1
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
2
|
Ansari AS, Kucharski C, Kc R, Nisakar D, Rahim R, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA complexes engineered for optimal molecular and functional response with chemotherapy in FLT3-mutated acute myeloid leukemia. Acta Biomater 2024; 188:297-314. [PMID: 39236794 DOI: 10.1016/j.actbio.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Approximately 25% of newly diagnosed AML patients display an internal tandem duplication (ITD) in the fms-like tyrosine kinase 3 (FLT3) gene. Although both multi-targeted and FLT3 specific tyrosine kinase inhibitors (TKIs) are being utilized for clinical therapy, drug resistance, short remission periods, and high relapse rates are challenges that still need to be tackled. RNA interference (RNAi), mediated by short interfering RNA (siRNA), presents a mechanistically distinct therapeutic platform with the potential of personalization due to its gene sequence-driven mechanism of action. This study explored the use of a non-viral approach for delivery of FLT3 siRNA (siFLT3) in FLT3-ITD positive AML cell lines and primary cells as well as the feasibility of combining this treatment with drugs currently used in the clinic. Treatment of AML cell lines with FLT3 siRNA nanocomplexes resulted in prominent reduction in cell proliferation rates and induction of apoptosis. Quantitative analysis of relative mRNA transcript levels revealed downregulation of the FLT3 gene, which was accompanied by a similar decline in FLT3 protein levels. Moreover, an impact on leukemic stem cells was observed in a small pool of primary AML samples through significantly reduced colony numbers. An absence of a molecular response post-treatment with lipopolymer/siFLT3 complexes in peripheral blood mononuclear cells, obtained from healthy individuals, denoted a passive selectivity of the complexes towards malignant cells. The effect of combining lipopolymer/siFLT3 complexes with daunorubucin and FLT3 targeting TKI gilteritinib led to a significant augmentation of anti-leukemic activity. These findings demonstrate the promising potential of RNAi implemented with lipopolymer complexes for AML molecular therapy. The study prospectively supports the addition of RNAi therapy to current treatment modalities available to target the heterogeneity prevalent in AML. STATEMENT OF SIGNIFICANCE: We show that a clinically validated target, the FLT3 gene, can be eradicated in leukemia cells using non-viral RNAi. We validated these lipopolymers as effective vehicles to deliver nucleic acids to leukemic cells. The potency of the lipopolymers was superior to that of the 'gold-standard' delivery agent, lipid nanoparticles (LNPs), which are not effective in leukemia cells at clinically relevant doses. Mechanistic studies were undertaken to probe structure-function relationships for effective biomaterial formulations. Cellular and molecular responses to siRNA treatment have been characterized in cell models, including leukemia patient-derived cells. The use of the siRNA therapy with clinically used chemotherapy was demonstrated.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- RNA, Small Interfering/pharmacology
- Cell Line, Tumor
- Mutation/genetics
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Polymers/chemistry
- Polymers/pharmacology
- Aniline Compounds
- Pyrazines
Collapse
Affiliation(s)
- Aysha S Ansari
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Nisakar
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ramea Rahim
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, BC Cancer Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Sheikhi M, Siyadat P, Rostami M, Sadeghian MH, Zahiri E, Ghorbani M, Ayatollahi H, Ayatollahi A, Hemmatan Attarbashi R, Khoshnegah Z. Prognostic importance of NUP98-rearrangements in acute myeloid leukemia: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2024; 15:579-588. [PMID: 39359452 PMCID: PMC11444110 DOI: 10.22088/cjim.15.4.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 10/04/2024]
Abstract
Background NUP98 gene fusions in acute myeloid leukemia (AML) have recently attracted much interest. Despite substantial research illuminating the roles of NUP98 fusions in the course of AML, their impacts on the outcome of patients with AML should be explored in more detail. As a result, this meta-analysis was designed to provide further light on the prognostic implications of NUP98 fusions in AML. Methods We completed an extensive search in PubMed, Scopus, and Web of Science to identify papers evaluating the prognostic effects of NUP98 rearrangements in patients with AML until August 22, 2022. In total, 15 publications with 6142 participants fulfilled the requirements for the current meta-analysis. All the qualified studies were examined for information regarding HRs and 95% confidence interval (95%CI) for overall survival (OS) and event-free survival (EFS). In addition, we utilized Comprehensive Meta-analysis software version 2 (CMA2) for calculating pooled HRs and 95% CI. Section Title Our Results : analyses for NUP98-NSD1 indicated that this fusion could significantly impact the outcome of patients with AML (pooled HR: 2.84; 95% CI: 2.49-3.24, P=0.000). Additionally, we observed a strong correlation between NUP98-KDM5A rearrangement and poor prognosis in AML (pooled HR: 2.65; 95% CI: 2.5-2.81; P=0.000). A subgroup analysis also showed that the NUP98-NSD1 and FLT3-ITD together confer a poor prognostic effect (pooled HR: 2.60, 95% CI: 1.61-4.18; P=0.000). Conclusions NUP98 fusions could significantly impact the outcome of patients with AML. The use of these fusions as prognostic indicators in AML seems rational.
Collapse
Affiliation(s)
- Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Payam Siyadat
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehrdad Rostami
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Sadeghian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Zahiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ghorbani
- Department of Pathology, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Ayatollahi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hemmatan Attarbashi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Laboratory Hematology and Blood Banking, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Liu L, Nie Q, Xiao Z, Chen X, Yang C, Mao X, Li N, Zhou Y, Guo Q, Tian X. Treatment of three pediatric AML co-expressing NUP98-NSD1, FLT3-ITD, and WT1. BMC Pediatr 2024; 24:483. [PMID: 39068406 PMCID: PMC11282587 DOI: 10.1186/s12887-024-04954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
During the treatment of 89 pediatric patients with Acute Myeloid Leukemia (AML) at the Hematology Department of Kunming Medical University's Children's Hospital from 2020 to 2023, three patients were identified to co-express the NUP98-NSD1, FLT3-ITD, and WT1 gene mutations. The bone marrow of these three patients was screened for high-risk genetic mutations using NGS and qPCR at the time of diagnosis. The treatment was administered following the China Children's Leukemia Group (CCLG)-AML-2019 protocol. All three patients exhibited a fusion of the NUP98 exon 12 with the NSD1 exon 6 and co-expressed the FLT3-ITD and WT1 mutations; two of the patients displayed normal karyotypes, while one presented chromosomal abnormalities. During the induction phase of the CCLG-AML-2019 treatment protocol, the DAH (Daunorubicin, Cytarabine, and Homoharringtonine) and IAH (Idarubicin, Cytarabine, and Homoharringtonine) regimens, in conjunction with targeted drug therapy, did not achieve remission. Subsequently, the patients were shifted to the relapsed/refractory chemotherapy regimen C + HAG (Cladribine, Homoharringtonine, Cytarabine, and G-CSF) for two cycles, which also failed to induce remission. One patient underwent Haploidentical Hematopoietic Stem Cell Transplantation (Haplo-HSCT) and achieved complete molecular remission during a 12-month follow-up period. Regrettably, the other two patients, who did not receive transplantation, passed away. The therapeutic conclusion is that pediatric AML patients with the aforementioned co-expression do not respond to chemotherapy. Non-remission transplantation, supplemented with tailor-made pre- and post-transplant strategies, may enhance treatment outcomes.
