1
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lin C, Wu J, Wang Z, Xiang Y. Long non-coding RNA LNC-POTEM-4 promotes HCC progression via the LNC-POTEM-4/miR-149-5p/Wnt4 signaling axis. Cell Signal 2024; 124:111412. [PMID: 39278454 DOI: 10.1016/j.cellsig.2024.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Information on the potential role of the long non-coding RNA LNC-POTEM-4 in cancer progression is limited. Our preliminary study found that LNC-POTEM-4 was overexpressed in hepatocellular carcinoma (HCC) tissues, which led us to further investigate the biological function and molecular mechanism of LNC-POTEM-4 in HCC development. LNC-POTEM-4 expression in HCC tissues was examined using transcriptome sequencing and quantitative reverse transcription PCR. The relationships between LNC-POTEM-4 and the stage and prognosis of HCC in patient data from the TCGA database were analyzed. The effects of LNC-POTEM-4 on proliferation, invasion/migration, and epithelial-mesenchymal transition marker expression in HCC cells were evaluated in vitro using gain- and loss-of-function assays, while its effects on tumor growth and metastasis were explored through animal experiments. A LNC-POTEM-4/microRNA (miR)-149-5p/Wnt4 regulatory signaling axis was identified using bioinformatics analysis, and dual luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. Co-transfection of LNC-POTEM-4 and Wnt4 expression plasmids was employed to confirm the new signaling pathway. We found that LNC-POTEM-4 was overexpressed in HCC tissues and was linked to poor staging and prognosis. LNC-POTEM-4 promoted proliferation, invasion, migration, and the epithelial-mesenchymal transition of HCC cells in vitro. Silencing of LNC-POTEM-4 inhibited HCC growth and distant metastasis in vivo. Mechanically, LNC-POTEM-4 was found to function as a competitive endogenous RNA, upregulating Wnt4 by sponging miR-149-5p to promote HCC progression. Wnt4 overexpression may have counteracted the tumor-inhibition effect of LNC-POTEM-4 silencing. In conclusion, LNC-POTEM-4 upregulated Wnt4 to activate the Wnt signaling pathway and stimulate the malignancy tendency of HCC by sponging miR-149-5p, providing a prospective target for the detection and therapy of HCC. However, the effects of LNC-POTEM-4 on the miR-149-5p/Wnt4 signaling axis should be further studied in animal experiments.
Collapse
Affiliation(s)
- Chao Lin
- Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiacheng Wu
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Zhixuan Wang
- Intensive Care Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Yien Xiang
- Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
3
|
Zhao T, Ma F. Roles of Long Noncoding RNA in Prostate Cancer Pathogenesis. Clin Genitourin Cancer 2024; 22:102213. [PMID: 39357460 DOI: 10.1016/j.clgc.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024]
Abstract
Prostate cancer stands as the most common cancer in men, and research into its genesis and spread is still vital. The idea that the human genome's transcriptional activity is more widespread than previously thought has received empirical validation through the application of deep sequencing-based transcriptome profiling techniques. An assortment of noncoding transcripts longer than 200 nucleotides is referred to as long noncoding RNAs (lncRNAs). Transposable elements comprise a substantial portion of the human genome, with projections indicating that their prospective proportion may reach 90%. Considering they can interact directly with proteins, alter the transcriptional activity of coding genes, and perhaps encode proteins, lncRNAs possess the capability to regulate a variety of biological processes. LncRNAs have been recognized to be key factors in the development of several types of human cancers, including lung, colorectal, and breast cancers, alongside other pathological processes that have a significant impact on the diagnosis and survival of cancer individuals. Furthermore, lncRNAs' discernible expression patterns throughout various cancer scenarios significantly raise their potential as biomarkers and therapeutic targets. We conducted an extensive analysis of the prevailing academic literature on the interaction between lncRNAs and prostate cancer in order to present a solid foundation for potential future studies on the prevention and intervention of prostate cancer. The discourse additionally expands on lncRNAs' prospective applications as targets and biomarkers for medical therapies.
Collapse
Affiliation(s)
- Tongyue Zhao
- Department of Clinical Medicine, Chengdu Medical College, Chengdu City, Sichuan, China
| | - Feng Ma
- Department of Medical Oncology, Jiashan Hospital of Traditional Chinese Medicine, Jiaxing City, China.
| |
Collapse
|
4
|
Shelash SI, Shabeeb IA, Ahmad I, Saleem HM, Bansal P, Kumar A, Deorari M, Kareem AH, Al-Ani AM, Abosaoda MK. lncRNAs'p potential roles in the pathogenesis of cancer via interacting with signaling pathways; special focus on lncRNA-mediated signaling dysregulation in lung cancer. Med Oncol 2024; 41:310. [PMID: 39516331 DOI: 10.1007/s12032-024-02536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Lung cancer ranks among the most lethal types of cancer globally, with a high occurrence and fatality rate. The spread of cancer to other parts of the body, known as metastasis, is the primary cause of treatment failure and death in lung cancer cases. Current approaches for treating advanced lung cancer typically involve a combination of chemotherapy and targeted therapy. However, the majority of patients ultimately develop resistance to these treatments, leading to a worsened prognosis. In recent years, cancer biology research has predominantly focused on the role of protein-encoding genes in cancer development. Long non-coding RNAs (lncRNAs) are transcripts over 200 nucleotides in length that do not encode proteins but are crucial RNA molecules involved in numerous biological functions. While many functions of lncRNAs remain unknown, some have been linked to human diseases, including cancer. Studies have demonstrated that lncRNAs interact with other large molecules in the cell, such as proteins, DNA, and RNA, influencing various critical aspects of cancer. LncRNAs play a significant role in regulating gene expression and have a crucial function in the transcriptional regulation of cancer cells. They mediate various biological and clinical processes such as invasion, metastasis, apoptosis, and cell proliferation. Dysregulation of lncRNAs has been found to impact the process of carcinogenesis through advanced technologies like RNA sequencing and microarrays. Collectively, these long non-coding RNAs hold promise as potential biomarkers and therapeutic targets for human cancers. In this segment, we provide a comprehensive summary of the literature on the characteristics and formation of lncRNAs, along with an overview of their current known roles in lung cancer.
Collapse
Affiliation(s)
- Sulieman Ibrahim Shelash
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- Research Follower, INTI International University, Negeri Sembilan, 71800, Nilai, Malaysia
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Hiba Muwafaq Saleem
- Department of Biology, College of Science, University Of Anbar, Ramadi, Iraq.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan
- Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Zhu R, Zhou H, Chen W, Bai S, Liu F, Wang X. BCL2L1 is regulated by the lncRNA MIR4435-2HG-miR-513a-5p-BCL2L1 ceRNA axis and serves as a biomarker for pancreatic adenocarcinoma treatment and prognosis. Gene 2024; 925:148615. [PMID: 38788819 DOI: 10.1016/j.gene.2024.148615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most malignant cancers. After escaping death, cancer cells are made more metastatic, aggressive, and also drug-resistant through anoikis resistance. The aim of this study is to explore the molecular mechanisms of anoikis-related genes in PAAD and to identify potential key biomarkers. We integrated information about PAAD from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases and identified anoikis-related gene BCL2L1 by survival analysis, univariate Cox regression analysis, and multifactorial Cox regression analysis. Various bioinformatics approaches showed that BCL2L1 was a valuable prognostic marker that might be involved in PAAD development and progression through different mechanisms, including cancer intervention, genomic heterogeneity, and RNA modifications. Our analysis showed that BCL2L1 expression also closely correlates with the expression of various immune checkpoint inhibitors. In particular, we found that long non-coding RNA MIR4435-2HG acted as ceRNA sponging miR-513a-5p to promote the expression of BCL2L1, thereby promoting pancreatic cancer cells proliferation. In conclusion, BCL2L1 expression regulated by the MIR4435-2HG-miR-513a-5p-BCL2L1 ceRNA axis might be used as a biomarker for cancer prognosis, treatment selection, and follow-up in PAAD patients.
Collapse
Affiliation(s)
- Rongkun Zhu
- Department of Neurosurgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Hongjian Zhou
- Department of Neurosurgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Wei Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Shanwang Bai
- Department of Respiratory and Critical Care Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Fashun Liu
- Department of Emergency Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| | - Xiongwei Wang
- Department of Neurosurgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
6
|
Li P, Ge H, Zhao J, Zhou Y, Zhou J, Li P, Luo J, Zhang W, Tian Z, Zhao X. Disrupting of IGF2BP3-stabilized HK2 mRNA by MYO16-AS1 competitively binding impairs LUAD migration and invasion. Mol Cell Biochem 2024; 479:2795-2808. [PMID: 38041756 PMCID: PMC11455711 DOI: 10.1007/s11010-023-04887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/24/2023] [Indexed: 12/03/2023]
Abstract
Since invasive cancer is associated with poor clinical outcomes, exploring the molecular mechanism underlying LUAD progression is crucial to improve the prognosis of patients with advanced disease. Herein, we found that MYO16-AS1 is expressed mainly in lung tissue but is notably downregulated in LUAD tissues. Overexpression of MYO16-AS1 inhibited the migration and invasion of LUAD cells. Mechanistic studies indicated that H3K27Ac modification mediated MYO16-AS1 transcription. Furthermore, we found that MYO16-AS1 competitively bound to the IGF2BP3 protein and in turn reduced IGF2BP3 protein binding to HK2 mRNA, decreasing HK2 mRNA stability and inhibiting glucose metabolism reprogramming and LUAD cell invasion in vitro and in vivo. The finding that the MYO16-AS1/IGF2BP3-mediated glucose metabolism reprogramming mechanism regulates HK2 expression provides novel insight into the process of LUAD invasion and suggests that MYO16-AS1 may be a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Peiwei Li
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Haibo Ge
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Jiangfeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yongjia Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Jie Zhou
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Peichao Li
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Junwen Luo
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Shandong Engineering Laboratory for Precise Diagnosis and Treatment of Chest Cancer, Key Laboratory of Thoracic Cancer in Universities of Shandong, Jinan, China.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Shandong Engineering Laboratory for Precise Diagnosis and Treatment of Chest Cancer, Key Laboratory of Thoracic Cancer in Universities of Shandong, Jinan, China.
| |
Collapse
|
7
|
Yadav B, Yadav P, Yadav S, Pandey AK. Role of long noncoding RNAs in the regulation of alternative splicing in glioblastoma. Drug Discov Today 2024; 29:104140. [PMID: 39168403 DOI: 10.1016/j.drudis.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly severe primary brain tumor. Despite extensive research, effective treatments remain elusive. Long noncoding RNAs (lncRNAs) play a significant role in both cancer and normal biology. They influence alternative splicing (AS), which is crucial in cancer. Advances in lncRNA-specific microarrays and next-generation sequencing have enhanced understanding of AS. Abnormal AS contributes to cancer invasion, metastasis, apoptosis, therapeutic resistance, and tumor development, including glioma. lncRNA-mediated AS affects several cellular signaling pathways, promoting or suppressing cancer malignancy. This review discusses the lncRNAs regulating AS in glioblastoma and their mechanisms.
