1
|
Otani Y, Schol J, Sakai D, Nakamura Y, Sako K, Warita T, Tamagawa S, Ambrosio L, Munesada D, Ogasawara S, Matsushita E, Kawachi A, Naiki M, Sato M, Watanabe M. Assessment of Tie2-Rejuvenated Nucleus Pulposus Cell Transplants from Young and Old Patient Sources Demonstrates That Age Still Matters. Int J Mol Sci 2024; 25:8335. [PMID: 39125917 PMCID: PMC11312270 DOI: 10.3390/ijms25158335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cell transplantation is being actively explored as a regenerative therapy for discogenic back pain. This study explored the regenerative potential of Tie2+ nucleus pulposus progenitor cells (NPPCs) from intervertebral disc (IVD) tissues derived from young (<25 years of age) and old (>60 years of age) patient donors. We employed an optimized culture method to maintain Tie2 expression in NP cells from both donor categories. Our study revealed similar Tie2 positivity rates regardless of donor types following cell culture. Nevertheless, clear differences were also found, such as the emergence of significantly higher (3.6-fold) GD2 positivity and reduced (2.7-fold) proliferation potential for older donors compared to young sources. Our results suggest that, despite obtaining a high fraction of Tie2+ NP cells, cells from older donors were already committed to a more mature phenotype. These disparities translated into functional differences, influencing colony formation, extracellular matrix production, and in vivo regenerative potential. This study underscores the importance of considering age-related factors in NPPC-based therapies for disc degeneration. Further investigation into the genetic and epigenetic alterations of Tie2+ NP cells from older donors is crucial for refining regenerative strategies. These findings shed light on Tie2+ NPPCs as a promising cell source for IVD regeneration while emphasizing the need for comprehensive understanding and scalability considerations in culture methods for broader clinical applicability.
Collapse
Affiliation(s)
- Yuto Otani
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yoshihiko Nakamura
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Takayuki Warita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | - Shota Tamagawa
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Luca Ambrosio
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy
| | - Daiki Munesada
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Asami Kawachi
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- TUNZ Pharma Corporation, Osaka 541-0046, Japan;
| | | | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan; (Y.O.); (J.S.); (Y.N.); (K.S.); (T.W.); (S.T.); (L.A.); (D.M.); (S.O.); (A.K.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
2
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
3
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Ahmadi BM, Noori A, Ashtiani MK, Rajabi S, Talkhabi M. 5-Azacytidine incorporated skeletal muscle-derived hydrogel promotes rat skeletal muscle regeneration. Cells Dev 2023; 173:203826. [PMID: 36739913 DOI: 10.1016/j.cdev.2023.203826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) in vitro and muscle regeneration in vivo. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.
Collapse
Affiliation(s)
- Behnaz Mirza Ahmadi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Afshin Noori
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mahmood Talkhabi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
5
|
Pan Z, Sun W, Chen Y, Tang H, Lin W, Chen J, Chen C. Extracellular Vesicles in Tissue Engineering: Biology and Engineered Strategy. Adv Healthc Mater 2022; 11:e2201384. [PMID: 36053562 DOI: 10.1002/adhm.202201384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs), acting as an important ingredient of intercellular communication through paracrine actions, have gained tremendous attention in the field of tissue engineering (TE). Moreover, these nanosized extracellular particles (30-140 nm) can be incorporated into biomaterials according to different principles to facilitate signal delivery in various regenerative processes directly or indirectly. Bioactive biomaterials as the carrier will extend the retention time and realize the controlled release of EVs, which further enhance their therapeutic efficiency in tissue regeneration. Herein, the basic biological characteristics of EVs are first introduced, and then their outstanding performance in exerting direct impacts on target cells in tissue regeneration as well as indirect effects on promoting angiogenesis and regulating the immune environment, due to specific functional components of EVs (nucleic acid, protein, lipid, etc.), is emphasized. Furthermore, different design ideas for suitable EV-loaded biomaterials are also demonstrated. In the end, this review also highlights the engineered strategies, which aim at solving the problems related to natural EVs such as highly heterogeneous functions, inadequate tissue targeting capabilities, insufficient yield and scalability, etc., thus promoting the therapeutic pertinence and clinical potential of EV-based approaches in TE.
Collapse
Affiliation(s)
- Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School Of Medicine, Shanghai, 200092, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| |
Collapse
|
6
|
The Role of Epigenetic in Dental and Oral Regenerative Medicine by Different Types of Dental Stem Cells: A Comprehensive Overview. Stem Cells Int 2022; 2022:5304860. [PMID: 35721599 PMCID: PMC9203206 DOI: 10.1155/2022/5304860] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Postnatal teeth, wisdom teeth, and exfoliated deciduous teeth can be harvested for dental stem cell (DSC) researches. These mesenchymal stem cells (MSCs) can differentiate and also consider as promising candidates for dental and oral regeneration. Thus, the development of DSC therapies can be considered a suitable but challenging target for tissue regeneration. Epigenetics describes changes in gene expression rather than changes in DNA and broadly happens in bone homeostasis, embryogenesis, stem cell fate, and disease development. The epigenetic regulation of gene expression and the regulation of cell fate is mainly governed by deoxyribonucleic acid (DNA) methylation, histone modification, and noncoding RNAs (ncRNAs). Tissue engineering utilizes DSCs as a target. Tissue engineering therapies are based on the multipotent regenerative potential of DSCs. It is believed that epigenetic factors are essential for maintaining the multipotency of DSCs. A wide range of host and environmental factors influence stem cell differentiation and differentiation commitment, of which epigenetic regulation is critical. Several lines of evidence have shown that epigenetic modification of DNA and DNA-correlated histones are necessary for determining cells' phenotypes and regulating stem cells' pluripotency and renewal capacity. It is increasingly recognized that nuclear enzyme activities, such as histone deacetylases, can be used pharmacologically to induce stem cell differentiation and dedifferentiation. In this review, the role of epigenetic in dental and oral regenerative medicine by different types of dental stem cells is discussed in two new and promising areas of medical and biological researches in recent studies (2010-2022).