Collapse
Affiliation(s)
- Li Liu
- Department of Hematology, The Affiliated Children's Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Department of Pediatrics, QuJing Medical College, Qujing, China
| | - Qi Nie
- Department of Pediatrics, Da Li University, Da Li, China
| | - Zugang Xiao
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Xin Chen
- Department of Hematology, Kunming Children's Hospital, Kunming, China
| | - Chunhui Yang
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Xiaoyan Mao
- Department of Pediatrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Li
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Yan Zhou
- Kunming Kingmed Institute for Clinical Laboratory Co., Kunming, China
| | - Qulian Guo
- Department of Pediatrics, Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Tian
- Department of Hematology, The Affiliated Children's Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
- Department of Hematology, Kunming Children's Hospital, Kunming, China.
| |
Collapse
|
5
|
Tarlock K, Gerbing RB, Ries RE, Smith JL, Leonti A, Huang BJ, Kirkey D, Robinson L, Peplinksi JH, Lange B, Cooper TM, Gamis AS, Kolb EA, Aplenc R, Pollard JA, Alonzo TA, Meshinchi S. Prognostic impact of cooccurring mutations in FLT3-ITD pediatric acute myeloid leukemia. Blood Adv 2024; 8:2094-2103. [PMID: 38295280 PMCID: PMC11063409 DOI: 10.1182/bloodadvances.2023011980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT We sought to define the cooccurring mutational profile of FLT3-ITD-positive (ITDpos) acute myeloid leukemia (AML) in pediatric and young adult patients and to define the prognostic impact of cooperating mutations. We identified 464 patients with FLT3-ITD mutations treated on Children's Oncology Group trials with available sequencing and outcome data. Overall survival, event-free survival (EFS), and relapse risk were determined according to the presence of cooccurring risk stratifying mutations. Among the cohort, 79% of patients had cooccurring alterations across 239 different genes that were altered through mutations or fusions. Evaluation of the prognostic impact of the cooccurring mutations demonstrated that patients with ITDpos AML experienced significantly different outcomes according to the cooccurring mutational profile. Patients with ITDpos AML harboring a cooccurring favorable-risk mutation of NPM1, CEBPA, t(8;21), or inv(16) experienced a 5-year EFS of 64%, which was significantly superior to of 22.2% for patients with ITDpos AML and poor-risk mutations of WT1, UBTF, or NUP98::NSD1 as well to 40.9% for those who lacked either favorable-risk or poor-risk mutation (ITDpos intermediate; P < .001 for both). Multivariable analysis demonstrated that cooccurring mutations had significant prognostic impact, whereas allelic ratio had no impact. Therapy intensification, specifically consolidation transplant in remission, resulted in significant improvements in survival for ITDpos AML. However, patients with ITDpos/NUP98::NSD1 continued to have poor outcomes with intensified therapy, including sorafenib. Cooccurring mutational profile in ITDpos AML has significant prognostic impacts and is critical to determining risk stratification and therapeutic allocation. These clinical trials were registered at www.clinicaltrials.gov as NCT00002798, NCT00070174, NCT00372593, and NCT01371981.
Collapse
Affiliation(s)
- Katherine Tarlock
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Rhonda E. Ries
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Amanda Leonti
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Benjamin J. Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Danielle Kirkey
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Leila Robinson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jack H. Peplinksi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Beverly Lange
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Todd M. Cooper
- Division of Hematology/Oncology, Seattle Children’s Hospital, Seattle, WA
| | - Alan S. Gamis
- Divisions of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, MO
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Richard Aplenc
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jessica A. Pollard
- Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Todd A. Alonzo
- Children’s Oncology Group, Monrovia, CA
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
6
|
Lai A, Liu W, Wei H, Wang Y, Lin D, Zhou C, Liu B, Gu R, Li Y, Wei S, Gong B, Liu K, Gong X, Liu Y, Zhang G, Zhang J, Mi Y, Wang J, Qiu S. The RTK-RAS signaling pathway is enriched in patients with rare acute myeloid leukemia harboring t(16;21)(p11;q22)/ FUS::ERG. BLOOD SCIENCE 2024; 6:e00188. [PMID: 38742238 PMCID: PMC11090622 DOI: 10.1097/bs9.0000000000000188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Acute myeloid leukemia (AML) with t(16;21)(p11;q22)/FUS::ERG is a rare AML subtype associated with poor prognosis. However, its clinical and molecular features remain poorly defined. We determined the clinicopathological, genomic, and transcriptomic characteristics and outcomes of patients with AML harboring FUS::ERG at our center. Thirty-six AML patients harboring FUS::ERG were identified, with an incidence rate of 0.3%. These patients were characterized by high lactate dehydrogenase levels (median: 838.5 U/L), elevated bone marrow blast counts (median: 71.5%), and a CD56-positive immunophenotype (94.3%). Notably, we found that RTK-RAS GTPase (RAS) pathway genes, including NRAS (33%) and PTPN11 (24%), were frequently mutated in this subtype. Transcriptome analysis revealed enrichment of the phosphatidylinositol-3-kinase-Akt (PI3K-Akt), mitogen-activated protein kinase (MAPK), and RAS signaling pathways and upregulation of BCL2, the target of venetoclax, in FUS::ERG AML compared to RUNX1::RUNX1T1 AML, a more common AML subtype with good prognosis. The median event-free survival in patients with FUS::ERG AML was 11.9 (95% confidence interval [CI]: 9.0-not available [NA]) months and the median overall survival was 18.2 (95% CI: 12.4-NA) months. Allogeneic hematopoietic stem cell transplantation failed to improve outcomes. Overall, the high incidence of RTK-RAS pathway mutations and high expression of BCL2 may indicate promising therapeutic targets in this high-risk AML subset.