Collapse
Affiliation(s)
- Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Pooja Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Sunita Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Suri C, Swarnkar S, Bhaskar LVKS, Verma HK. Non-Coding RNA as a Biomarker in Lung Cancer. Noncoding RNA 2024; 10:50. [PMID: 39452836 PMCID: PMC11514784 DOI: 10.3390/ncrna10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Lung cancer remains one of the most prevalent and deadly cancers globally, with high mortality rates largely due to late-stage diagnosis, aggressive progression, and frequent recurrence. Despite advancements in diagnostic techniques and therapeutic interventions, the overall prognosis for lung cancer patients continues to be dismal. METHOD Emerging research has identified non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, and circular RNAs, as critical regulators of gene expression, significantly influencing cancer biology. These ncRNAs play pivotal roles in various aspects of lung cancer pathogenesis, including tumor initiation, progression, metastasis, and resistance to therapy. RESULTS We provide a comprehensive analysis of the current understanding of ncRNAs in lung cancer, emphasizing their potential as biomarkers for early diagnosis, prognostication, and the prediction of the therapeutic response. We explore the biological functions of ncRNAs, their involvement in key oncogenic pathways, and the molecular mechanisms by which they modulate gene expression and cellular processes in lung cancer. Furthermore, this review highlights recent advances in ncRNA-based diagnostic tools and therapeutic strategies, such as miRNA mimics and inhibitors, lncRNA-targeted therapies, and circRNA-modulating approaches, offering promising avenues for personalized medicine. CONCLUSION Finally, we discuss the challenges and future directions in ncRNA research, including the need for large-scale validation studies and the development of efficient delivery systems for ncRNA-based therapies. This review underscores the potential of ncRNAs to revolutionize lung cancer management by providing novel diagnostic and therapeutic options that could improve patient outcomes.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Shashikant Swarnkar
- Department of Biochemistry, C.C.M. Medical College, Bhilai 490020, Chhattisgarh, India;
| | - LVKS Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India;
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Health and Immunity, Comprehensive Pnemology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
- Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
9
|
Sun Z, Li X, Shi Y, Yao Y. LncRNA PVT1 facilitates the growth and metastasis of colorectal cancer by sponging with miR-3619-5p to regulate TRIM29 expression. Cancer Rep (Hoboken) 2024; 7:e2085. [PMID: 38837682 PMCID: PMC11150075 DOI: 10.1002/cnr2.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide. Long noncoding RNA (lncRNA) is involved in many malignant tumors. This study aimed to clarify the role of the lncRNA plasmacytoma variant translocation 1 (PVT1) in CRC growth and metastasis. METHODS Differentially expressed lncRNAs in CRC were analyzed using the Cancer Genome Atlas. Gene expression profiling interactive analysis and a comprehensive resource for lncRNAs from cancer arrays databases were used to analyze lncRNA PVT1 expression and CRC prognosis, respectively. Cell counting kit-8, wound healing, colony formation, Transwell, and immunofluorescence assays were used to evaluate CRC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), respectively. Tumor growth and metastasis models were used to explore the PVT1 effect on the growth and metastasis of CRC in vivo. RESULTS PVT1 was highly expressed in CRC, associated with a poor prognosis of CRC, and showed good diagnostic value. Transfection of sh-PVT1 or pcDNA3.1-PVT1 reduced or increased the proliferation, wound healing rate, colony formation, invasion, and EMT of CRC cells. PVT1 and miR-3619-5p were co-expressed in CRC cytoplasm, and PVT1 acted as a competitive endogenous RNA (ceRNA) by sponging miR-3619-5p to up-regulate tripartite motif containing 29 (TRIM29) expression. MiR-3619-5p overexpression and TRIM29 knockdown reduced proliferation, wound healing rate, invasion, and EMT of CRC cells. However, simultaneous PVT1 and miR-3619-5p overexpression or knockdown of miR-3619-5p and TRIM29 knockdown rescued the malignant phenotype of CRC cells. CONCLUSIONS We first clarified the ceRNA mechanism of PVT1 in CRC, which induced growth and metastasis by sponging with miR-3619-5p to regulate TRIM29.
Collapse
Affiliation(s)
- Zhenni Sun
- Department of Oncology, Qingdao Municipal HospitalMedical College of Qingdao University QingdaoQingdaoShandongPeople's Republic of China
| | - Xutong Li
- Department of Oncology, Qingdao Municipal HospitalMedical College of Qingdao University QingdaoQingdaoShandongPeople's Republic of China
| | - Yanyan Shi
- Department of OncologyQingdao women and children's HospitalQingdaoShandongPeople's Republic of China
| | - Yasai Yao
- Department of Medical oncologyQingdao Fuwai Cardiovascular HospitalQingdaoShandongPeople's Republic of China
| |
Collapse
|
10
|
Alzahrani AA, Saleh RO, Latypova A, Bokov DO, Kareem AH, Talib HA, Hameed NM, Pramanik A, Alawadi A, Alsalamy A. Therapeutic significance of long noncoding RNAs in estrogen receptor-positive breast cancer. Cell Biochem Funct 2024; 42:e3993. [PMID: 38532685 DOI: 10.1002/cbf.3993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Amaliya Latypova
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | - Hayder Abdullah Talib
- College of Agriculture, National University of Science and Technology, Dhi Qar, Dhi Qar, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Iraq
| | - Atreyi Pramanik
- Divison of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
11
|
Zhang G, Tao X, Ji BW, Gong J. Long Non-coding RNA COX10-AS1 Promotes Glioma Progression by Competitively Binding miR-1-3p to Regulate ORC6 Expression. Neuroscience 2024; 540:68-76. [PMID: 38244670 DOI: 10.1016/j.neuroscience.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 01/22/2024]
Abstract
Glioma is one of the most common and difficult to cure malignant primary tumors of the central nervous system. Long non-coding RNA (lncRNA) has been reported to play important functions in biological processes of many tumors, including glioma. In our study, we aimed to reveal the role and molecular mechanisms of lncRNA COX10-AS1 in regulating the progression of glioma. First of all, we showed that lncRNA COX10-AS1 was significantly increased in glioma tissues and cell lines, and high-expressed COX10-AS1 was associated with a poor prognosis in glioma patients. Moreover, through performing the functional experiments, including CCK-8, colony formation and Transwell assays, we confirmed that COX10-AS1 ablation curbed cell proliferation, migration and invasion in glioblastoma (GBM) cells. In addition, we uncovered that there existed a regulatory relationship that COX10-AS1 upregulated OCR6 by sponging miR-1-3p in GBM cells, and the following rescue assays demonstrated that both miR-1-3p downregulation and origin recognition complex subunit 6 (ORC6) overexpression rescued cell viability, migration and invasion in the COX10-AS1-deficient GBM cells. Consistently, we also verified that COX10-AS1 promoted tumorigenesis of the GBM cells in vivo through modulating the miR-1-3p/ORC6 axis. On the whole, our findings indicated a novel ceRNA pattern in which COX10-AS1 elevated OCR6 expression via sponging miR-1-3p, therefore boosting tumorigenesis in glioma, and we firstly discussed the underlying mechanisms by which the COX10-AS1/miR-1-3p/ORC6 axis affected the progression of glioma.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Bao-Wei Ji
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Jie Gong
- Department of Neurosurgery, General Hospital, Central Theater Command, PLA, Wuhan 430070, China.
| |
Collapse
|
12
|
Saadh MJ, Rasulova I, Almoyad MAA, Kiasari BA, Ali RT, Rasheed T, Faisal A, Hussain F, Jawad MJ, Hani T, Sârbu I, Lakshmaiya N, Ciongradi CI. Recent progress and the emerging role of lncRNAs in cancer drug resistance; focusing on signaling pathways. Pathol Res Pract 2024; 253:154999. [PMID: 38118218 DOI: 10.1016/j.prp.2023.154999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
It is becoming more and more apparent that many of the genetic alterations associated with cancer are located in areas that do not encode proteins. lncRNAs are a class of RNAs that do not code for proteins but play a crucial role in maintaining cell function and regulating various cellular processes. By doing this, they have recently introduced what may be a brand-new and essential layer of biological control. These have more than 200 nucleotides and are linked to several diseases; as a result, they have become potential tools for therapeutic intervention. Emerging technologies suggest the presence of mutations on genomic loci that give rise to lncRNAs rather than proteins in a disease as complex as cancer. These lncRNAs play essential parts in gene regulation, which impacts several cellular homeostasis processes, including proliferation, survival, migration, and genomic stability. The leading cause of death in the world today is cancer. Delays in diagnosis and a lack of standard and efficient treatments are the leading causes of the high death rate. Clinically, surgery is frequently used successfully to remove cancers that have not spread, but it is less successful in treating metastatic cancer, which has a drastically lower chance of survival. Chemotherapeutic drugs are a typical therapy to treat the cancer that has spread to other organs. Drug resistance to chemotherapy, however, presents a significant challenge to achieving positive outcomes and is frequently the cause of treatment failure. A substantial barrier to progress in medical oncology is cancer drug resistance. Resistance can develop clinically either before or after cancer treatment. According to this study, lncRNAs influence drug resistance through several different methods. LncRNAs often impact drug resistance by controlling the expression of a few intermediary regulatory variables rather than by directly affecting drug resistance. Additionally, lncRNAs have a variety of roles in cancer medication resistance. Most lncRNAs induce drug resistance when overexpressed; however, other lncRNAs have inhibitory effects. This study provides an overview of the current understanding of lncRNAs, relevance to cancer, and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Muhammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 4536, 47 Abha Mushait, 61412, Saudi Arabia
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ronak Taher Ali
- College of Medical Technology, Al-Kitab University, Kirkuk, Iraq
| | - Tariq Rasheed
- College of Science and Humanities, Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
13
|
Szczepanek J, Tretyn A. MicroRNA-Mediated Regulation of Histone-Modifying Enzymes in Cancer: Mechanisms and Therapeutic Implications. Biomolecules 2023; 13:1590. [PMID: 38002272 PMCID: PMC10669115 DOI: 10.3390/biom13111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
In the past decade, significant advances in molecular research have provided a deeper understanding of the intricate regulatory mechanisms involved in carcinogenesis. MicroRNAs, short non-coding RNA sequences, exert substantial influence on gene expression by repressing translation or inducing mRNA degradation. In the context of cancer, miRNA dysregulation is prevalent and closely associated with various stages of carcinogenesis, including initiation, progression, and metastasis. One crucial aspect of the cancer phenotype is the activity of histone-modifying enzymes that govern chromatin accessibility for transcription factors, thus impacting gene expression. Recent studies have revealed that miRNAs play a significant role in modulating these histone-modifying enzymes, leading to significant implications for genes related to proliferation, differentiation, and apoptosis in cancer cells. This article provides an overview of current research on the mechanisms by which miRNAs regulate the activity of histone-modifying enzymes in the context of cancer. Both direct and indirect mechanisms through which miRNAs influence enzyme expression are discussed. Additionally, potential therapeutic implications arising from miRNA manipulation to selectively impact histone-modifying enzyme activity are presented. The insights from this analysis hold significant therapeutic promise, suggesting the utility of miRNAs as tools for the precise regulation of chromatin-related processes and gene expression. A contemporary focus on molecular regulatory mechanisms opens therapeutic pathways that can effectively influence the control of tumor cell growth and dissemination.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
14
|
Silva JMC, Teixeira EB, Mourão RMDS, Ferraz RS, Moreira FC, de Assumpção PP, Calcagno DQ. The landscape of lncRNAs in gastric cancer: from molecular mechanisms to potential clinical applications. Front Pharmacol 2023; 14:1237723. [PMID: 37670949 PMCID: PMC10476871 DOI: 10.3389/fphar.2023.1237723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Gastric cancer (GC) is a highly prevalent and deadly malignant neoplasm worldwide. Currently, long non-coding RNAs (lncRNAs) have recently been identified as crucial regulators implicated in GC development and progression. Dysregulated expression of lncRNAs is commonly associated with enhanced tumor migration, invasiveness, and therapy resistance, highlighting their potential as promising targets for clinical applications. This review offers a comprehensive historical overview of lncRNAs in GC, describes the molecular mechanisms, and discusses the prospects and challenges of establishing lncRNAs as precision biomarkers.
