1
|
Nguyen H, Gales A, Monteiro-Pai S, Oliver AS, Harris N, Montgomery AD, Franzén S, Kasztan M, Hyndman KA. Histone deacetylase expression following cisplatin-induced acute kidney injury in male and female mice. Am J Physiol Renal Physiol 2024; 327:F623-F636. [PMID: 39116350 PMCID: PMC11483084 DOI: 10.1152/ajprenal.00132.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The chemotherapeutic agent cisplatin accumulates in the kidneys, leading to acute kidney injury (AKI). Preclinical and clinical studies have demonstrated sex-dependent outcomes of cisplatin-AKI. Deranged histone deacetylase (HDAC) activity is hypothesized to promote the pathogenesis of male murine cisplatin-AKI; however, it is unknown whether there are sex differences in the kidney HDACs. We hypothesized that there would be sex-specific Hdac expression, localization, or enzymatic activity, which may explain sexual dimorphic responses to cisplatin-AKI. In normal human kidney RNA samples, HDAC10 was significantly greater in the kidneys of women compared with men, whereas HDAC1, HDAC6, HDAC10, and HDAC11 were differentially expressed between the kidney cortex and medulla, regardless of sex. In a murine model of cisplatin-AKI (3 days after a 15 mg/kg injection), we found few sex- or cisplatin-related differences in Hdac kidney transcripts among the mice. Although Hdac9 was significantly greater in female mice compared with male mice, HDAC9 protein localization did not differ. Hdac7 transcripts were greater in the inner medulla of cisplatin-AKI mice, regardless of sex, and this agreed with a greater HDAC7 abundance. HDAC activity within the cortex, outer medulla, and inner medulla was significantly lower in cisplatin-AKI mice but did not differ between the sexes. In agreement with these findings, a class I HDAC inhibitor did not improve kidney injury or function. In conclusion, even though cisplatin-AKI was evident and there were transcript level differences among the different kidney regions in this model, there were few sex- or cisplatin-dependent effects on kidney HDAC localization or activity.NEW & NOTEWORTHY Kidney histone deacetylases (HDACs) are abundant in male and female mice, and the inner medulla has the greatest HDAC activity. A low dose of cisplatin caused acute kidney injury (AKI) in these mice, but there were few changes in kidney HDACs at the RNA/protein/activity level. A class I HDAC inhibitor failed to improve AKI outcomes. Defining the HDAC isoform, cellular source, and interventional timing is necessary to determine whether HDAC inhibition is a therapeutic strategy to prevent cisplatin-AKI in both sexes.
Collapse
Affiliation(s)
- Huy Nguyen
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anabelle Gales
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sureena Monteiro-Pai
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ariana S Oliver
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nicholas Harris
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna D Montgomery
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie Franzén
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Anesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Latcha S, Chughtai S. Renal Salt Wasting Following Cisplatin. KIDNEY360 2024; 5:604-606. [PMID: 38353669 PMCID: PMC11093533 DOI: 10.34067/kid.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Sheron Latcha
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | |
Collapse
|
3
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
4
|
George TB, Kuriakose K, Pillai AC, Powell T, Kleyman TR. Profound hyponatremia and dehydration: A case of cisplatin induced renal salt wasting syndrome. Physiol Rep 2023; 11:e15617. [PMID: 36868561 PMCID: PMC9984271 DOI: 10.14814/phy2.15617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 03/05/2023] Open
Abstract
Cisplatin is a well-known chemotherapeutic agent that can be associated with hyponatremia. It is known to be associated with a multitude of renal disorders including acute kidney injury with reduced glomerular filtration, Fanconi syndrome, and renal tubular acidosis, nephrogenic diabetes insipidus and renal salt wasting syndrome. We report a case of an elderly male presenting with significant recurrent hyponatremia, and prerenal azotemia. With recent exposure to cisplatin along with significant hypovolemia and urinary loss of sodium, he was diagnosed to have cisplatin induced renal salt wasting syndrome.
Collapse
Affiliation(s)
- Tissa Bijoy George
- Department of Internal Medicine, UPMC McKeesportPittsburghPennsylvaniaUSA
| | - Kiran Kuriakose
- Department of Hospital Medicine, UPMC MercyPittsburghPennsylvaniaUSA
| | | | - Thomas Powell
- PINE Nephrology, UPMC McKeesportPittsburghPennsylvaniaUSA
| | - Thomas R. Kleyman
- Department of Medicine, Department of Cell Biology, Department of Pharmacology and Chemical BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Drug Resistance and Novel Therapies in Cancers in 2020. Cancers (Basel) 2023; 15:cancers15030717. [PMID: 36765674 PMCID: PMC9913530 DOI: 10.3390/cancers15030717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
After a very successful year in 2019 with 34 publications, our Topic collection "Drug Resistance and Novel Therapies in Cancers" guaranteed another productive year with the publication of 17 research articles and 4 review articles in 2020 [...].