Collapse
Affiliation(s)
- Anli Lai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wenbing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Ying Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Dong Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chunlin Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Bingcheng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuning Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Benfa Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Kaiqi Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaoyuan Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yuntao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Guangji Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Junping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin 300020, China
| |
Collapse
|
7
|
He L, Cao Y, Sun L. NSD family proteins: Rising stars as therapeutic targets. CELL INSIGHT 2024; 3:100151. [PMID: 38371593 PMCID: PMC10869250 DOI: 10.1016/j.cellin.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Epigenetic modifications, including DNA methylation and histone post-translational modifications, intricately regulate gene expression patterns by influencing DNA accessibility and chromatin structure in higher organisms. These modifications are heritable, are independent of primary DNA sequences, undergo dynamic changes during development and differentiation, and are frequently disrupted in human diseases. The reversibility of epigenetic modifications makes them promising targets for therapeutic intervention and drugs targeting epigenetic regulators (e.g., tazemetostat, targeting the H3K27 methyltransferase EZH2) have been applied in clinical therapy for multiple cancers. The NSD family of H3K36 methyltransferase enzymes-including NSD1 (KMT3B), NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1)-are now receiving drug development attention, with the exciting advent of an NSD2 inhibitor (KTX-1001) advancing to Phase I clinical trials for relapsed or refractory multiple myeloma. NSD proteins recognize and catalyze methylation of histone lysine marks, thereby regulating chromatin integrity and gene expression. Multiple studies have implicated NSD proteins in human disease, noting impacts from translocations, aberrant expression, and various dysfunctional somatic mutations. Here, we review the biological functions of NSD proteins, epigenetic cooperation related to NSD proteins, and the accumulating evidence linking these proteins to developmental disorders and tumorigenesis, while additionally considering prospects for the development of innovative epigenetic therapies.
Collapse
Affiliation(s)
- Lin He
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Yiping Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
8
|
Ansari AS, K C R, Morales LC, Nasrullah M, Meenakshi Sundaram DN, Kucharski C, Jiang X, Brandwein J, Uludağ H. Lipopolymer mediated siRNA delivery targeting aberrant oncogenes for effective therapy of myeloid leukemia in preclinical animal models. J Control Release 2024; 367:821-836. [PMID: 38360178 DOI: 10.1016/j.jconrel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The clinical development of tyrosine kinase inhibitors (TKI) has led to great strides in improving the survival of chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) patients. But even the new generation TKIs are rendered futile in the face of evolving landscape of acquired mutations leading to drug resistance, necessitating the pursuit of alternative therapeutic approaches. In contrast to exploiting proteins as targets like most conventional drugs and TKIs, RNA Interference (RNAi) exerts its therapeutic action towards disease-driving aberrant genes. To realize the potential of RNAi, the major challenge is to efficiently deliver the therapeutic mediator of RNAi, small interfering RNA (siRNA) molecules. In this study, we explored the feasibility of using aliphatic lipid (linoleic acid and lauric acid)-grafted polymers (lipopolymers) for the delivery of siRNAs against the FLT3 oncogene in AML and BCR-ABL oncogene in CML. The lipopolymer delivered siRNA potently suppressed the proliferation AML and CML cells via silencing of the targeted oncogenes. In both AML and CML subcutaneous xenografts generated in NCG mice, intravenously administered lipopolymer/siRNA complexes displayed significant inhibitory effect on tumor growth. Combining siFLT3 complexes with gilteritinib allowed for reduction of effective drug dosage, longer duration of remission, and enhanced survival after relapse, compared to gilteritinib monotherapy. Anti-leukemic activity of siBCR-ABL complexes was similar in wild-type and TKI-resistant cells, and therapeutic efficacy was confirmed in vivo through prolonged survival of the NCG hosts systemically implanted with TKI-resistant cells. These results demonstrate the preclinical efficacy of lipopolymer facilitated siRNA delivery, providing a novel therapeutic platform for myeloid leukemias.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- RNA, Small Interfering
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Oncogenes
- Models, Animal
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm
- Aniline Compounds
- Pyrazines
Collapse
Affiliation(s)
- Aysha S Ansari
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Remant K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Luis C Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2H1, Alberta, Canada
| | | | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Xiaoyan Jiang
- Department of Molecular Genetics and Terry Fox Labs, University of British Columbia, Vancouver V5Z 1L3, British Columbia, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2H1, Alberta, Canada.
| |
Collapse
|
9
|
Doherty C, Wilbanks B, Khatua S, Maher LJ. Aptamers in neuro-oncology: An emerging therapeutic modality. Neuro Oncol 2024; 26:38-54. [PMID: 37619244 PMCID: PMC10768989 DOI: 10.1093/neuonc/noad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 08/26/2023] Open
Abstract
Despite recent advances in the understanding of brain tumor pathophysiology, challenges associated with tumor location and characteristics have prevented significant improvement in neuro-oncology therapies. Aptamers are short, single-stranded DNA or RNA oligonucleotides that fold into sequence-specific, 3-dimensional shapes that, like protein antibodies, interact with targeted ligands with high affinity and specificity. Aptamer technology has recently been applied to neuro-oncology as a potential approach to innovative therapy. Preclinical research has demonstrated the ability of aptamers to overcome some obstacles that have traditionally rendered neuro-oncology therapies ineffective. Potential aptamer advantages include their small size, ability in some cases to penetrate the blood-brain barrier, inherent lack of immunogenicity, and applicability for discovering novel biomarkers. Herein, we review recent reports of aptamer applications in neuro-oncology including aptamers found by cell- and in vivo- Systematic Evolution of Ligands by Exponential Enrichment approaches, aptamer-targeted therapeutic delivery modalities, and aptamers in diagnostics and imaging. We further identify crucial future directions for the field that will be important to advance aptamer-based drugs or tools to clinical application in neuro-oncology.