Collapse
Affiliation(s)
| | | | | | - Rafaella Sousa Ferraz
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem, Pará, Brazil
| | | | | | | |
Collapse
|
15
|
Feng J, Wang M, Du GS, Peng K, Li LQ, Li XS. Crosstalk between autophagy and bladder transitional cell carcinoma by autophagy-related lncRNAs. Medicine (Baltimore) 2023; 102:e34130. [PMID: 37390250 PMCID: PMC10313302 DOI: 10.1097/md.0000000000034130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
The aim of this study was to investigate the crosstalk between autophagy and bladder transitional cell carcinoma (TCC) by autophagy-related long noncoding RNAs (lncRNAs). A total of 400 TCC patients from The Cancer Genome Atlas were enrolled in this study. We identified the autophagy-related lncRNA expression profile of the TCC patients and then constructed a prognostic signature using the least absolute shrinkage and selection operation and Cox regression. Risk, survival, and independent prognostic analyses were carried out. Receiver operating characteristic curve, nomogram, and calibration curves were explored. Gene Set Enrichment Analysis was employed to verify the enhanced autophagy-related functions. Finally, we compared the signature with several other lncRNA-based signatures. A 9-autophagy-related lncRNA signature was established by least absolute shrinkage and selection operation-Cox regression that was significantly associated with overall survival in TCC. Among them, 8 of the 9 lncRNAs were protective factors while the remaining was a risk factor. The risk scores calculated by the signature showed significant prognostic value in survival analysis between the high- or low-risk groups. The 5-year survival rate for the high-risk group was 26.0% while the rate for the low-risk group was 56.0% (P < .05). Risk score was the only significant risk factor in the multivariate Cox regression survival analysis (P < .001). A nomogram connecting this signature with clinicopathologic characteristics was assembled. To assess the performance of the nomogram, a C-index (0.71) was calculated, which showed great convergence with an ideal model. The Gene Set Enrichment Analysis results demonstrated 2 major autophagy-related pathways were significantly enhanced in TCC. And this signature performed a similar predictive effect as other publications. The crosstalk between autophagy and TCC is significant, and this 9 autophagy-related lncRNA signature is a great predictor of TCC.
Collapse
Affiliation(s)
- Jie Feng
- Special Medical Department, Chongqing General Hospital, Chongqing PR China
| | - Min Wang
- Special Medical Department, Chongqing General Hospital, Chongqing PR China
| | - Guang-Sheng Du
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Li-Qi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Xiang-Sheng Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
16
|
Gencel-Augusto J, Wu W, Bivona TG. Long Non-Coding RNAs as Emerging Targets in Lung Cancer. Cancers (Basel) 2023; 15:3135. [PMID: 37370745 DOI: 10.3390/cancers15123135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are mRNA-like molecules that do not encode for proteins and that are longer than 200 nucleotides. LncRNAs play important biological roles in normal cell physiology and organism development. Therefore, deregulation of their activities is involved in disease processes such as cancer. Lung cancer is the leading cause of cancer-related deaths due to late stage at diagnosis, distant metastasis, and high rates of therapeutic failure. LncRNAs are emerging as important molecules in lung cancer for their oncogenic or tumor-suppressive functions. LncRNAs are highly stable in circulation, presenting an opportunity for use as non-invasive and early-stage cancer diagnostic tools. Here, we summarize the latest works providing in vivo evidence available for lncRNAs role in cancer development, therapy-induced resistance, and their potential as biomarkers for diagnosis and prognosis, with a focus on lung cancer. Additionally, we discuss current therapeutic approaches to target lncRNAs. The evidence discussed here strongly suggests that investigation of lncRNAs in lung cancer in addition to protein-coding genes will provide a holistic view of molecular mechanisms of cancer initiation, development, and progression, and could open up a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
- UCSF Hellen Diller Comprehensive Cancer Center, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Ragavi R, Muthukumaran P, Nandagopal S, Ahirwar DK, Tomo S, Misra S, Guerriero G, Shukla KK. Epigenetics regulation of prostate cancer: Biomarker and therapeutic potential. Urol Oncol 2023:S1078-1439(23)00090-X. [PMID: 37032230 DOI: 10.1016/j.urolonc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. The etiology of most cases of CaP is not understood completely, which makes it imperative to search for the molecular basis of CaP and markers for early diagnosis. Epigenetic modifications, including changes in DNA methylation patterns, histone modifications, miRNAs, and lncRNAs are key drivers of prostate tumorigenesis. These epigenetic defects might be due to deregulated expression of the epigenetic machinery, affecting the expression of several important genes like GSTP1, RASSF1, CDKN2, RARRES1, IGFBP3, RARB, TMPRSS2-ERG, ITGB4, AOX1, HHEX, WT1, HSPE, PLAU, FOXA1, ASC, GPX3, EZH2, LSD1, etc. In this review, we highlighted the most important epigenetic gene alterations and their variations as a diagnostic marker and target for therapeutic intervention of CaP in the future. Characterization of epigenetic changes involved in CaP is obscure and adequate validation studies are still required to corroborate the present results that would be the impending future of transforming basic research settings into clinical practice.
Collapse
Affiliation(s)
- Ravindran Ragavi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Srividhya Nandagopal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Atal Bihari Vajpayee Medical University, Lucknow Uttar Pradesh, India
| | - Giulia Guerriero
- Comparative Endocrinology Lab, Department of Biology, University of Naples Federico II, Naples, Italy
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
18
|
Rastad H, Mozafary Bazargany MH, Samimisedeh P, Farahani M, Hashemnejad M, Moghadam S, Khodaparast Z, Shams R, Seifi-Alan M. Clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer: a systematic review study and meta-analysis. Pathol Res Pract 2023; 245:154403. [PMID: 37004278 DOI: 10.1016/j.prp.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Aberrant expression of lncRNAs in cancer cells can impact their key phenotypes. We aimed to summarize available evidence on clinicopathological and prognostic value of lncRNA TPT1-AS1 in cancer. METHODS A systematic search was performed on Medline and Embase databases using relevant key terms covering lncRNA TPT1-AS1, cancer, and clinical outcomes. The effect size estimates and their 95 % confidence interval (CI) were pooled using random-effects models. Meta- analyses were conducted using STATA 16.0 software. RESULTS Seventeen articles met our eligibility criteria. Tumor tissue compared to normal tissue showed increased level of lncRNA TPT1-AS1 expression (pooled standardized mean difference (95 % CI): 0.65 (0.52-0.79)). Overexpression of this lncRNA was a significant predictor for poor prognosis (Pooled log-rank test P-value < 0.001); in patients with high-level of lncRNA TPT1-AS1, the risk of death at five years was 1.40 times greater than their counterparts. The pooled Odds ratios for association lncRNA TPT1-AS1 with tumor stage, tumor size, and lymph node metastasis were 1.94 (95 % CI: 0.90-4.19, 8 studies, I2 = 79.6 %), 2.33 (95 % CI: 1.31-4.14, 5 studies, I2 = 40.0 %), and 1.89 (95 % CI: 1.08-3.36, 5 studies, I2 = 61.7 %), respectively. Regarding the identified potential mechanisms, lncRNA TPT1-AS1 plays a role in cancer growth mainly by sponging miRNAs and regulating their downstream targets or controlling the expression of key cell cycle regulators. CONCLUSION In cancer patients, elevated expression of lncRNA TPT1-AS1 might be associated with a shorter Overall Survival, advanced stages, larger tumor size, and lymph node metastasis.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Farahani
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Somaye Moghadam
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Khodaparast
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Shams
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahnaz Seifi-Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
19
|
Chow CN, Yang CW, Chang WC. Databases and prospects of dynamic gene regulation in eukaryotes: A mini review. Comput Struct Biotechnol J 2023; 21:2147-2159. [PMID: 37013004 PMCID: PMC10066511 DOI: 10.1016/j.csbj.2023.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 04/05/2023] Open
Abstract
In eukaryotes, dynamic regulation enables DNA polymerases to catalyze a variety of RNA products in spatial and temporal patterns. Dynamic gene expression is regulated by transcription factors (TFs) and epigenetics (DNA methylation and histone modification). The applications of biochemical technology and high-throughput sequencing enhance the understanding of mechanisms of these regulations and affected genomic regions. To provide a searchable platform for retrieving such metadata, numerous databases have been developed based on the integration of genome-wide maps (e.g., ChIP-seq, whole-genome bisulfite sequencing, RNA-seq, ATAC-seq, DNase-seq, and MNase-seq data) and functionally genomic annotation. In this mini review, we summarize the main functions of TF-related databases and outline the prevalent approaches used in inferring epigenetic regulations, their associated genes, and functions. We review the literature on crosstalk between TF and epigenetic regulation and the properties of non-coding RNA regulation, which are challenging topics that promise to pave the way for advances in database development.
Collapse
|
20
|
Functional roles of long noncoding RNA MALAT1 in gynecologic cancers. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:48-65. [PMID: 36042115 DOI: 10.1007/s12094-022-02914-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Gynecologic cancers are reproductive disorders characterized by pelvic pain and infertility. The identification of new predictive markers and therapeutic targets for the treatment of gynecologic cancers is urgently necessary. One of the recent successes in gynecologic cancers research is identifying the role of signaling pathways in the pathogenesis of the disease. Recent experiments showed long noncoding RNAs (lncRNA) can be novel therapeutic approaches for the diagnosis and treatment of gynecologic cancers. LncRNA are transcribed RNA molecules that play pivotal roles in multiple biological processes by regulating the different steps of gene expression. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA that plays functional roles in gene expression, RNA processing, and epigenetic regulation. High expression of MALAT1 is closely related to numerous human diseases. It is generally believed that MALAT1 expression is associated with cancer cell growth, autophagy, invasion, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) could contribute to the pathogenesis of gynecologic cancers. In this review, we will summarize functional roles of MALAT1 in the most common gynecologic cancers, including endometrium, breast, ovary, and cervix.