Collapse
|
7
|
Man K, Brunet MY, Fernandez‐Rhodes M, Williams S, Heaney LM, Gethings LA, Federici A, Davies OG, Hoey D, Cox SC. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation. J Extracell Vesicles 2021; 10:e12118. [PMID: 34262674 PMCID: PMC8263905 DOI: 10.1002/jev2.12118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging in tissue engineering as promising acellular tools, circumventing many of the limitations associated with cell-based therapies. Epigenetic regulation through histone deacetylase (HDAC) inhibition has been shown to increase differentiation capacity. Therefore, this study aimed to investigate the potential of augmenting osteoblast epigenetic functionality using the HDAC inhibitor Trichostatin A (TSA) to enhance the therapeutic efficacy of osteoblast-derived EVs for bone regeneration. TSA was found to substantially alter osteoblast epigenetic function through reduced HDAC activity and increased histone acetylation. Treatment with TSA also significantly enhanced osteoblast alkaline phosphatase activity (1.35-fold), collagen production (2.8-fold) and calcium deposition (1.55-fold) during osteogenic culture (P ≤ 0.001). EVs derived from TSA-treated osteoblasts (TSA-EVs) exhibited reduced particle size (1-05-fold) (P > 0.05), concentration (1.4-fold) (P > 0.05) and protein content (1.16-fold) (P ≤ 0.001) when compared to untreated EVs. TSA-EVs significantly enhanced the proliferation (1.13-fold) and migration (1.3-fold) of human bone marrow stem cells (hBMSCs) when compared to untreated EVs (P ≤ 0.05). Moreover, TSA-EVs upregulated hBMSCs osteoblast-related gene and protein expression (ALP, Col1a, BSP1 and OCN) when compared to cells cultured with untreated EVs. Importantly, TSA-EVs elicited a time-dose dependent increase in hBMSCs extracellular matrix mineralisation. MicroRNA profiling revealed a set of differentially expressed microRNAs from TSA-EVs, which were osteogenic-related. Target prediction demonstrated these microRNAs were involved in regulating pathways such as 'endocytosis' and 'Wnt signalling pathway'. Moreover, proteomics analysis identified the enrichment of proteins involved in transcriptional regulation within TSA-EVs. Taken together, our findings suggest that altering osteoblasts' epigenome accelerates their mineralisation and promotes the osteoinductive potency of secreted EVs partly due to the delivery of pro-osteogenic microRNAs and transcriptional regulating proteins. As such, for the first time we demonstrate the potential to harness epigenetic regulation as a novel engineering approach to enhance EVs therapeutic efficacy for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| | | | | | - Soraya Williams
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Liam M. Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Lee A. Gethings
- Waters CorporationStamford AvenueWilmslowUK
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthManchester Institute of BiotechnologyUniversity of ManchesterManchesterUK
| | - Angelica Federici
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Owen G. Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - David Hoey
- Trinity Biomedical Sciences InstituteTrinity CollegeTrinity Centre for Biomedical EngineeringDublinIreland
- Department of Mechanical, Manufacturing, and Biomedical EngineeringSchool of EngineeringTrinity College DublinIreland
- Trinity College Dublin & RCSIAdvanced Materials and Bioengineering Research CentreDublinIreland
| | - Sophie C. Cox
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
8
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
9
|
Histone Demethylase KDM7A Regulates Androgen Receptor Activity, and Its Chemical Inhibitor TC-E 5002 Overcomes Cisplatin-Resistance in Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21165658. [PMID: 32781788 PMCID: PMC7460860 DOI: 10.3390/ijms21165658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Histone demethylase KDM7A regulates many biological processes, including differentiation, development, and the growth of several cancer cells. Here, we have focused on the role of KDM7A in bladder cancer cells, especially under drug-resistant conditions. When the KDM7A gene was knocked down, bladder cancer cell lines showed impaired cell growth, increased cell death, and reduced rates of cell migration. Biochemical studies revealed that KDM7A knockdown in the bladder cancer cells repressed the activity of androgen receptor (AR) through epigenetic regulation. When we developed a cisplatin-resistant bladder cancer cell line, we found that AR expression was highly elevated. Upon treatment with TC-E 5002, a chemical inhibitor of KDM7A, the cisplatin-resistant bladder cancer cells, showed decreased cell proliferation. In the mouse xenograft model, KDM7A knockdown or treatment with its inhibitor reduced the growth of the bladder tumor. We also observed the upregulation of KDM7A expression in patients with bladder cancer. The findings suggest that histone demethylase KDM7A mediates the growth of bladder cancer. Moreover, our findings highlight the therapeutic potential of the KMD7A inhibitor, TC-E 5002, in patients with cisplatin-resistant bladder cancer.
Collapse
|