Collapse
Affiliation(s)
- Caroline Doherty
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences and Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Brandon Wilbanks
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Chen X, Wang W, Yeh J, Wu Y, Oehler VG, Naresh KN, Liu YJ. Clinical Validation of FusionPlex RNA Sequencing and Its Utility in the Diagnosis and Classification of Hematologic Neoplasms. J Mol Diagn 2023; 25:932-944. [PMID: 37813298 DOI: 10.1016/j.jmoldx.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
Recurrent gene rearrangements result in gene fusions that encode chimeric proteins, driving the pathogenesis of many hematologic neoplasms. The fifth edition World Health Organization classification and International Consensus Classification 2022 include an expanding list of entities defined by such gene rearrangements. Therefore, sensitive and rapid methods are needed to identify a broad range of gene fusions for precise diagnosis and prognostication. In this study, we validated the FusionPlex Pan-Heme panel analysis using anchored multiplex PCR/targeted RNA next-generation sequencing for routine clinical testing. Furthermore, we assessed its utility in detecting gene fusions in myeloid and lymphoid neoplasms. The validation cohort of 61 cases demonstrated good concordance between the FusionPlex Pan-Heme panel and other methods, including chromosome analysis, fluorescence in situ hybridization, RT-PCR, and Sanger sequencing, with an analytic sensitivity and specificity of 95% and 100%, respectively. In an independent cohort of 28 patients indicated for FusionPlex testing, gene fusions were detected in 21 patients. The FusionPlex Pan-Heme panel analysis reliably detected fusion partners and patient-specific fusion sequences, allowing accurate classification of hematologic neoplasms and the discovery of new fusion partners, contributing to a better understanding of the pathogenesis of the diseases.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Wenjing Wang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jeffrey Yeh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Yu Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vivian G Oehler
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kikkeri N Naresh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
11
|
El Moukhtari SH, Garbayo E, Amundarain A, Pascual-Gil S, Carrasco-León A, Prosper F, Agirre X, Blanco-Prieto MJ. Lipid nanoparticles for siRNA delivery in cancer treatment. J Control Release 2023; 361:130-146. [PMID: 37532145 DOI: 10.1016/j.jconrel.2023.07.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/08/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
RNA-based therapies, and siRNAs in particular, have attractive therapeutic potential for cancer treatment due to their ability to silence genes that are imperative for tumor progression. To be effective and solve issues related to their poor half-life and poor pharmacokinetic properties, siRNAs require adequate drug delivery systems that protect them from degradation and allow intracellular delivery. Among the various delivery vehicles available, lipid nanoparticles have emerged as the leading choice. These nanoparticles consist of cholesterol, phospholipids, PEG-lipids and most importantly ionizable cationic lipids. These ionizable lipids enable the binding of negatively charged siRNA, resulting in the formation of stable and neutral lipid nanoparticles with exceptionally high encapsulation efficiency. Lipid nanoparticles have demonstrated their effectiveness and versatility in delivering not only siRNAs but also multiple RNA molecules, contributing to their remarkable success. Furthermore, the advancement of efficient manufacturing techniques such as microfluidics, enables the rapid mixing of two miscible solvents without the need for shear forces. This facilitates the reproducible production of lipid nanoparticles and holds enormous potential for scalability. This is shown by the increasing number of preclinical and clinical trials evaluating the potential use of siRNA-LNPs for the treatment of solid and hematological tumors as well as in cancer immunotherapy. In this review, we provide an overview of the progress made on siRNA-LNP development for cancer treatment and outline the current preclinical and clinical landscape in this area. Finally, the translational challenges required to bring siRNA-LNPs further into the clinic are also discussed.
Collapse
Affiliation(s)
- Souhaila H El Moukhtari
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Ane Amundarain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Simón Pascual-Gil
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Arantxa Carrasco-León
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
12
|
Swart LE, Fens MHAM, van Oort A, Waranecki P, Mata Casimiro LD, Tuk D, Hendriksen M, van den Brink L, Schweighart E, Seinen C, Nelson R, Krippner-Heidenreich A, O'Toole T, Schiffelers RM, Kooijmans S, Heidenreich O. Increased Bone Marrow Uptake and Accumulation of Very-Late Antigen-4 Targeted Lipid Nanoparticles. Pharmaceutics 2023; 15:1603. [PMID: 37376052 DOI: 10.3390/pharmaceutics15061603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipid nanoparticles (LNPs) have evolved rapidly as promising delivery systems for oligonucleotides, including siRNAs. However, current clinical LNP formulations show high liver accumulation after systemic administration, which is unfavorable for the treatment of extrahepatic diseases, such as hematological disorders. Here we describe the specific targeting of LNPs to hematopoietic progenitor cells in the bone marrow. Functionalization of the LNPs with a modified Leu-Asp-Val tripeptide, a specific ligand for the very-late antigen 4 resulted in an improved uptake and functional siRNA delivery in patient-derived leukemia cells when compared to their non-targeted counterparts. Moreover, surface-modified LNPs displayed significantly improved bone-marrow accumulation and retention. These were associated with increased LNP uptake by immature hematopoietic progenitor cells, also suggesting similarly improved uptake by leukemic stem cells. In summary, we describe an LNP formulation that successfully targets the bone marrow including leukemic stem cells. Our results thereby support the further development of LNPs for targeted therapeutic interventions for leukemia and other hematological disorders.