Collapse
|
21
|
Rastad H, Samimisedeh P, Alan MS, Afshar EJ, Ghalami J, Hashemnejad M, Alan MS. The role of lncRNA CERS6-AS1 in cancer and its molecular mechanisms: A systematic review and meta-analysis. Pathol Res Pract 2023; 241:154245. [PMID: 36580796 DOI: 10.1016/j.prp.2022.154245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND LncRNAs have the potential to play a regulatory role in different processes of cancer development and progression. We conducted a systematic review and meta-analysis of evidence on the clinical significance and prognostic value of lncRNA CERS6-AS1 in cancer. METHODS This systematic review was conducted following PRISMA guidelines. Medline and Embase databases were searched using the relevant key terms covering lncRNA CERS6-AS1 and cancer. We pooled the estimated effect sizes and their 95 % confidence interval (CI) using random-effects models in STATA 16.0 (StataCorp, College Station, TX, USA). RESULTS Eleven articles on pancreatic, colorectal, gastric, papillary thyroid, breast, and hepatocellular cancers fulfilled our eligibility criteria. Studies consistently found that lncRNA CERS6-AS1 expression is upregulated in all assessed cancers. Based on our meta-analysis, its aberrant expression was directly associated with unfavorable clinical outcomes, including higher stage (pooled Odds ratios (95 % CI): 3.15 (2.01-4.93; I2 = 0.0 %), tumor size (1.97 (1.27-3.05; I2 = 37.8 %), lymph node metastasis (6.48 (4.01-10.45; I2 = 0.40 %), and poor survival (Pooled log-rank test P-value < 0.001) in patients. Regarding potential mechanisms, functional studies revealed that LncRNA CERS6-AS1 is involved in cancer growth mainly by sponging miRNAs and regulating their downstream targets. CONCLUSION Available evidence suggests that LncRNA CERS6-AS1 is upregulated in different cancers and has an oncogenic role. LncRNA CERS6-AS1 expression level might predict cancer prognosis, highlighting its potential application as a prognostic biomarker for cancer.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahin Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elmira Jafari Afshar
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Jamileh Ghalami
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; The Clinical Research Development units of Kamali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
22
|
Chu YD, Fan TC, Lai MW, Yeh CT. GALNT14-mediated O-glycosylation on PHB2 serine-161 enhances cell growth, migration and drug resistance by activating IGF1R cascade in hepatoma cells. Cell Death Dis 2022; 13:956. [PMID: 36376274 PMCID: PMC9663550 DOI: 10.1038/s41419-022-05419-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The single nucleotide polymorphism (SNP) rs9679162 located on GALNT14 gene predicts therapeutic outcomes in patients with intermediate and advanced hepatocellular carcinoma (HCC), but the molecular mechanism remains unclear. Here, the associations between SNP genotypes, GALNT14 expression, and downstream molecular events were determined. A higher GALNT14 cancerous/noncancerous ratio was associated with the rs9679162-GG genotype, leading to an unfavorable postoperative prognosis. A novel exon-6-skipped GALNT14 mRNA variant was identified in patients carrying the rs9679162-TT genotype, which was associated with lower GALNT14 expression and favorable prognosis. Cell-based experiments showed that elevated levels of GALNT14 promoted HCC growth, migration, and resistance to anticancer drugs. Using a comparative lectin-capture glycoproteomic approach, PHB2 was identified as a substrate for GALNT14-mediated O-glycosylation. Site-directed mutagenesis experiments revealed that serine-161 (Ser161) was the O-glycosylation site. Further analysis showed that O-glycosylation of PHB2-Ser161 was required for the GALNT14-mediated growth-promoting phenotype. O-glycosylation of PHB2 was positively correlated with GALNT14 expression in HCC, resulting in increased interaction between PHB2 and IGFBP6, which in turn led to the activation of IGF1R-mediated signaling. In conclusion, the GALNT14-rs9679162 genotype was associated with differential expression levels of GALNT14 and the generation of a novel exon-6-skipped GALNT14 mRNA variant, which was associated with a favorable prognosis in HCC. The GALNT14/PHB2/IGF1R cascade modulated the growth, migration, and anticancer drug resistance of HCC cells, thereby opening the possibility of identifying new therapeutic targets against HCC.
Collapse
Affiliation(s)
- Yu-De Chu
- grid.413801.f0000 0001 0711 0593Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tan-Chi Fan
- grid.454210.60000 0004 1756 1461Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Lai
- grid.413801.f0000 0001 0711 0593Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Pediatric Gastroenterology Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- grid.413801.f0000 0001 0711 0593Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Tang Y, Zhang H, Chen L, Zhang T, Xu N, Huang Z. Identification of Hypoxia-Related Prognostic Signature and Competing Endogenous RNA Regulatory Axes in Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:13590. [PMID: 36362375 PMCID: PMC9658439 DOI: 10.3390/ijms232113590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common type of liver cancer and one of the highly lethal diseases worldwide. Hypoxia plays an important role in the development and prognosis of HCC. This study aimed to construct a new hypoxia-related prognosis signature and investigate its potential ceRNA axes in HCC. RNA profiles and hypoxia genes were downloaded, respectively, from the Cancer Genome Atlas hepatocellular carcinoma database and Gene Set Enrichment Analysis website. Cox regression analyses were performed to select the prognostic genes and construct the risk model. The ENCORI database was applied to build the lncRNA-miRNA-mRNA prognosis-related network. The TIMER and CellMiner databases were employed to analyze the association of gene expression in ceRNA with immune infiltration and drug sensitivity, respectively. Finally, the co-expression analysis was carried out to construct the potential lncRNA/miRNA/mRNA regulatory axes. We obtained a prognostic signature including eight hypoxia genes (ENO2, KDELR3, PFKP, SLC2A1, PGF, PPFIA4, SAP30, and TKTL1) and further established a hypoxia-related prognostic ceRNA network including 17 lncRNAs, six miRNAs, and seven mRNAs for hepatocellular carcinoma. Then, the analysis of immune infiltration and drug sensitivity showed that gene expression in the ceRNA network was significantly correlated with the infiltration abundance of multiple immune cells, the expression level of immune checkpoints, and drug sensitivity. Finally, we identified three ceRNA regulatory axes (SNHG1/miR-101-3p/PPFIA4, SNHG1/miR-101-3p/SAP30, and SNHG1/miR-101-3p/TKTL1) associated with the progression of HCC under hypoxia. Here, we constructed a prognosis gene signature and a ceRNA network related to hypoxia for hepatocellular carcinoma. Among the ceRNA network, six highly expressed lncRNAs (AC005540.1, AC012146.1, AC073529.1, AC090772.3, AC138150.2, AL390728.6) and one highly expressed mRNA (PPFIA4) were the potential biomarkers of hepatocellular carcinoma which we firstly reported. The three predicted hypoxia-related regulatory axes may play a vital role in the progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yulai Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- The First Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Hua Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Lingli Chen
- The First Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Taomin Zhang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Na Xu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Zunnan Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
- Marine Medical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
24
|
Hu XQ, Zhang XC, Li ST, Hua T. Construction and validation of a histone acetylation-related lncRNA prognosis signature for ovarian cancer. Front Genet 2022; 13:934246. [PMID: 36313424 PMCID: PMC9596759 DOI: 10.3389/fgene.2022.934246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer (OC) leads to the most deaths among gynecological malignancies. The various epigenetic regulatory mechanisms of histone acetylation in cancer have attracted increasing attention from scientists. Long non-coding RNA (lncRNA) also plays an important role in multiple biology processes linked to OC. This study aimed to identify the histone acetylation-related lncRNAs (HARlncRNAs) with respect to the prognosis in OC. We obtained the transcriptome data from Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA); HARlncRNAs were first identified by co-expression and differential expression analyses, and then univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to construct the HARlncRNAs risk signature. Kaplan–Meier analysis, time-dependent receiver operating characteristics (ROC), univariate Cox regression, multivariate Cox regression, nomogram, and calibration were conducted to verify and evaluate the risk signature. Gene set enrichment analysis (GSEA) in risk groups were conducted to explore the tightly correlated pathways with the risk group. A risk signature with 14 HARlncRNAs in OC was finally established and further validated in the International Cancer Genome Consortium (ICGC) cohort; the 1-, 3-, and 5-year ROC value, nomogram, and calibration results confirmed the good prediction power of this model. The patients were grouped into high- and low-risk subgroups according to the risk score by the median value. The low-risk group patients exhibited a higher homologous recombination deficiency (HRD) score, LOH_frac_altered, and mutLoad_nonsilent. Furthermore, consensus clustering analysis was employed to divide OC patients into three clusters based on the expression of the 14 HARlncRNAs, which presented different survival probabilities. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) were also performed to evaluate the three clusters. In conclusion, the risk signature composed of 14 HARlncRNAs might function as biomarkers and prognostic indicators with respect to predicting the response to the anti-cancer drugs in OC.
Collapse
Affiliation(s)
- Xiao-Qian Hu
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Xiao-Chong Zhang
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Shao-Teng Li
- Department of Oncology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
| | - Tian Hua
- Department of Gynecology, Affiliated Xingtai People Hospital of Hebei Medical University, Xingtai, China
- *Correspondence: Tian Hua,
| |
Collapse
|
25
|
Interactome battling of lncRNA CCDC144NL-AS1: Its role in the emergence and ferocity of cancer and beyond. Int J Biol Macromol 2022; 222:1676-1687. [PMID: 36179873 DOI: 10.1016/j.ijbiomac.2022.09.209] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) were, once, viewed as "noise" for transcription. Recently, many lncRNAs are functionally linked to several human disorders, including cancer. Coiled-Coil Domain Containing 144 N-Terminal-Like antisense1 (CCDC144NL-AS1) is a newly discovered cytosolic lncRNA. Aberrant CCDC144NL-AS1 expression was discovered in hepatocellular carcinoma (HCC), ovarian cancer (OC), gastric cancer (GC), non-small cell lung cancer (NSCLC), and osteosarcoma. CCDC144NL-AS1 could be a promising prognostic biological marker and therapeutic target for cancer. In this review, we will collect and highlight the available information about CCDC144NL-AS1 role in various cancers. Moreover, we will discuss the diagnostic and prognostic utility of CCDC144NL-AS1 as a new molecular biomarker for several human malignancies, besides its potential therapeutic importance.
