1
|
Zhao R, Zhu X, Wei W, Zhen L. The role of HSPA14 in breast cancer: implications for tumorigenesis, immune response modulation, and personalized therapies. Int J Hyperthermia 2025; 42:2452922. [PMID: 39828281 DOI: 10.1080/02656736.2025.2452922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Heat shock proteins have been implicated in the process of carcinogenesis. HSPA14, a member of the heat shock protein family, remains poorly understood in terms of its significance and pathomechanisms in breast cancer. METHODS We analyzed the expression levels of HSPA14 and its prognostic significance in breast cancer using TCGA data. TCGA data was used to investigate the association between HSPA14 expression and clinicopathological features in breast cancer patients. GSEA analysis was conducted to identify the biological function of HSPA14. Spearman's correlation analysis was performed to examine the correlation between HSPA14 expression and immune cell infiltration, as well as immune checkpoint genes. Single cell transcriptomic data from GSE114727 was utilized to calculate the expression of HSPA14 in different cell subpopulations. The data on HSPA14 levels and drug sensitivity were extracted from the CellMiner dataset. The mRNA expression of HSPA14 was validated through cell experiments. RESULTS HSPA14 expression is elevated in breast cancer, which is associated with poor overall survival. It can serve as a diagnostic biomarker for breast cancer patients. Pathway analysis revealed that HSPA14-associated differential genes are involved in cell cycle, apoptosis, cellular response to heat stress, and more. Additionally, HSPA14 expression is significantly correlated with the immune microenvironment. The expression of HSPA14 may also indicate drug sensitivity. CONCLUSION Our study elucidates the involvement of HSPA14 in tumorigenesis, particularly in modulating the immune response, shaping the immune microenvironment, and contributing to drug resistance, which are pivotal for the development of personalized breast cancer therapies.
Collapse
Affiliation(s)
- Ruipeng Zhao
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiaocun Zhu
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wan Wei
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Linlin Zhen
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
2
|
Serrano García L, Jávega B, Llombart Cussac A, Gión M, Pérez-García JM, Cortés J, Fernández-Murga ML. Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review. Front Immunol 2024; 15:1513421. [PMID: 39735530 PMCID: PMC11671371 DOI: 10.3389/fimmu.2024.1513421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality. Standard treatment for TNBC primarily relies on cytotoxic agents, such as taxanes, anthracyclines, and platinum compounds for both early and advanced stages of the disease. Several targeted therapies, including bevacizumab and sunitinib, have failed to demonstrate significant clinical benefit in TNBC. The emergence of immune checkpoint inhibitors (ICI) has revolutionized cancer treatment. By stimulating the immune system, ICIs induce a durable anti-tumor response across various solid tumors. TNBC is a particularly promising target for treatment with ICIs due to the higher levels of tumor-infiltrating lymphocytes (TIL), increased PD-L1 expression, and higher mutational burden, which generates tumor-specific neoantigens that activate immune cells. ICIs administered as monotherapy in advanced TNBC yields only a modest response; however, response rates significantly improve when ICIs are combined with cytotoxic agents, particularly in tumors expressing PD-L1. Pembrolizumab is approved for use in both early and advanced TNBC in combination with standard chemotherapy. However, more research is needed to identify more potent biomarkers, and to better elucidate the synergism of ICIs with other targeted agents. In this review, we explore the challenges of immunotherapy in TNBC, examining the mechanisms of tumor progression mediated by immune cells within the tumor microenvironment, and the signaling pathways involved in both primary and acquired resistance. Finally, we provide a comprehensive overview of ongoing clinical trials underway to investigate novel immune-targeted therapies for TNBC.