Collapse
Affiliation(s)
- Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Anita van Oort
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - L Daniel Mata Casimiro
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - David Tuk
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Martijn Hendriksen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Luca van den Brink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Elizabeth Schweighart
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cor Seinen
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ryan Nelson
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | | | - Tom O'Toole
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Raymond M Schiffelers
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sander Kooijmans
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne NE1 7RY, UK
| |
Collapse
|
13
|
Li Y, Yang W, Patel RM, Casey EB, Denby E, Mendoza-Castrejon J, Rodriguez-Lopez P, Magee JA. FLT3ITD drives context-specific changes in cell identity and variable interferon dependence during AML initiation. Blood 2023; 141:1442-1456. [PMID: 36395068 PMCID: PMC10082380 DOI: 10.1182/blood.2022016889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) initiation requires multiple rate-limiting mutations to cooperatively reprogram progenitor cell identity. For example, FLT3 internal tandem duplication (FLT3ITD) mutations cooperate with a variety of different initiating mutations to reprogram myeloid progenitor fate. These initiating mutations often skew toward either pediatric or adult AML patient populations, though FLT3ITD itself occurs at similar frequencies in both age groups. This raises the question of whether FLT3ITD might induce distinct transcriptional programs and unmask distinct therapeutic vulnerabilities when paired with pediatric, as opposed to adult AML-initiating mutations. To explore this possibility, we compared AML evolution in mice that carried Flt3ITD/NUP98-HOXD13 (NHD13) or Flt3ITD/Runx1DEL mutation pairs, which are respectively most common in pediatric and adult AML. Single-cell analyses and epigenome profiling revealed distinct interactions between Flt3ITD and its cooperating mutations. Whereas Flt3ITD and Flt3ITD/Runx1DEL caused aberrant expansion of myeloid progenitors, Flt3ITD/NHD13 drove the emergence of a pre-AML population that did not resemble normal hematopoietic progenitors. Differences between Flt3ITD/Runx1DEL and Flt3ITD/NHD13 cooperative target gene expression extended to fully transformed AML as well. Flt3ITD/NHD13 cooperative target genes were enriched in human NUP98-translocated AML. Flt3ITD/NHD13 selectively hijacked type I interferon signaling to drive expansion of the pre-AML population. Blocking interferon signaling delayed AML initiation and extended survival. Thus, common AML driver mutations, such as FLT3ITD, can coopt different mechanisms of transformation in different genetic contexts. Furthermore, pediatric-biased NUP98 fusions convey actionable interferon dependence.
Collapse
Affiliation(s)
- Yanan Li
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Riddhi M. Patel
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Emily B. Casey
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Elisabeth Denby
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jonny Mendoza-Castrejon
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Priscilla Rodriguez-Lopez
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey A. Magee
- Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
14
|
Issa H, Swart LE, Rasouli M, Ashtiani M, Nakjang S, Jyotsana N, Schuschel K, Heuser M, Blair H, Heidenreich O. Nanoparticle-mediated targeting of the fusion gene RUNX1/ETO in t(8;21)-positive acute myeloid leukaemia. Leukemia 2023; 37:820-834. [PMID: 36823395 PMCID: PMC10079536 DOI: 10.1038/s41375-023-01854-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
A hallmark of acute myeloid leukaemias (AMLs) are chromosomal rearrangements that give rise to novel leukaemia-specific fusion genes. Most of these fusion genes are both initiating and driving events in AML and therefore constitute ideal therapeutic targets but are challenging to target by conventional drug development. siRNAs are frequently used for the specific suppression of fusion gene expression but require special formulations for efficient in vivo delivery. Here we describe the use of siRNA-loaded lipid nanoparticles for the specific therapeutic targeting of the leukaemic fusion gene RUNX1/ETO. Transient knockdown of RUNX1/ETO reduces its binding to its target genes and alters the binding of RUNX1 and its co-factor CBFβ. Transcriptomic changes in vivo were associated with substantially increased median survival of a t(8;21)-AML mouse model. Importantly, transient knockdown in vivo causes long-lasting inhibition of leukaemic proliferation and clonogenicity, induction of myeloid differentiation and a markedly impaired re-engraftment potential in vivo. These data strongly suggest that temporary inhibition of RUNX1/ETO results in long-term restriction of leukaemic self-renewal. Our results provide proof for the feasibility of targeting RUNX1/ETO in a pre-clinical setting and support the further development of siRNA-LNPs for the treatment of fusion gene-driven malignancies.
Collapse
Affiliation(s)
- Hasan Issa
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
| | - Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Minoo Ashtiani
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nidhi Jyotsana
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK. .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Identification of alternative transcripts of NSD1 gene in Sotos Syndrome patients and healthy subjects. Gene 2023; 851:146970. [DOI: 10.1016/j.gene.2022.146970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
17
|
d’Amati A, Nicolussi A, Miele E, Mastronuzzi A, Rossi S, Gianno F, Buttarelli FR, Minasi S, Lodeserto P, Gardiman MP, Viscardi E, Coppa A, Donofrio V, Giovannoni I, Giangaspero F, Antonelli M. NSD1 Mutations and Pediatric High-Grade Gliomas: A Comparative Genomic Study in Primary and Recurrent Tumors. Diagnostics (Basel) 2022; 13:diagnostics13010078. [PMID: 36611369 PMCID: PMC9818856 DOI: 10.3390/diagnostics13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Pediatric high-grade gliomas represent a heterogeneous group of tumors with a wide variety of molecular features. We performed whole exome sequencing and methylation profiling on matched primary and recurrent tumors from four pediatric patients with hemispheric high-grade gliomas. Genetic analysis showed the presence of some variants shared between primary and recurrent tumors, along with other variants exclusive of primary or recurrent tumors. NSD1 variants, all novel and not previously reported, were present at high frequency in our series (100%) and were all shared between the samples, independently of primary or recurrence. For every variant, in silico prediction tools estimated a high probability of altering protein function. The novel NSD1 variant (c.5924T > A; p.Leu1975His) was present in one in four cases at recurrence, and in two in four cases at primary. The novel NSD1 variant (c.5993T > A; p.Met1998Lys) was present in one in four cases both at primary and recurrence, and in one in four cases only at primary. The presence of NSD1 mutations only at recurrence may suggest that they can be sub-clonal, while the presence in both primary and recurrence implies that they can also represent early and stable events. Furthermore, their presence only in primary, but not in recurrent tumors, suggest that NSD1 mutations may also be influenced by treatment.