Collapse
|
26
|
Zhang H, Pan E, Zhang Y, Zhao C, Liu Q, Pu Y, Yin L. LncRNA RPL34-AS1 suppresses the proliferation, migration and invasion of esophageal squamous cell carcinoma via targeting miR-575/ACAA2 axis. BMC Cancer 2022; 22:1017. [PMID: 36162992 PMCID: PMC9511711 DOI: 10.1186/s12885-022-10104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRNA RPL34-AS1 in the development and progression of ESCC. METHODS The expression level of RPL34-AS1 in ESCC tissues and cell lines was determined by RT-qPCR. Functional experiments in vitro and in vivo were employed to explore the effects of RPL34-AS1 on tumor growth in ESCC cells. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between RPL34-AS1, miR-575 and ACAA2. RESULTS RPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. Functionally, upregulation of RPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, invasion and migration in vitro, whereas knockdown of RPL34-AS1 elicited the opposite function. Consistently, overexpression of RPL34-AS1 inhibited tumor growth in vivo. Mechanistically, RPL34-AS1 acted as a competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. CONCLUSIONS Our results reveal a role for RPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using RPL34-AS1 as a potential biomarker and an effect target for patients with ESCC.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Enchun Pan
- Huaian Center for Disease Control and Prevention, Huaian, 223001, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
27
|
Zhang F, Chen Q, Chen P, Liu C, Wang H, Zhao L. The lncRNA CRNDE is regulated by E2F6 and sensitizes gastric cancer cells to chemotherapy by inhibiting autophagy. J Cancer 2022; 13:3061-3072. [PMID: 36046639 PMCID: PMC9414014 DOI: 10.7150/jca.65871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy is an important treatment for gastric cancer (GC), but the primary and secondary drug resistance of tumours to chemotherapy seriously affects its curative effect. In recent years, the relationship between long noncoding RNAs (lncRNAs) and malignant tumours has received increasing attention. Based on accumulating evidence, lncRNAs are involved in the chemoresistance of GC, but the underlying mechanisms remain unclear. In this study, we identified the lncRNA colorectal neoplasia differentially expressed (CRNDE) as an important regulator of autophagy-associated chemoresistance in GC. Mechanistically, overexpression of CRNDE inhibits autophagy and induces apoptosis, thereby sensitizing GC cells to chemotherapy drugs. Moreover, E2F6, a classical transcriptional inhibitor, is confirmed to be upregulated in GC and represses the expression of CRNDE. The E2F6-CRNDE axis is clinically related to chemoresistant GC and poor outcomes in patients with advanced GC. Our findings suggest that the E2F6-CRNDE axis is a viable therapeutic target to protect against chemoresistance in GC.
Collapse
Affiliation(s)
- Feifei Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Chen
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaoqun Liu
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumour Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
29
|
Liu L, Zhang H, Lu X, Li L, Wang T, Li S, Wang X, Xu S, Li L, Li Q, Yi T, Wu T, Chen Z, Gao H, Wang J, Wang L. LncRNA LINC00680 Acts as a Competing Endogenous RNA and Is Associated With the Severity of Myasthennia Gravis. Front Neurol 2022; 13:833062. [PMID: 35800083 PMCID: PMC9253289 DOI: 10.3389/fneur.2022.833062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Myasthenia gravis (MG) is a T cell-dependent antibody-mediated autoimmune disorder that can seriously affect patients' quality of life. However, few studies have focused on the severity of MG. Moreover, existing therapeutic efforts, including those targeting biomarkers for MG, remain unsatisfactory. Therefore, it is vital that we investigate the pathogenesis of MG and identify new biomarkers that can not only evaluate the severity of the disease but also serve as potential therapeutic targets. Long noncoding RNA LINC00680 has been found to be associated with the progression of a variety of diseases as a competing endogenous RNA (ceRNA). However, the specific role of LINC00680 in MG has yet to be clarified. Here, we aimed to investigate the association between LINC00680 and the severity of MG. Methods Bioinformatics tools, quantitative real-time PCR, Western blotting, and luciferase assays were selected to investigate key signaling pathways and RNA expression in patients with MG. The Quantitative MG Score scale and the MG Composite scale were used to evaluate the severity of MG in the included patients. Cell viability assays and flow cytometry analysis were selected to analyze cell proliferation and apoptosis. Results Compared with control subjects, the expression levels of LINC00680 and mitogen-activated protein kinase 1 (MAPK1) in peripheral blood mononuclear cells of patients with MG were both upregulated; the levels of miR-320a were downregulated. A positive correlation was detected between LINC00680 expression and the severity of MG. Luciferase reporter assays identified that LINC00680 acts as a target for miR-320a. The in vitro analysis confirmed that LINC00680 regulates the expression of MAPK1 by sponging miR-320a. Finally, the functional analysis indicated that LINC00680 promoted Jurkat cell proliferation and inhibited cellular apoptosis by sponging miR-320a. Conclusion LINC00680 may be associated with the severity of MG as a ceRNA by sponging miR-320a to upregulate MAPK1. These findings suggest that LINC00680 may represent a potential biomarker which evaluates the severity of MG and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Li Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Yi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Wu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhimin Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Gao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Ding D, Zhang J, Luo Z, Wu H, Lin Z, Liang W, Xue X. Analysis of the lncRNA-miRNA-mRNA Network Reveals a Potential Regulatory Mechanism of EGFR-TKI Resistance in NSCLC. Front Genet 2022; 13:851391. [PMID: 35571024 PMCID: PMC9099042 DOI: 10.3389/fgene.2022.851391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/17/2022] [Indexed: 12/25/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are widely used for patients with EGFR-mutated lung cancer. Despite its initial therapeutic efficacy, most patients eventually develop drug resistance, which leads to a poor prognosis in lung cancer patients. Previous investigations have proved that non-coding RNAs including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) contribute to drug resistance by various biological functions, whereas how they regulate EGFR-TKI resistance remains unclear. In this study, we examined gene expression using the microarray technology on gefitinib-resistant NSCLC cells to obtain differentially expressed (DE) lncRNAs and mRNAs. A total of 45 DE-lncRNAs associated with overall survival and 1799 target DE-mRNAs were employed to construct a core lncRNA-miRNA-mRNA network to illustrate underlying molecular mechanisms of how EGFR-TKI resistance occurs in NSCLC. We found that target DE-mRNAs were mainly enriched in pathways involved in EGFR-TKI resistance, especially the target DE-mRNAs regulated by LINC01128 were significantly enriched in the PI3K/Akt signaling pathway, where the synergy of these target DE-mRNAs may play a key role in EGFR-TKI resistance. In addition, downregulated LINC01128, acting as a specific miRNA sponge, decreases PTEN via sponging miR-25-3p. Furthermore, signaling reactions caused by the downregulation of PTEN would activate the PI3K/Akt signaling pathway, which may lead to EGFR-TKI resistance. In addition, a survival analysis indicated the low expression of LINC01128, and PTEN is closely related to poor prognosis in lung adenocarcinoma (LUAD). Therefore, the LINC01128/miR-25-3p/PTEN axis may promote EGFR-TKI resistance via the PI3K/Akt signaling pathway, which provides new insights into the underlying molecular mechanisms of drug resistance to EGFR-TKIs in NSCLC. In addition, our study sheds light on developing novel therapeutic approaches to overcome EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Dandan Ding
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jufeng Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhiming Luo
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Huazhen Wu
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Zexiao Lin
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weicheng Liang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xingyang Xue
- Department of Thoracic Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Xu C, Zhao J, Song J, Xiao M, Cui X, Xin L, Xu J, Zhang Y, Yi K, Hong B, Tong F, Tian S, Tan Y, Kang C, Fang C. lncRNA PRADX is a Mesenchymal Glioblastoma Biomarker for Cellular Metabolism Targeted Therapy. Front Oncol 2022; 12:888922. [PMID: 35574370 PMCID: PMC9106305 DOI: 10.3389/fonc.2022.888922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal type of primary malignant central nervous system (CNS) tumor with an extremely poor prognosis, and the mesenchymal subtype of GBM has the worst prognosis. Here, we found that lncRNA PRADX was overexpressed in the mesenchymal GBM and was transcriptionally regulated by RUNX1-CBFβ complex, overexpressed PRADX suppressed BLCAP expression via interacting with EZH2 and catalyzing trimethylation of lysine 27 on histone H3 (H3K27me3). Moreover, we showed that BLCAP interacted with STAT3 and reduced STAT3 phosphorylation, overexpressed PRADX activated STAT3 phosphorylation, and promoted ACSL1 expression via suppressing BLCAP expression, accelerating tumor metabolism. Finally, we determined that combined of ACSL1 and CPT1 inhibitors could reverse the accelerated cellular metabolism and tumor growth induced by PRADX overexpression in vivo and in vitro. Collectively, PRADX/PRC2 complex activated the STAT3 pathway and energy metabolism in relation to mesenchymal GBM progression. Furthermore, our findings provided a novel therapeutic strategy targeting the energy metabolism activity of GBM.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Jixing Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jia Song
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Xiaoteng Cui
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Lei Xin
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Jianglong Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Yuhao Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Kaikai Yi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Biao Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Fei Tong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Shaohui Tian
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin, China
- Key Laboratory of Post-Neurotrauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| |
Collapse
|
32
|
Luo J, Gao K, Chen M, Tian B. LINC01210 promotes malignant phenotypes of colorectal cancer through epigenetically upregulating SRSF3. Pathol Res Pract 2022; 234:153905. [PMID: 35462226 DOI: 10.1016/j.prp.2022.153905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been linked to tumorigenesis. However, the role of LINC01210 in colorectal cancer (CRC) remains unclear. Relative levels of LINC01210 in CRC tissues and adjacent tissues were determined. Proliferative, migratory, and invasive abilities were examined in HCT116 cells and LoVo cells after silencing or overexpressing LINC01210. The interaction between LINC01210 and SRSF3 was explored by ChIP-PCR. Upregulated LINC01210 was associated with metastasis and advanced stage of CRC. Silencing LINC01210 attenuated proliferative, migratory, and invasive abilities in LoVo cells, while overexpressing LINC01210 promoted proliferative, migratory, and invasive abilities in HCT116 cells. Mechanism study revealed that LINC01210 increased the expression of SRSF3 by recruiting mixed lineage leukaemia protein-1, which upregulated the trimethylation of H3K4 me3 on SRSF3 promoter. Silencing SRSF3 reversed the effects of LINC01210 on CRC cells. In conclusions, LINC01210 accelerated proliferation and invasion in CRC cells through epigenetically upregulating SRSF3, and may be a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Jia Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Kai Gao
- Department of Gastrointestinal Surgery, Xiangya Third Hospital of Central South University, Changsha, Hunan Province, China
| | - Miao Chen
- Department of Gastrointestinal Surgery, Xiangya Third Hospital of Central South University, Changsha, Hunan Province, China
| | - Buning Tian
- Department of Gastrointestinal Surgery, Xiangya Third Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
33
|
MALAT1-related signaling pathways in colorectal cancer. Cancer Cell Int 2022; 22:126. [PMID: 35305641 PMCID: PMC8933897 DOI: 10.1186/s12935-022-02540-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/05/2022] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal and prevalent solid malignancies worldwide. There is a great need of accelerating the development and diagnosis of CRC. Long noncoding RNAs (lncRNA) as transcribed RNA molecules play an important role in every level of gene expression. Metastasis‐associated lung adenocarcinoma transcript‐1 (MALAT1) is a highly conserved nucleus-restricted lncRNA that regulates genes at the transcriptional and post-transcriptional levels. High expression of MALAT1 is closely related to numerous human cancers. It is generally believed that MALAT1 expression is associated with CRC cell proliferation, tumorigenicity, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) plays a pivotal role in CRC pathogenesis. Therefore, MALAT1 can be a potent gene for cancer prediction and diagnosis. In this review, we will demonstrate signaling pathways associated with MALAT1 in CRC.