Collapse
Affiliation(s)
- Lucía Serrano García
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Beatriz Jávega
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Antonio Llombart Cussac
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
- Grupo Oncología Traslacional, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-Centro de Estudios Universitarios (CEU), Alfara del Patriarca, Spain
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
| | - María Gión
- Medical Oncology Department, Hospital Ramon y Cajal, Madrid, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Oncoclínicas & Co., Jersey City, NJ, United States
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| | - María Leonor Fernández-Murga
- Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
3
|
Santerre JP, Yang Y, Du Z, Wang W, Zhang X. Biomaterials' enhancement of immunotherapy for breast cancer by targeting functional cells in the tumor micro-environment. Front Immunol 2024; 15:1492323. [PMID: 39600709 PMCID: PMC11588700 DOI: 10.3389/fimmu.2024.1492323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapy for breast cancer is now being considered clinically, and more recently, the number of investigations aimed specifically at nano-biomaterials-assisted immunotherapy for breast cancer treatment is growing. Alterations of the breast cancer micro-environment can play a critical role in anti-tumor immunity and cancer development, progression and metastasis. The improvement and rearrangement of tumor micro-environment (TME) may enhance the permeability of anti-tumor drugs. Therefore, targeting the TME is also an ideal and promising option during the selection of effective nano-biomaterial-based immuno-therapeutic strategies excepted for targeting intrinsic resistant mechanisms of the breast tumor. Although nano-biomaterials designed to specifically release loaded anti-tumor drugs in response to tumor hypoxia and low pH conditions have shown promises and the diversity of the TME components also supports a broad targeting potential for anti-tumor drug designs, yet the applications of nano-biomaterials for targeting immunosuppressive cells/immune cells in the TME for improving the breast cancer treating outcomes, have scarcely been addressed in a scientific review. This review provides a thorough discussion for the application of the different forms of nano-biomaterials, as carrier vehicles for breast cancer immunotherapy, targeting specific types of immune cells in the breast tumor microenvironment. In parallel, the paper provides a critical analysis of current advances/challenges with leading nano-biomaterial-mediated breast cancer immunotherapeutic strategies. The current review is timely and important to the cancer research field and will provide a critical tool for nano-biomaterial design and research groups pushing the clinical translation of new nano-biomaterial-based immuno-strategies targeting breast cancer TME, to further open new avenues for the understanding, prevention, diagnosis and treatment of breast cancer, as well as other cancer types.
Collapse
Affiliation(s)
- J. Paul Santerre
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yangyang Yang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Ziwei Du
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenshuang Wang
- Department of Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoqing Zhang
- The School of Basic Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Chida K, Oshi M, Roy AM, Sato T, Takabe MP, Yan L, Endo I, Hakamada K, Takabe K. Enhanced cancer cell proliferation and aggressive phenotype counterbalance in breast cancer with high BRCA1 gene expression. Breast Cancer Res Treat 2024; 208:321-331. [PMID: 38972017 DOI: 10.1007/s10549-024-07421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE While comprehensive research exists on the mutation of the DNA repair gene BRCA1, limited information is available regarding the clinical significance of BRCA1 gene expression. Given that cancer cell proliferation is aggrevated by DNA repair, we hypothesized that high BRCA1 gene expression breast cancer (BC) might be linked with aggressive tumor biology and poor clinical outcomes. METHODS The cohorts: The Cancer Genome Atlas (TCGA, n = 1069), METABRIC (n = 1903), and SCAN-B (n = 3273) were utilzed to obtain data of 6245 BC patients. RESULTS BC patients without BRCA1 mutation exhibited higher BRCA1 expression, which was associated with DNA repair functionality. However, no such correlation was observed with BRCA2 expression. The association of high BRCA1 expression with cancer cell proliferation was evidenced by significant enrichment of cell proliferation-related gene sets, higher histological grade, and proliferation score. Furthermore, increased levels of homologous recombination deficiency, intratumoral heterogeneity, and altered fractions were associated with high BRCA1 expression. Moreover, BC with high BRCA1 expression exhibited reduced infiltration of dendritic cells and CD8 T-cells, while showing increased infiltration of Th1 cells. Surprisingly, BRCA1 expression was not associated with the survival of BC irrespective of the subtypes. Conversely, BC with low BRCA1 expression enriched cancer aggravating pathway gene sets, such as Cancer Stem Cell-related signaling (NOTCH and HEDGEHOG), Angiogenesis, Epithelial-Mesenchymal Transition, Inflammatory Response, and TGF-beta signaling. CONCLUSION Despite being linked to heightened proliferation of cancer cells and unassertive phenotype, BRCA1 expression did not show any association with survival in BC.