Collapse
Affiliation(s)
- Antonio d’Amati
- Anatomic Pathology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Arianna Nicolussi
- Department of Molecular Medicine, University La Sapienza, 00161 Rome, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University La Sapienza, 00161 Rome, Italy
| | - Francesca Romana Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University La Sapienza, 00161 Rome, Italy
| | - Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University La Sapienza, 00161 Rome, Italy
| | - Pietro Lodeserto
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University La Sapienza, 00161 Rome, Italy
| | - Marina Paola Gardiman
- Surgical Pathology Unit, Department of Medicine (DIMED), University Hospital of Padua, 35128 Padua, Italy
| | - Elisabetta Viscardi
- Hematology Oncology Division, Department of Women’s and Children’s Health, University of Padova, 35128 Padua, Italy
| | - Anna Coppa
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| | - Vittoria Donofrio
- Anatomic Pathology Unit, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University La Sapienza, 00161 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University La Sapienza, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Bolouri H, Ries RE, Wiedeman AE, Hylkema T, Scheiding S, Gersuk VH, O'Brien K, Nguyen QA, Smith JL, Alice Long S, Meshinchi S. Inflammatory bone marrow signaling in pediatric acute myeloid leukemia distinguishes patients with poor outcomes. Nat Commun 2022; 13:7186. [PMID: 36418348 PMCID: PMC9684530 DOI: 10.1038/s41467-022-34965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
High levels of the inflammatory cytokine IL-6 in the bone marrow are associated with poor outcomes in pediatric acute myeloid leukemia (pAML), but its etiology remains unknown. Using RNA-seq data from pre-treatment bone marrows of 1489 children with pAML, we show that > 20% of patients have concurrent IL-6, IL-1, IFNα/β, and TNFα signaling activity and poorer outcomes. Targeted sequencing of pre-treatment bone marrow samples from affected patients (n = 181) revealed 5 highly recurrent patterns of somatic mutation. Using differential expression analyses of the most common genomic subtypes (~60% of total), we identify high expression of multiple potential drivers of inflammation-related treatment resistance. Regardless of genomic subtype, we show that JAK1/2 inhibition reduces receptor-mediated inflammatory signaling by leukemic cells in-vitro. The large number of high-risk pAML genomic subtypes presents an obstacle to the development of mutation-specific therapies. Our findings suggest that therapies targeting inflammatory signaling may be effective across multiple genomic subtypes of pAML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA.
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Tiffany Hylkema
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Kimberly O'Brien
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Quynh-Anh Nguyen
- Center for Systems Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Research Scientific Computing, Seattle Children's Research Institute, 818 Stewart Street, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
19
|
Xie W, Raess PW, Dunlap J, Hoyos CM, Li H, Li P, Swords R, Olson SB, Yang F, Anekpuritanang T, Hu S, Wiszniewska J, Fan G, Press RD, Moore SR. Adult acute myeloid leukemia patients with NUP98 rearrangement have frequent cryptic translocations and unfavorable outcome. Leuk Lymphoma 2022; 63:1907-1916. [DOI: 10.1080/10428194.2022.2047672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Philipp W. Raess
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Dunlap
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Cristina Magallanes Hoyos
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Hongmei Li
- Pathology and Laboratory, and North Shore Pathologists, Ascension Wisconsin Health Care, Milwaukee, WI, USA
| | - Peng Li
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ronan Swords
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Susan B. Olson
- Knight Diagnostic Laboratories, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Fei Yang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tauangtham Anekpuritanang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shimin Hu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Wiszniewska
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Richard D. Press
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Stephen R. Moore
- Knight Diagnostic Laboratories, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
20
|
Swart LE, Koekman CA, Seinen CW, Issa H, Rasouli M, Schiffelers RM, Heidenreich O. A robust post-insertion method for the preparation of targeted siRNA LNPs. Int J Pharm 2022; 620:121741. [PMID: 35421533 DOI: 10.1016/j.ijpharm.2022.121741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Targeted delivery of nucleic acids is gaining momentum due to improved efficacy, selectivity, increased circulation time and enhanced tissue retention in target cells. Using nucleic acid-based therapies previously undruggable targets have proven now to be amenable for treatment. Currently, several methods for preparing targeted or labelled delivery vehicles for nucleic acids are based on liposomal formulations. Lipid nanoparticles (LNPs) are structurally different from liposomes and these methods should therefore be evaluated before being translated to siRNA LNPs preparation protocols. Here, we describe a robust and facile method for the preparation of targeted or fluorescently labelled siRNA LNPs. Using a copper free strain-promoted azide-alkyne cycloaddition (SPAAC) we demonstrate that post-insertion of ligand-lipid conjugates into preformed LNPs is superior to direct-surface modification because it preserves the physicochemical parameters of the LNPs. We found that the time point of solvent removal by dialysis is critical and affects the hydrodynamic diameter of the LNPs; post-insertion after dialysis shows the smallest increase in hydrodynamic diameter and polydispersity index (PDI). The post-insertion of ligand-lipid conjugates also proceeded with rapid kinetics and high efficacy over a wide temperature range. Using this optimised protocol, we generated siRNA LNPs containing both targeting and fluorescent tracking ligands allowing us to monitor siRNA LNP uptake kinetics in dependence of the targeting ligand. In aggregate, we describe a robust approach for the generation of targeted and labelled siRNA LNPs that allows their controlled and facile decoration with ligand combinations.
Collapse
Affiliation(s)
- L E Swart
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - C A Koekman
- Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - C W Seinen
- Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - H Issa
- Department of Pediatrics, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt (Main), Germany
| | - M Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - R M Schiffelers
- Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands
| | - O Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
21
|
Webb C, Ip S, Bathula NV, Popova P, Soriano SKV, Ly HH, Eryilmaz B, Nguyen Huu VA, Broadhead R, Rabel M, Villamagna I, Abraham S, Raeesi V, Thomas A, Clarke S, Ramsay EC, Perrie Y, Blakney AK. Current Status and Future Perspectives on MRNA Drug Manufacturing. Mol Pharm 2022; 19:1047-1058. [PMID: 35238565 PMCID: PMC8905930 DOI: 10.1021/acs.molpharmaceut.2c00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/20/2022]
Abstract
The coronavirus disease of 2019 (COVID-19) pandemic launched an unprecedented global effort to rapidly develop vaccines to stem the spread of the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Messenger ribonucleic acid (mRNA) vaccines were developed quickly by companies that were actively developing mRNA therapeutics and vaccines for other indications, leading to two mRNA vaccines being not only the first SARS-CoV-2 vaccines to be approved for emergency use but also the first mRNA drugs to gain emergency use authorization and to eventually gain full approval. This was possible partly because mRNA sequences can be altered to encode nearly any protein without significantly altering its chemical properties, allowing the drug substance to be a modular component of the drug product. Lipid nanoparticle (LNP) technology required to protect the ribonucleic acid (RNA) and mediate delivery into the cytoplasm of cells is likewise modular, as are technologies and infrastructure required to encapsulate the RNA into the LNP. This enabled the rapid adaptation of the technology to a new target. Upon the coattails of the clinical success of mRNA vaccines, this modularity will pave the way for future RNA medicines for cancer, gene therapy, and RNA engineered cell therapies. In this review, trends in the publication records and clinical trial registrations are tallied to show the sharp intensification in preclinical and clinical research for RNA medicines. Demand for the manufacturing of both the RNA drug substance (DS) and the LNP drug product (DP) has already been strained, causing shortages of the vaccine, and the rise in development and translation of other mRNA drugs in the coming years will exacerbate this strain. To estimate demand for DP manufacturing, the dosing requirements for the preclinical and clinical studies of the two approved mRNA vaccines were examined. To understand the current state of mRNA-LNP production, current methods and technologies are reviewed, as are current and announced global capacities for commercial manufacturing. Finally, a vision is rationalized for how emerging technologies such as self-amplifying mRNA, microfluidic production, and trends toward integrated and distributed manufacturing will shape the future of RNA manufacturing and unlock the potential for an RNA medicine revolution.