Collapse
|
34
|
ESCCAL-1 promotes cell-cycle progression by interacting with and stabilizing galectin-1 in esophageal squamous cell carcinoma. NPJ Precis Oncol 2022; 6:12. [PMID: 35233069 PMCID: PMC8888636 DOI: 10.1038/s41698-022-00255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) play important roles in the development of human esophageal squamous cell carcinoma (ESCC). Our previous studies have shown that knockdown of LncRNA ESCCAL-1 expression inhibits the growth of ESCC cells, but the mechanisms remain largely unknown. In this study, we show that over-expression of ESCCAL-1 promotes ESCC cell proliferation and cell-cycle progression by blocking ubiquitin-mediated degradation of an oncoprotein galectin-1 (Gal-1). Multiple LncRNA expression datasets as well as our own data together reveal that ESCCAL-1 is evidently up-regulated in ESCC tissues and exhibits promising diagnostic value. Over-expression of ESCCAL-1 augmented ESCC cell proliferation and cell-cycle progression, whereas down-regulation of ESCCAL-1 resulted in the opposite effects. Mechanistically, LncRNA ESCCAL-1 directly binds to Gal-1 and positively regulates its protein level without affecting its mRNA level. Up-regulation of Gal-1 facilitated ESCC cell proliferation and cell-cycle progress. Knockdown of Gal-1 mitigated the effects of ESCCAL-1-mediated high cellular proliferation, NF-κB signaling activation and tumorigenicity of ESCC cells. Thus, our findings provide novel insight into the mechanism by which ESCCAL-1 facilitates ESCC tumorigenesis and cell-cycle progression by interacting with and stabilizing Gal-1 protein, suggesting a potential therapeutic target for ESCC.
Collapse
|
35
|
Jiang T, Luo ZB. LOC102724163 promotes breast cancer cell proliferation and invasion by stimulating MUC19 expression. Oncol Lett 2022; 23:100. [PMID: 35154431 PMCID: PMC8822485 DOI: 10.3892/ol.2022.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a malignant disease and the most commonly diagnosed cancer in women. Numerous studies have previously verified the important role of long non-coding RNAs in a number of biological processes in BC. In the present study, analysis of The Cancer Genome Atlas database and reverse transcription-quantitative PCR demonstrated that LOC102724163 expression levels were significantly upregulated in BC tissues compared to matched adjacent normal tissues and were associated with an unfavorable prognosis in patients with BC. Gain or loss of function assays indicated that overexpression of LOC102724163 significantly increased tumorgenicity in vivo and cell migration, proliferation and invasion in vitro. In the mechanistical aspect, LOC102724163 sponged microRNA (miR)-508-5p to elevate MUC19 expression. Additionally, rescue assays ascertained the function of the LOC102724163/miR-508-5p/MUC19 axis in the proliferation and invasion of BC cells. To the best of our knowledge, this is the first study to have demonstrated that LOC102724163 may act as a competing endogenous RNA to control MUC19 expression levels by competitively sponging miR-508-5p to modulate BC progression. Therefore, the present study has provided new insights into BC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhong-Bing Luo
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
36
|
Zhang Q, Zheng J, Liu L. Down-regulation of lncRNA LUADT1 suppresses cervical cancer cell growth by sequestering microRNA-1207-5p. Acta Biochim Biophys Sin (Shanghai) 2022; 54:321-331. [PMID: 35538030 PMCID: PMC9828286 DOI: 10.3724/abbs.2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence has proved the essential roles of long non-coding RNAs (lncRNAs) in cervical carcinoma (CC). LncRNA lung adenocarcinoma-associated transcript 1 (LUADT1) is overexpressed and plays an oncogenic role in various cancers; however, the function and clinical values of LUADT1 in CC remain unclear. In this study we found that LUADT1 is highly expressed in CC tissues and cells. Up-regulated LUADT1 is significantly correlated with the more aggressive status and poorer survival of CC patients. studies show that LUADT1 depletion suppresses CC proliferation, and leads to cell apoptosis and cell cycle arrest. Furthermore, the xenograft mouse assay demonstrates that LUADT1 knockdown remarkably suppresses tumor growth. Mechanistically, LUADT1 binds to miR-1207-5p and inhibits miR-1207-5p expression in CC cells. Septin 9 (SEPT9) is identified as a miR-1207-5p target which is negatively regulated by LUADT1. Overexpression of SEPT9 abrogates the suppressed proliferation of CC cells induced by LUADT1 knockdown. These results demonstrate that LUADT1 sponges miR-1207-5p and consequently modulates SEPT9 expression in CC. Our study suggests the possible application of LUADT1 as a prognostic and therapeutic target to inhibit CC.
Collapse
Affiliation(s)
| | | | - Lili Liu
- Correspondence address. Tel: +86-416-4197634; E-mail:
| |
Collapse
|
37
|
Integrated Analysis of miR-7-5p-Related ceRNA Network Reveals Potential Biomarkers for the Clinical Outcome of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8204818. [PMID: 35466319 PMCID: PMC9023173 DOI: 10.1155/2022/8204818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Gastric cancer (GC) is the second leading cause of tumor-associated death and the fourth most commonly seen tumor across the world. Abnormal ncRNAs have been verified to be involved in potential metastasis via modulating epithelial-to-mesenchymal transition progression and are vital for the progression of cancers. Tumor-infiltrating immune cells (TICs) are a vital indicator of whether cancer patients will benefit from immunotherapy. Nonetheless, the association between ceRNAs and immune cells remained largely unclear. We used the ceRNA network combined with TICs for the prediction of the clinical outcome of GC patients based on TCGA datasets. The percentage of immunocytes in GC was speculated by the use of CIBERSORT. Via Lasso and multivariate assays, prognostic models were established applying survival-related genes and immune cells. Nomograms were developed, and the accuracy of the nomograms was determined using calibration curves. The association between ceRNAs and TICs was validated by the use of integration analysis. In this study, there were 2219 mRNAs (1308 increased and 911 decreased), 171 lncRNAs (51 decreased and 120 increased), and 123 miRNAs (55 decreased and 68 increased) differentially expressed between tumor groups and nontumor groups. Five lncRNAs, six miRNAs, and 64 mRNAs were used for ceRNA network construction. Eight genes including LOX, SPARC, MASTL, PI15, BMPR1B, ANKRD13B, PVT1, and miR-7-5p were applied for the development of the prognostic model. Survival assays suggested that tumor cases with high risk exhibited a shorter overall survival. In addition, we included T-cell CD4 memory activated, monocytes, and neutrophils for the development of a prognosis model. Eventually, our team demonstrated the possible associations between the ceRNA prognosis model and prognostic model based on immune cells. To sum up, the ceRNA network could be used for gene regulation and predict clinical outcomes of GC patients.
Collapse
|
38
|
Peng L, Ye R, Zhu X, Xie Y, Zhong B, Liu Y, Li H, Xie B. LINC02273 Promotes Hepatocellular Carcinoma Progression via Retaining β-Catenin in the Nucleus to Augment Wnt Signaling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9631036. [PMID: 35132378 PMCID: PMC8817111 DOI: 10.1155/2022/9631036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy whereas the molecular mechanisms remain poorly understood. Recently, long noncoding RNAs (lncRNA) have been shown to regulate HCC progression. However, the involved lncRNAs remain to be fully explored. Here, we showed the expression pattern and biological function of a recently identified lncRNA, LINC02273, in HCC. LINC02273 played a critical role in HCC progression via stabilizing β-catenin. Knockdown of LINC02237 remarkably inhibited the proliferation, stemness, migration, and invasion abilities, whereas it increased the apoptosis of HCC cells. Overall, we characterized the functions of LINC02273 in HCC and its potential as a novel HCC targeting candidate.
Collapse
Affiliation(s)
- Liang Peng
- Medical College, Soochow University, Suzhou 215006, China
- The Second People's Hospital of Jingdezhen, Jingdezhen 333000, China
| | - Rong Ye
- Department of General Surgery III, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xiansen Zhu
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yuankang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Baiyin Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, China
- Ganzhou Key Laboratory of Gastrointestinal Carcinomas, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Heping Li
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Binhui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
39
|
Oton-Gonzalez L, Mazziotta C, Iaquinta MR, Mazzoni E, Nocini R, Trevisiol L, D’Agostino A, Tognon M, Rotondo JC, Martini F. Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases. Int J Mol Sci 2022; 23:ijms23031500. [PMID: 35163424 PMCID: PMC8836080 DOI: 10.3390/ijms23031500] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reported.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Riccardo Nocini
- Unit of Otolaryngology, University of Verona, 37134 Verona, Italy;
| | - Lorenzo Trevisiol
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Antonio D’Agostino
- Unit of Maxillo-Facial Surgery and Dentistry, University of Verona, 37134 Verona, Italy; (L.T.); (A.D.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy; (L.O.-G.); (C.M.); (M.R.I.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (J.C.R.); (F.M.); Tel.: +39-0532-455536 (J.C.R.); +39-0532-455540 (F.M.)
| |
Collapse
|
40
|
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: a new era for cancer treatment. J Cancer Res Clin Oncol 2022; 148:547-564. [PMID: 35083552 DOI: 10.1007/s00432-021-03892-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Autophagy and EMT (epithelial-mesenchymal transition) are the two principal biological processes and ideal therapeutic targets during cancer development. Autophagy, a highly conserved process for degrading dysfunctional cellular components, plays a dual role in tumors depending on the tumor stage and tissue types. The EMT process is the transition differentiation from an epithelial cell to a mesenchymal-like cell and acquiring metastatic potential. There is evidence that the crosstalk between autophagy and EMT is complex in cancer. In recent years, more studies have shown that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in autophagy, EMT, and their crosstalk. Therefore, accurate understanding of the regulatory mechanisms of lncRNAs and miRNAs in autophagy, EMT and their interactions is crucial for the clinical management of cancers. METHODS An extensive literature search was conducted on the Google Scholar and PubMed databases. The keywords used for the search included: autophagy, EMT, crosstalk, lncRNAs, miRNAs, cancers, diagnostic biomarkers, and therapeutic targets. This search provided relevant articles published in peer-reviewed journals until 2021. Data from these various studies were extracted and used in this review. RESULTS The results showed that lncRNAs/miRNAs as tumor inhibitors or tumor inducers could regulate autophagy, EMT, and their interaction by regulating several molecular signaling pathways. The lncRNAs/miRNAs involved in autophagy and EMT processes could have potential uses in cancer diagnosis, prognosis, and therapy. CONCLUSION Such information could help find and develop lncRNAs/miRNAs based new tools for diagnosing, prognosis, and creating anti-cancer therapies.
