. The protein expressions of Bax and Bcl-2 were detected by western blot assay. Glucose consumption, lactate production and ATP/ADP ratios were estimated to disclose cell glycolysis. The interaction relationship among miR-331-3p and circ_0005615 or IGF1R was proved by dual-luciferase reporter assay. RESULTS The abundance of circ_0005615 and IGF1R was increased in MM patients and cells, while the expression of miR-331-3p was decreased. Circ_0005615 inhibition retarded the proliferation and cell cycle progression, while reinforced the apoptosis of MM cells. Molecularly, circ_0005615 could sponge miR-331-3p, and the repressive trends of circ_0005615 deficiency on MM progression could be alleviated by anti-miR-331-3p introduction. Additionally, IGF1R was validated to be targeted by miR-331-3p, and IGF1R overexpression mitigated the suppressive function of miR-331-3p on MM development. Furthermore, IGF1R was mediated by circ_0005615/miR-331-3p axis in MM cells. CONCLUSION Circ_0005615 downregulation blocked MM development by targeting miR-331-3p/IGF1R axis.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hui Duan
- Center for Local Diseases and Chronic Diseases, Dongsheng District Center for Disease Control and Preventio, Ordos, 017000, Inner Mongolia, China
| | - Wupeng Yang
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Hao Liu
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Xiaoyang Tao
- Department of Spinal Surgery, Ordos Central Hospital, Ordos, 017000, Inner Mongolia, China
| | - Yan Zhang
- Department of Medical Imaging, Ordos Central Hospital, No. 23, Yijinhuoluoxi Street, Dongsheng District, Ordos, 017000, Inner Mongolia, China.
| |
Collapse
|
48
|
Guo N, Song Y, Zi F, Zheng J, Cheng J. Abnormal expression pattern of lncRNA H19 participates in multiple myeloma bone disease by unbalancing osteogenesis and osteolysis. Int Immunopharmacol 2023; 119:110058. [PMID: 37058751 DOI: 10.1016/j.intimp.2023.110058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Accumulating genetic and epigenetic alterations in multiple myeloma (MM) have been demonstrated to be closely associated with osteolytic bone disease, generally characterized as increased osteoclast formation and decreased osteoblast activity. Previously, serum long non-coding RNA (lncRNA) H19 has been proved to be a biomarker for the diagnosis of MM. Whereas, its role in MM-associated bone homeostasis remains largely elusive. METHODS A cohort of 42 MM patients and 40 healthy volunteers were enrolled for evaluating differential expressions of H19 and its downstream effectors. The proliferative capacity of MM cells was monitored by CCK-8 assay. Alkaline phosphatase (ALP) staining and activity detection, either with Alizarin red staining (ARS) were employed to assess osteoblast formation. Osteoblast- or osteoclast-associated gene were detected using qRT-PCR and western blot analysis. Bioinformatics analysis, RNA pull-down, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) were subjected to verify H19/miR-532-3p/E2F7/EZH2 axis, which was accounted for epigenetic suppression of PTEN. The functional role of H19 on MM development through unbalancing osteolysis and osteogenesis was also confirmed in the murine MM model. RESULTS Upregulation of serum H19 was observed in MM patients, suggesting its positive correlation with the poor prognosis of MM patients. Loss of H19 dramatically weakened cell proliferation of MM cells, promoted osteoblastic differentiation, and impaired osteoclast activity. While reinforced H19 exhibited the opposite effects. Akt/mTOR signaling plays an indispensable role in H19-mediated osteoblast formation and osteoclastgenesis. Mechanistically, H19 served as a sponge for miR-532-3p to upregulate E2F7, a transcriptional activator of EZH2, thereby accounting for modulating epigenetic suppression of PTEN. The in vivo experiments further validated that H19 exerted important impacts on tumor growth through breaking the balance between osteogenesis and osteolysis via Akt/mTOR signaling. CONCLUSION Collectively, increased enrichment of H19 in MM cells exhibits an essential role in MM development by disturbing bone homeostasis.
Collapse
Affiliation(s)
- Ninghong Guo
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Fuming Zi
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jifu Zheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
49
|
Matamala Montoya M, van Slobbe GJJ, Chang JC, Zaal EA, Berkers CR. Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment. Front Oncol 2023; 13:1155621. [PMID: 37091139 PMCID: PMC10117897 DOI: 10.3389/fonc.2023.1155621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells in the bone marrow (BM). MM remains an incurable disease, with the majority of patients experiencing multiple relapses from different drugs. The MM tumor microenvironment (TME) and in particular bone-marrow stromal cells (BMSCs) play a crucial role in the development of drug resistance. Metabolic reprogramming is emerging as a hallmark of cancer that can potentially be exploited for cancer treatment. Recent studies show that metabolism is further adjusted in MM cells during the development of drug resistance. However, little is known about the role of BMSCs in inducing metabolic changes that are associated with drug resistance. In this Perspective, we summarize current knowledge concerning the metabolic reprogramming of MM, with a focus on those changes associated with drug resistance to the proteasome inhibitor Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics (glucose isotope-tracing) and Seahorse data to show that co-culture of MM cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the crucial role of BMSCs in conveying drug resistance, insights into the metabolic interaction between MM and BMSCs may ultimately aid in the identification of novel metabolic targets that can be exploited for therapy.
Collapse
Affiliation(s)
- María Matamala Montoya
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gijs J. J. van Slobbe
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jung-Chin Chang
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther A. Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| | - Celia R. Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Celia R. Berkers, ; Esther A. Zaal,
| |
Collapse
|
50
|
Dima D, Ullah F, Mazzoni S, Williams L, Faiman B, Kurkowski A, Chaulagain C, Raza S, Samaras C, Valent J, Khouri J, Anwer F. Management of Relapsed-Refractory Multiple Myeloma in the Era of Advanced Therapies: Evidence-Based Recommendations for Routine Clinical Practice. Cancers (Basel) 2023; 15:2160. [PMID: 37046821 PMCID: PMC10093129 DOI: 10.3390/cancers15072160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy in adults worldwide. Over the past few years, major therapeutic advances have improved progression-free and overall survival, as well as quality of life. Despite this recent progress, MM remains incurable in the vast majority of cases. Patients eventually relapse and become refractory to multiple drug classes, making long-term management challenging. In this review, we will focus on the treatment paradigm of relapsed/refractory MM (RRMM) in the era of advanced therapies emphasizing the available novel modalities that have recently been incorporated into routine practice, such as chimeric antigen receptor T-cell therapy, bispecific antibodies, and other promising approaches. We will also discuss major factors that influence the selection of appropriate drug combinations or cellular therapies, such as relapse characteristics, and other disease and patient related parameters. Our goal is to provide insight into the currently available and experimental therapies for RRMM in an effort to guide the therapeutic decision-making process.
Collapse
Affiliation(s)
- Danai Dima
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Fauzia Ullah
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Sandra Mazzoni
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Louis Williams
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Beth Faiman
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Austin Kurkowski
- Department of Pharmacy, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Chakra Chaulagain
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Maroone Cancer Center, Weston, FL 33331, USA
| | - Shahzad Raza
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Christy Samaras
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Jason Valent
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Jack Khouri
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| | - Faiz Anwer
- Department of Hematology and Medical Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH 44106, USA
| |
Collapse
|