Collapse
Affiliation(s)
- Cameron Webb
- Strathclyde Institute of Pharmacy and
Biomedical Sciences, University of Strathclyde, 161 Cathedral Street,
Glasgow G4 0RE, United Kingdom
| | - Shell Ip
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Nuthan V. Bathula
- Michael Smith Laboratories & School of Biomedical
Engineering, University of British Columbia, 2185 East Mall,
Vancouver, British Columbia V6T 1Z4, Canada
| | - Petya Popova
- Michael Smith Laboratories & School of Biomedical
Engineering, University of British Columbia, 2185 East Mall,
Vancouver, British Columbia V6T 1Z4, Canada
| | - Shekinah K. V. Soriano
- Michael Smith Laboratories & School of Biomedical
Engineering, University of British Columbia, 2185 East Mall,
Vancouver, British Columbia V6T 1Z4, Canada
| | - Han Han Ly
- Michael Smith Laboratories & School of Biomedical
Engineering, University of British Columbia, 2185 East Mall,
Vancouver, British Columbia V6T 1Z4, Canada
| | - Burcu Eryilmaz
- Strathclyde Institute of Pharmacy and
Biomedical Sciences, University of Strathclyde, 161 Cathedral Street,
Glasgow G4 0RE, United Kingdom
| | - Viet Anh Nguyen Huu
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Richard Broadhead
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Martin Rabel
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Ian Villamagna
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Suraj Abraham
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Vahid Raeesi
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Anitha Thomas
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Samuel Clarke
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Euan C. Ramsay
- Precision NanoSystems Inc,
655 West Kent Avenue North Unit 50, Vancouver, British Columbia V6P 6T7,
Canada
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and
Biomedical Sciences, University of Strathclyde, 161 Cathedral Street,
Glasgow G4 0RE, United Kingdom
| | - Anna K. Blakney
- Michael Smith Laboratories & School of Biomedical
Engineering, University of British Columbia, 2185 East Mall,
Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
22
|
Lejman M, Dziatkiewicz I, Jurek M. Straight to the Point-The Novel Strategies to Cure Pediatric AML. Int J Mol Sci 2022; 23:1968. [PMID: 35216084 PMCID: PMC8878466 DOI: 10.3390/ijms23041968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although the outcome has improved over the past decades, due to improved supportive care, a better understanding of risk factors, and intensified chemotherapy, pediatric acute myeloid leukemia remains a life-threatening disease, and overall survival (OS) remains near 70%. According to French-American-British (FAB) classification, AML is divided into eight subtypes (M0-M7), and each is characterized by a different pathogenesis and response to treatment. However, the curability of AML is due to the intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. Therefore, it is essential to identify new, more precise molecules that are targeted to the specific abnormalities of each leukemia subtype. Here, we review abnormalities that are potential therapeutic targets for the treatment of AML in the pediatric population.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Izabela Dziatkiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| | - Mateusz Jurek
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| |
Collapse
|
23
|
Lauw MI, Qi Z, Eversmeyer L, Prakash S, Wen KW, Yu J, Monaghan SA, Aggarwal N, Wang L. Distinct Pathologic Feature of Myeloid Neoplasm with t(v;11p15); NUP98 Rearrangement. Hum Pathol 2022; 123:11-19. [DOI: 10.1016/j.humpath.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
|
24
|
Gerding WM, Tembrink M, Nilius‐Eliliwi V, Mika T, Dimopoulos F, Ladigan‐Badura S, Eckhardt M, Pohl M, Wünnenberg M, Farshi P, Reimer P, Schroers R, Nguyen HP, Vangala DB. Optical genome mapping reveals additional prognostic information compared to conventional cytogenetics in
AML
/
MDS
patients. Int J Cancer 2022; 150:1998-2011. [DOI: 10.1002/ijc.33942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Wanda M. Gerding
- Department for Human Genetics Ruhr‐University Bochum Bochum Germany
| | - Marco Tembrink
- Department for Human Genetics Ruhr‐University Bochum Bochum Germany
| | - Verena Nilius‐Eliliwi
- Department for Human Genetics Ruhr‐University Bochum Bochum Germany
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Thomas Mika
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Fotios Dimopoulos
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Swetlana Ladigan‐Badura
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Matthias Eckhardt
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Michael Pohl
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Max Wünnenberg
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Pakhshan Farshi
- Department of Hematology and Oncology Kliniken Essen‐Mitte Essen Germany
| | - Peter Reimer
- Department of Hematology and Oncology Kliniken Essen‐Mitte Essen Germany
| | - Roland Schroers
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| | - Huu Phuc Nguyen
- Department for Human Genetics Ruhr‐University Bochum Bochum Germany
| | - Deepak B. Vangala
- Department of Medicine, Hematology and Oncology Knappschaftskrankenhaus, Ruhr‐University Bochum Bochum Germany
| |
Collapse
|
25
|
Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:854973. [PMID: 35756660 PMCID: PMC9214208 DOI: 10.3389/fonc.2022.854973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and genetically heterogeneous hematologic malignancy. Extensive sequencing efforts have mapped the genomic landscape of adult and pediatric AML revealing a number of biologically and prognostically relevant driver lesions. Beyond identifying recurrent genetic aberrations, it is of critical importance to fully delineate the complex mechanisms by which they contribute to the initiation and evolution of disease to ultimately facilitate the development of targeted therapies. Towards these aims, murine models of AML are indispensable research tools. The rapid evolution of genetic engineering techniques over the past 20 years has greatly advanced the use of murine models to mirror specific genetic subtypes of human AML, define cell-intrinsic and extrinsic disease mechanisms, study the interaction between co-occurring genetic lesions, and test novel therapeutic approaches. This review summarizes the mouse model systems that have been developed to recapitulate the most common genomic subtypes of AML. We will discuss the strengths and weaknesses of varying modeling strategies, highlight major discoveries emanating from these model systems, and outline future opportunities to leverage emerging technologies for mechanistic and preclinical investigations.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Madeleine O'Keefe
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
26
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
27
|
Shrestha A, Kim N, Lee SJ, Jeon YH, Song JJ, An H, Cho SJ, Kadayat TM, Chin J. Targeting the Nuclear Receptor-Binding SET Domain Family of Histone Lysine Methyltransferases for Cancer Therapy: Recent Progress and Perspectives. J Med Chem 2021; 64:14913-14929. [PMID: 34488340 DOI: 10.1021/acs.jmedchem.1c01116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S. FDA approval of the first HKMTase inhibitor (tazemetostat, an EZH2 inhibitor) to treat follicular lymphoma and epithelioid sarcoma. This perspective highlights recent findings on the structures of catalytic su(var), enhancer-of-zeste, trithorax (SET) domains and other functional domains of NSD methyltransferases. In addition, recent progress and efforts to discover NSD-specific small molecule inhibitors against cancer-targeting catalytic SET domains, plant homeodomains, and proline-tryptophan-tryptophan-proline domains are summarized.