Collapse
Affiliation(s)
- Lihui Si
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Zecheng Yang
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| | - Lu Ding
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| |
Collapse
|
41
|
Liu Q. The Emerging Landscape of Long Non-Coding RNAs in Wilms Tumor. Front Oncol 2022; 11:780925. [PMID: 35127486 PMCID: PMC8807488 DOI: 10.3389/fonc.2021.780925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) are transcripts of nucleic acid sequences with a length of more than 200 bp, which have only partial coding capabilities. Recent studies have shown that lncRNAs located in the nucleus or cytoplasm can be used as gene expression regulatory elements due to their important regulatory effects in a variety of biological processes. Wilms tumor (WT) is a common abdominal tumor in children whose pathogenesis remains unclear. In recent years, many specifically expressed lncRNAs have been found in WT, which affect the occurrence and development of WT. At the same time, lncRNAs may have the capacity to become novel biomarkers for the diagnosis and prognosis of WT. This article reviews related research progress on the relationship between lncRNAs and WT, to provide a new direction for clinical diagnosis and treatment of WT.
Collapse
|
42
|
Chaowen H, Dongxuan H, Dongsheng H, Jianfeng P, Fan Y, Yahui C, Xiaohua L. C-Phycocyanin Suppresses Cell Proliferation and Promotes Apoptosis by Regulating the AMPK Pathway in NCL-H292 Non-Small Cell Lung Cancer Cells. Folia Biol (Praha) 2022; 68:16-24. [PMID: 36201854 DOI: 10.14712/fb2022068010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) results in high mortality and has gained increasing attention. C-Phycocyanin (C-PC) has been identified as a potential therapeutic inhibitor for NSCLC, but its underlying mechanism remains obscure. The gene expression of the long noncoding RNA neighbour of BRCAI RNA 2 (NBR2) in NSCLC cells was evaluated by quantitative reverse transcription-PCR. The cell capacity for proliferation and migration was examined by EdU and wound-healing assays. Furthermore, the viability and apoptosis of cells was measured with CCK-8 and annexin V/PI, respectively. Next, the protein level of activation of adenosine monophosphate- activated protein kinase and the rapamycin kinase (mTOR) signalling pathway-associated molecules was evaluated by western blotting. H292 cells were pre-treated with C-PC or transfected with plasmids encoding NBR2 or the shNBR2 plasmid, to over-express or knock down NBR2 expression, respectively. NBR2 expression was robustly down-regulated in NSCLC cell lines compared with a normal cell line (BEAS-2B). NBR2 over-expression inhibited migration and promoted apoptosis of H292 cells. Treatment of H292 cells with C-PC enhanced NBR2 levels in a dose- and time-dependent manner. Downregulation of NBR2 in H292 cells inhibited the activity of C-PC on cell proliferation, viability and clone formation. Further mechanistic investigation showed that the down-regulation of NBR2 abolished the modulatory effects of C-PC on the AMPK/mTOR signalling pathway. In conclusion, C-PC inhibits H292 cell growth by enhancing the NBR2/AMPK signalling pathway.
Collapse
Affiliation(s)
- H Chaowen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - H Dongxuan
- Department of Pulmonary and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - H Dongsheng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - P Jianfeng
- Department of Pulmonary and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Y Fan
- Department of Pulmonary and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - C Yahui
- Department of Pulmonary and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - L Xiaohua
- Department of Pulmonary and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
43
|
Lai S, Quan Z, Hao Y, Liu J, Wang Z, Dai L, Dai H, He S, Tang B. Long Non-Coding RNA LINC01572 Promotes Hepatocellular Carcinoma Progression via Sponging miR-195-5p to Enhance PFKFB4-Mediated Glycolysis and PI3K/AKT Activation. Front Cell Dev Biol 2022; 9:783088. [PMID: 34970545 PMCID: PMC8712893 DOI: 10.3389/fcell.2021.783088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Accumulating evidence indicates that type 2 diabetes mellitus (T2DM) is a risk factor for hepatocellular carcinoma (HCC), and T2DM-associated HCC represents a common type of HCC cases. We herein identify an lncRNA LINC01572 that was aberrantly upregulated in T2DM-related HCC via high-throughput screening. Based on this, the study was undertaken to identify the functional role and mechanism of LINC01572 in HCC progression. Methods: RT-qPCR was used to detect the expressions of LINC01572 in HCC tissues and cell lines. Gain- or loss-of-function assays were applied to evaluate the in vitro and in vivo functional significance of LINC01572 in the HCC cell proliferation, migration, and invasion using corresponding experiments. Bioinformatics, RIP, RNA pull-down, and luciferase reporter assays were performed to explore the regulatory relationship of the LINC01572/miR-195-5p/PFKFB4 signaling axis. Result: In this study, we profiled lncRNAs in HCC tissues and corresponding adjacent tissues from HCC patients with T2DM by RNA sequencing. Our data showed that LINC01572 was aberrantly upregulated in HCC tissues as compared with control, especially in those with concurrent T2DM. The high level of LINC01572 was correlated with advanced tumor stage, increased blood HbA1c level, and shortened survival time. The overexpression of LINC01572 significantly promoted HCC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT), while the knockdown of LINC01572 had the opposite effects on HCC cells. A mechanistic study revealed that LINC01572-regulated HCC progression via sponging miR-195-5p to increase the level of PFKFB4 and subsequent enhancement of glycolysis and activation of PI3K-AKT signaling. Conclusion: LINC01572 acts as ceRNA of miR-195-5p to restrict its inhibition of PFKFB4, thereby enhancing glycolysis and activates PI3K/AKT signaling to trigger HCC malignancy.
Collapse
Affiliation(s)
- Shihui Lai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Zhipeng Quan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Yuesong Hao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Zhiqian Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Luo Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Hongliang Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Songqing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| | - Bo Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Key Laboratory of Basic and Clinical Application Research for Hepatobiliary Diseases of Guangxi, Nanning, China
| |
Collapse
|
44
|
Mei J, Liu G, Li R, Xiao P, Yang D, Bai H, Hao Y. LncRNA SNHG6 knockdown inhibits cisplatin resistance and progression of gastric cancer through miR-1297/BCL-2 axis. Biosci Rep 2021; 41:BSR20211885. [PMID: 34821362 PMCID: PMC8661508 DOI: 10.1042/bsr20211885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance is a huge obstacle to gastric cancer (GC) treatment. Long non-coding RNAs (lncRNAs) have been manifested to exert pivotal functions in GC development. Herein, we aimed to explore the functional impact of lncRNA small nucleolar RNA host gene 6 (SNHG6) on DDP resistance and progression of GC. Quantitative real-time PCR (qRT-PCR) assay or Western blotting was performed to detect the expression of SNHG6, microRNA(miR)-1297, and epithelial-mesenchymal transition (EMT)-related factors and B-Cell Lymphoma 2 (Bcl-2) in DDP-resistant GC cells. Half inhibition concentration (IC50) to DDP, clonogenicity, apoptosis and invasion were examined via CCK-8 assay, colony formation assay, flow cytometry and Transwell assay, respectively. Target association between miR-1297 and SNHG6 or BCL-2 was demonstrated via dual-luciferase reporter assay or RIP assay. Xenograft models in nude mice were formed to investigate role of SNHG6 in vivo. We found that SNHG6 and BCL-2 were up-regulated, while miR-1297 expression was declined in GC tissues and DDP-resistant cells. Moreover, depletion of SNHG6 or gain of miR-1297 could repress DDP resistance, proliferation and metastasis of DDP-resistant cells, which was weakened by miR-1297 inhibition or BCL-2 overexpression. Besides, SNHG6 positively regulated BCL-2 expression by sponging miR-1297. Furthermore, SNHG6 knockdown repressed GC tumor growth in vivo. In a word, lncRNA SNHG6 knockdown had inhibitory effects on DDP resistance and progression of GC by sponging miR-1297, highlighting its potential in GC treatment.
Collapse
Affiliation(s)
- Jiazhuan Mei
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Guiju Liu
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Ruijun Li
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Peng Xiao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Dan Yang
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Hua Bai
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Yibin Hao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| |
Collapse
|
45
|
Attention-Based Deep Multiple-Instance Learning for Classifying Circular RNA and Other Long Non-Coding RNA. Genes (Basel) 2021; 12:genes12122018. [PMID: 34946967 PMCID: PMC8701965 DOI: 10.3390/genes12122018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Circular RNA (circRNA) is a distinguishable circular formed long non-coding RNA (lncRNA), which has specific roles in transcriptional regulation, multiple biological processes. The identification of circRNA from other lncRNA is necessary for relevant research. In this study, we designed attention-based multi-instance learning (MIL) network architecture fed with a raw sequence, to learn the sparse features of RNA sequences and to accomplish the circRNAs identification task. The model outperformed the state-of-art models. Moreover, following the validation of the attention mechanism effectiveness by the handwritten digit dataset, the key sequence loci underlying circRNA’s recognition were obtained based on the corresponding attention score. Then, motif enrichment analysis identified some of the key motifs for circRNA formation. In conclusion, we designed deep learning network architecture suitable for learning gene sequences with sparse features and implemented it for the circRNA identification task, and the model has strong representation capability in the indication of some key loci.
Collapse
|
46
|
Zhi Y, Sun F, Cai C, Li H, Wang K, Sun J, He T, Ji Z, Liu Z, Wang H, Cheng R. LINC00265 promotes the viability, proliferation, and migration of bladder cancer cells via the miR-4677-3p/FGF6 axis. Hum Exp Toxicol 2021; 40:S434-S446. [PMID: 34591706 DOI: 10.1177/09603271211043479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is a common genitourinary malignancy with higher incidence in males. Long intergenic non-protein coding RNA 265 (LINC00265) is identified as an oncogene in many malignancies, while its role in BCa development remains unknown. PURPOSE To explore the functions and mechanism of LINC00265 in BCa. RESEARCH DESIGN Reverse transcription quantitative polymerase chain reaction was performed to examine LINC00265 expression in BCa cells. Cell counting kit-8 assays, colony formation assays, TdT-mediated dUTP Nick-End Labeling assays, and Transwell assays were conducted to examine BCa cell viability, proliferation, apoptosis, and migration. Luciferase reporter assays and RNA immunoprecipitation assays were carried out to explore the binding capacity between miR-4677-3p and messenger RNA fibroblast growth factor 6 (FGF6) (or LINC00265). Xenograft tumor model was established to explore the role of LINC00265 in vivo. RESULTS LINC00265 was highly expressed in BCa cells. LINC00265 knockdown inhibited xenograft tumor growth and BCa cell viability, proliferation and migration while enhancing cell apoptosis. Moreover, LINC00265 interacted with miR-4677-3p to upregulate the expression of FGF6. FGF6 overexpression reversed the suppressive effect of LINC00265 knockdown on malignant phenotypes of BCa cells. CONCLUSIONS LINC00265 promotes the viability, proliferation, and migration of BCa cells by binding with miR-4677-3p to upregulate FGF6 expression.