Collapse
|
6
|
Mironova E, Archer CR, Vendrov AE, Runge MS, Madamanchi NR, Arendshorst WJ, Stockand JD, Abd El-Aziz TM. NOXA1-dependent NADPH oxidase 1 signaling mediates angiotensin II activation of the epithelial sodium channel. Am J Physiol Renal Physiol 2022; 323:F633-F641. [PMID: 36201326 PMCID: PMC9705023 DOI: 10.1152/ajprenal.00107.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022] Open
Abstract
The activity of the epithelial Na+ channel (ENaC) in principal cells of the distal nephron fine-tunes renal Na+ excretion. The renin-angiotensin-aldosterone system modulates ENaC activity to control blood pressure, in part, by influencing Na+ excretion. NADPH oxidase activator 1-dependent NADPH oxidase 1 (NOXA1/NOX1) signaling may play a key role in angiotensin II (ANG II)-dependent activation of ENaC. The present study aimed to explore the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC in renal principal cells. Patch-clamp electrophysiology and principal cell-specific Noxa1 knockout (PC-Noxa1 KO) mice were used to determine the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC. The activity of ENaC in the luminal plasma membrane of principal cells was quantified in freshly isolated split-opened tubules using voltage-clamp electrophysiology. ANG II significantly increased ENaC activity. This effect was robust and observed in response to both acute (40 min) and more chronic (48-72 h) ANG II treatment of isolated tubules and mice, respectively. Inhibition of ANG II type 1 receptors with losartan abolished ANG II-dependent stimulation of ENaC. Similarly, treatment with ML171, a specific inhibitor of NOX1, abolished stimulation of ENaC by ANG II. Treatment with ANG II failed to increase ENaC activity in principal cells in tubules isolated from the PC-Noxa1 KO mouse. Tubules from wild-type littermate controls, though, retained their ability to respond to ANG II with an increase in ENaC activity. These results indicate that NOXA1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells. As such, NOXA1/NOX1 signaling in the distal nephron plays a central role in Na+ homeostasis and control of blood pressure, particularly as it relates to regulation by the renin-ANG II axis.NEW & NOTEWORTHY Activity of the epithelial Na+ channel (ENaC) in the distal nephron fine-tunes renal Na+ excretion. Angiotensin II (ANG II) has been reported to enhance ENaC activity. Emerging evidence suggests that NADPH oxidase (NOX) signaling plays an important role in the stimulation of ENaC by ANG II in principal cells. The present findings indicate that NOX activator 1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | | - William J Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
- Department of Zoology, Minia University, El-Minia, Egypt
| |
Collapse
|
7
|
Hyponatremia in the emergency department. Am J Emerg Med 2022; 60:1-8. [PMID: 35870366 DOI: 10.1016/j.ajem.2022.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Hyponatremia, defined as a serum sodium <135 mmol/L, is frequently encountered in patients presenting to the emergency department. Symptoms are often unspecific and include a recent history of falls, weakness and vertigo. Common causes of hyponatremia include diuretics, heart failure as well as Syndrome of Inappropriate Antidiuresis (SIAD) and correct diagnosis can be challenging. Emergency treatment of hyponatremia should be guided by presence of symptoms and focus on distinguishing between acute and chronic hyponatremia.
Collapse
|
8
|
Abd El-Aziz TM, Soares AG, Mironova E, Boiko N, Kaur A, Archer CR, Stockand JD, Berman JM. Mechanisms and consequences of casein kinase II and ankyrin-3 regulation of the epithelial Na + channel. Sci Rep 2021; 11:14600. [PMID: 34272444 PMCID: PMC8285517 DOI: 10.1038/s41598-021-94118-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Activity of the Epithelial Na+ Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical "anchor" ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in β-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a "switch" that favors Ank-3 binding to increase channel activity.
Collapse
Affiliation(s)
- Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
- Zoology Department, Faculty of Science, Minia University, El-Minia, 61519, Egypt
| | - Antonio G Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Nina Boiko
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - Amanpreet Kaur
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195, USA
| | - Crystal R Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center At San Antonio, San Antonio, TX, 78229-3900, USA.
| | - Jonathan M Berman
- Department of Basic Science, New York Institute of Technology College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, 72401, USA
| |
Collapse
|