Collapse
Affiliation(s)
- Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Nayeon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| |
Collapse
|
28
|
Yang C, Wang K, Liang Q, Tian TT, Zhong Z. Role of NSD1 as potential therapeutic target in tumor. Pharmacol Res 2021; 173:105888. [PMID: 34536546 DOI: 10.1016/j.phrs.2021.105888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
Nuclear receptor binding SET Domain Protein 1 (NSD1) is a bifunctional transcriptional regulatory protein that encodes histone methyltransferase. Mono- and di-methylation of H3K36 by NSD1 is mainly primarily involved in the regulation of gene expression, DNA repair, alternative splicing, and other important biological processes. Many types of cancers, including acute myelogenous leukemia (AML), liver cancer, lung cancer, endometrial carcinoma, colorectal cancer, and pancreatic cancer, are associated with NSD1 fusion, missense mutation, nonsense mutation, silent mutation, deletion, and insertion of frameshift, and deletion in a frame. Therefore, targeting NSD1 may be a potential strategy for tumor therapy. An in-depth study of the structure and biological activities of NSD1 sets the groundwork for improving tumor therapy and creating NSD1 inhibitors. This article emphasizes the role of NSD1 in tumorigenesis and the development of NSD1 targeted small-molecule inhibitors.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Tian-Tian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province 519087, China.
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
29
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Guan W, Zhou L, Li Y, Yang E, Liu Y, Lv N, Fu L, Ding Y, Wang N, Fang N, Liu Q, Wang B, Li F, Zhang J, Wang M, Wang L, Jing Y, Li Y, Yu L. Profiling of somatic mutations and fusion genes in acute myeloid leukemia patients with FLT3-ITD or FLT3-TKD mutation at diagnosis reveals distinct evolutionary patterns. Exp Hematol Oncol 2021; 10:27. [PMID: 33836835 PMCID: PMC8033687 DOI: 10.1186/s40164-021-00207-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Background The receptor tyrosine kinase FLT3 with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) is a poor prognostic factor; however, the prognostic significance of missense mutation in the tyrosine kinase domain (FLT3-TKD) is controversial. Furthermore, the accompanying mutations and fusion genes with FLT3 mutations are unclear in acute myeloid leukemia (AML). Methods We investigated FLT3 mutations and their correlation with other gene mutations and gene fusions through two RNA-seq based next-generation sequencing (NGS) method and prognostic impact in 207 de novo AML patients. Results FLT3-ITD mutations were positive in 58 patients (28%), and FLT3-TKD mutations were positive in 20 patients (9.7%). FLT3-ITD was associated with a higher white blood cell count (WBC, mean 72.9 × 109/L vs. 24.2 × 109/L, P = 0.000), higher bone marrow blasts (mean 65.9% vs. 56.0%, P = 0.024), and NK-AML (normal karyotype) (64.8% vs. 48.4%, P = 0.043). NPM1 and DNMT3A mutations were enriched in FLT3-ITD (53.5% vs. 15.3%, P = 0.000; 34.6% vs. 13%, P = 0.003). However, the mutations of CEBPA were excluded in FLT3-AML (3.8% vs. 0% vs. 19.8%, P = 0.005). Mutations of Ras and TP53 were unlikely associated with FLT3-ITD (1.9% vs. 20.6%, P = 0.006; 0% vs. 6.1%, P = 0.04). The common fusion genes (> 10%) in FLT3-ITD had MLL-rearrangement and NUP98-rearrangement, while the common fusion genes in FLT3-TKD had AML1-ETO and MLL-rearrangement. Two novel fusion genes PRDM16-SKI and EFAN2-ZNF238 were identified in FLT3-ITD patients. Gene fusions and NPM1 mutation were mutually excluded in FLT3-ITD and FLT3-TKD patients. Their patterns of mutual exclusivity and cooperation among mutated genes suggest that additional driver genetic alterations are required and reveal two evolutionary patterns of FLT3 pathogenesis. Patients with FLT3-ITD had a lower CR (complete remission) rate, lower 3-year OS (overall survival), DFS (disease-free survival), and EFS (event-free survival) compared to FLT3wtAML. NK-AML with FLT3-ITD had a lower 3-year OS, DFS, and EFS than those without, while FLT3-TKD did not influence the survival in whole cohort and NK-AML. Besides, we found that FLT3-ITD/TET2 bimutation defined a poor prognostic subgroup. Conclusions Our study offers deep insights into the molecular pathogenesis and biology of AML with FLT3-ITD and FLT3-TKD by providing the profiles of concurrent molecular alterations and the clinical impact of FLT3-ITD and FLT3-TKD on AML patients.
Collapse
Affiliation(s)
- Wei Guan
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Department of Hematology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Erna Yang
- Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China
| | - Yangyang Liu
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Na Lv
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yi Ding
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Nan Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Nan Fang
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Qian Liu
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Binan Wang
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Fuwei Li
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Juan Zhang
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Maoquan Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yonghui Li
- Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. .,Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China.
| |
Collapse
|