Collapse
Affiliation(s)
- Yunlai Zhi
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Fanghu Sun
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Chengkuan Cai
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Haitao Li
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Kunpeng Wang
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Jinyu Sun
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Tian He
- Department of Orthopedics Surgery, Yantai Yuhuangding Hospital Affiliated to Medical College of Qingdao University, Yantai, Shandong, China
| | - Zhengshuai Ji
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Zhaofei Liu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Heng Wang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| | - Ruifei Cheng
- Department of Clinical Laboratory, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang, Jiangsu, China
| |
Collapse
|
47
|
Tang J, Fang X, Chen J, Zhang H, Tang Z. Long Non-Coding RNA (lncRNA) in Oral Squamous Cell Carcinoma: Biological Function and Clinical Application. Cancers (Basel) 2021; 13:cancers13235944. [PMID: 34885054 PMCID: PMC8656574 DOI: 10.3390/cancers13235944] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Increasing evidence has revealed the regulatory roles of long non-coding RNAs (lncRNAs) in the initiation and progress of oral squamous cell carcinoma (OSCC). As some novel lncRNA-targeted techniques combined with immune checkpoint therapies have emerged, they provide a new strategy for OSCC treatment. This review summarizes current knowledge regarding the involvement of lncRNAs in OSCC along with their possible use as diagnostic and prognostic biomarker and therapeutic targets. Abstract Oral squamous cell carcinoma (OSCC) is a type of malignancy with high mortality, leading to poor prognosis worldwide. However, the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Recently, the discovery and characterization of long non-coding RNAs (lncRNAs) have revealed their regulatory importance in OSCC. Abnormal expression of lncRNAs has been broadly implicated in the initiation and progress of tumors. In this review, we summarize the functions and molecular mechanisms regarding these lncRNAs in OSCC. In addition, we highlight the crosstalk between lncRNA and tumor microenvironment (TME), and discuss the potential applications of lncRNAs as diagnostic and prognostic tools and therapeutic targets in OSCC. Notably, we also discuss lncRNA-targeted therapeutic techniques including CRISPR-Cas9 as well as immune checkpoint therapies to target lncRNA and the PD-1/PD-L1 axis. Therefore, this review presents the future perspectives of lncRNAs in OSCC therapy, but more research is needed to allow the applications of these findings to the clinic.
Collapse
Affiliation(s)
- Jianfei Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xiaodan Fang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Juan Chen
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Haixia Zhang
- The Oncology Department of Xiangya Second Hospital, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China; (J.T.); (X.F.); (J.C.)
- Hunan 3D Printing Engineering Research Center of Oral Care, Central South University, Changsha 410008, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
- Correspondence: (H.Z.); (Z.T.); Tel.: +86-139-7313-0429 (H.Z.); +86-139-0731-7983 (Z.T.)
| |
Collapse
|
48
|
Ma T, Wang X, Meng L, Liu X, Wang J, Zhang W, Tian Z, Zhang Y. An effective N6-methyladenosine-related long non-coding RNA prognostic signature for predicting the prognosis of patients with bladder cancer. BMC Cancer 2021; 21:1256. [PMID: 34802433 PMCID: PMC8607649 DOI: 10.1186/s12885-021-08981-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Bladder cancer (BLCA) typically has a poor prognosis due to high relapse and metastasis rates. A growing body of evidence indicates that N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) play crucial roles in the progression of BLCA and the treatment response of patients with BLCA. Therefore, we conducted a comprehensive RNA-seq analysis of BLCA using data from The Cancer Genome Atlas (TCGA) to establish an m6A-related lncRNA prognostic signature (m6A-RLPS) for BLCA. Methods Consensus clustering analysis was used to investigate clusters of BLCA patients with varying prognoses. The least absolute shrinkage and selection operator Cox regression were used to develop the m6A-RLPS. The ESTIMATE and CIBERSORT algorithms were used to evaluate the immune composition. Results A total of 745 m6A-related lncRNAs were identified using Pearson correlation analysis (|R| > 0.4, p < 0.001). Fifty-one prognostic m6A-related lncRNAs were screened using univariate Cox regression analysis. Through consensus clustering analysis, patients were divided into two clusters (clusters 1 and 2) with different overall survival rates and tumor stages based on the differential expression of the lncRNAs. Enrichment analysis demonstrated that terms related to tumor biological processes and immune-related activities were increased in patient cluster 2, which was more likely to exhibit low survival rates. Nine m6A-related prognostic lncRNAs were finally determined and subsequently used to construct the m6A-RLPS, which was verified to be an independent predictor of prognosis using univariate and multivariate Cox regression analyses. Further, a nomogram based on age, tumor stage, and the m6A-RLPS was generated and showed high accuracy and reliability with respect to predicting the survival outcomes of BLCA patients. The prognostic signature was found to be strongly correlated to tumor-infiltrating immune cells and immune checkpoint expression. Conclusions We established a novel m6A-RLPS with a favorable prognostic value for patients with BLCA. We believe that this prognostic signature can provide new insights into the tumorigenesis of BLCA and predict the treatment response in patients with BLCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08981-4.
Collapse
Affiliation(s)
- Tianming Ma
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Xiaonan Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.,Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Lingfeng Meng
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Xiaodong Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Jiawen Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Wei Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Zijian Tian
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China
| | - Yaoguang Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China. .,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, P. R. China.
| |
Collapse
|
49
|
Xu J, Xu W, Xuan Y, Liu Z, Sun Q, Lan C. Pancreatic Cancer Progression Is Regulated by IPO7/p53/LncRNA MALAT1/MiR-129-5p Positive Feedback Loop. Front Cell Dev Biol 2021; 9:630262. [PMID: 34660566 PMCID: PMC8517143 DOI: 10.3389/fcell.2021.630262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic cancer is a malignancy with poor prognosis. Importin 7 (IPO7) is a soluble nuclear transport factor, which has been linked to the pathogenesis of several human diseases. However, its role and underlying mechanism in pancreatic cancer are still obscure. Methods: Immunohistochemical staining and quantitative real-time polymerase chain reaction (qPCR) were performed to determine IPO7 expression in pancreatic cancer tissues and adjacent tissues. Western blot was used to measure IPO7 expression at the protein level in cell lines. Cell Counting Kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU), flow cytometry, and Transwell assays were employed to explore the biological functions of IPO7. Subcutaneous xenograft transplanted tumor model and caudal vein injection model in mice were also established to validate the oncogenic role of IPO7. Western blot and qPCR were utilized to detect the regulatory function of IPO7 on p53 and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), respectively. Interaction between MALAT1 and miR-129-5p and interaction between miR-129-5p and IPO7 were verified by bioinformatics prediction, qPCR, dual-luciferase reporter gene experiment, RNA immunoprecipitation (RIP), and pull-down assay. Results: Upregulation of IPO7 in pancreatic cancer tissues was associated with adverse prognosis of the patients with pancreatic cancer. Knocking down IPO7 remarkably suppressed cancer cell proliferation and metastasis, while it promoted apoptosis. Overexpression of IPO7 facilitated the malignant phenotypes of pancreatic cancer cells. Mechanistically, IPO7 could repress the expression of p53 and induce the expression of MALAT1 but reduce miR-129-5p expression. Furthermore, miR-129-5p was identified as a posttranscriptional regulator for IPO7, and its inhibition led to IPO7 overexpression in pancreatic cancer cells. Conclusion: IPO7 is a novel oncogene for pancreatic cancer, and IPO7/p53/MALAT1/miR-129-5p positive feedback loop facilitates the progression of this deadly disease.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weixue Xu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yang Xuan
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhen Liu
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Qinyun Sun
- Department of Pancreatic and Thyroid Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Cheng Lan
- Department of Gastroenterology, Affiliated Hainan Hospital, Hainan Medical University, Hainan General Hospital, Hainan, China
| |
Collapse
|
50
|
Jing Y, Jiang X, Lei L, Peng M, Ren J, Xiao Q, Tao Y, Tao Y, Huang J, Wang L, Tang Y, Yang Z, Yang Z, Zhang L. Mutant NPM1-regulated lncRNA HOTAIRM1 promotes leukemia cell autophagy and proliferation by targeting EGR1 and ULK3. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:312. [PMID: 34615546 PMCID: PMC8493742 DOI: 10.1186/s13046-021-02122-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
Background Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1), which displays a distinct long noncoding RNA (lncRNA) expression profile, has been defined as a unique subgroup in the new classification of myeloid neoplasms. However, the biological roles of key lncRNAs in the development of NPM1-mutated AML are currently unclear. Here, we aimed to investigate the functional and mechanistic roles of the lncRNA HOTAIRM1 in NPM1-mutated AML. Methods The expression of HOTAIRM1 was analyzed with a public database and further determined by qRT-PCR in NPM1-mutated AML samples and cell lines. The cause of upregulated HOTAIRM1 expression was investigated by luciferase reporter, chromatin immunoprecipitation and ubiquitination assays. The functional role of HOTAIRM1 in autophagy and proliferation was evaluated using western blot analysis, immunofluorescence staining, a Cell Counting Kit-8 (CCK-8) assay, a 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, flow cytometric analyses and animal studies. The action mechanism of HOTAIRM1 was explored through RNA fluorescence in situ hybridization, RNA pulldown and RNA immunoprecipitation assays. Results HOTAIRM1 was highly expressed in NPM1-mutated AML. High HOTAIRM1 expression was induced in part by mutant NPM1 via KLF5-dependent transcriptional regulation. Importantly, HOTAIRM1 promoted autophagy and proliferation both in vitro and in vivo. Mechanistic investigations demonstrated that nuclear HOTAIRM1 promoted EGR1 degradation by serving as a scaffold to facilitate MDM2-EGR1 complex formation, while cytoplasmic HOTAIRM1 acted as a sponge for miR-152-3p to increase ULK3 expression. Conclusions Taken together, our findings identify two oncogenic regulatory axes in NPM1-mutated AML centered on HOTAIRM1: one involving EGR1 and MDM2 in the nucleus and the other involving the miR-152-3p/ULK3 axis in the cytoplasm. Our study indicates that HOTAIRM1 may be a promising therapeutic target for this distinct leukemia subtype. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02122-2.
Collapse
Affiliation(s)
- Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Yao Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Yonghong Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Junpeng Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Lu Wang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Yuting Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China
| | - Zailin Yang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, China.
| |
Collapse
|