Collapse
Affiliation(s)
- Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Takumi Sato
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medical Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Maya Penelope Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Department of Surgery, School of Medicine and Biomedical Sciences, University at Buffalo Jacobs, The State University of New York, Buffalo, NY, 14263, USA.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
5
|
Oshi M, Yamada A, Gandhi S, Wu R, Sasamoto M, Yamamoto S, Narui K, Ishikawa T, Takabe K, Endo I. Breast cancer in adolescents and young adults has a specific biology and poor patient outcome compared with older patients. ESMO Open 2024; 9:103737. [PMID: 39405895 PMCID: PMC11525141 DOI: 10.1016/j.esmoop.2024.103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND We aimed to clarify the features of adolescents and young adults (AYA: younger than 40 years old) breast cancer (BC) compared with other age groups in estrogen receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative BC, given the effects of age-related hormonal status. METHODS The cohorts analyzed were divided into AYA (15-39 years old), perimenopausal (40-54 years old), menopausal (55-64 years old), and old (65+ years old). Clinicopathological and biological features were analyzed using gene set variation analysis and xCell algorithm using transcriptome profiles from large public databases of ER-positive/HER2-negative BC (METABRIC; n = 1353, SCAN-B; n = 2381). RESULTS In the ER-positive/HER2-negative subtype, pathological lymph node positivity, and Nottingham grade 3 were higher among AYA (all P < 0.001). AYA patients had a trend toward worse disease-specific and overall survival, particularly compared with the perimenopausal group. Estrogen response late signaling decreased with age (all P ≤ 0.001 in both METABRIC and SCAN-B cohorts). AYA was associated with significantly higher BRCAness and DNA repair than the other groups (all P < 0.05 in both cohorts). AYA significantly enriched cell proliferation-related and procancerous gene sets [mTORC1, unfolded protein response, and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling] when compared with the others (all P < 0.03 in both cohorts). Interestingly, these features have also been observed in tumors <2 cm. Infiltration of CD8+, regulatory, T helper type 2 cells, and M1 macrophages was higher, while M2 macrophages were lower in AYA (all P < 0.03 in both cohorts). Finally, ER-positive/HER2-negative BC in AYA patients has different features of gene mutations, including AHNAK2, GATA3, HERC2, and TG, which were observed at a higher rate in AYA, and KMT2C, which was observed at a lower rate in AYA, compared with other age groups. CONCLUSIONS ER-positive/HER2-negative BC in AYA was highly proliferative with high immune cell infiltration compared with the other age groups.
Collapse
Affiliation(s)
- M Oshi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - A Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - S Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - R Wu
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo
| | - M Sasamoto
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - S Yamamoto
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - K Narui
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - T Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo
| | - K Takabe
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - I Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
6
|
Oshi M, Wu R, Khoury T, Gandhi S, Yan L, Yamada A, Ishikawa T, Endo I, Takabe K. Infiltration of Common Myeloid Progenitor (CMP) Cells is Associated With Less Aggressive Tumor Biology, Lower Risk of Brain Metastasis, Better Response to Immunotherapy, and Higher Patient Survival in Breast Cancer. Ann Surg 2024; 280:557-569. [PMID: 38946549 DOI: 10.1097/sla.0000000000006428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
OBJECTIVE To investigate the clinical relevance of common myeloid progenitor (CMP) cells in breast tumor microenvironment (TME). BACKGROUND The role of rare cells in TME is less studied. In Silico transcriptomic analyses of real-world data enable us to detect and quantify rare cells, including CMP cells. METHODS A total of 5176 breast cancer (BC) patients from SCAN-B, METABRIC, and 5 single-cell sequence cohorts were analyzed using the xCell algorithm. The high group was defined as more than two-thirds of the CMP scores in each cohort. RESULTS CMP cells consist of 0.07% to 0.25% of bulk breast tumor cells, more in estrogen receptor-positive (ER+) compared with triple-negative (TN) subtype (0.1% to 0.75%, 0.18% to 0.33% of immune cells, respectively). CMP cells did not correlate with any of the myeloid lineages or stem cells in TME. CMP infiltration was higher in smaller tumors, with lower Nottingham grade, and in ER+/HER2- than in TNBC consistently in both SCAN-B and METABRIC cohorts. High CMP was significantly associated with a lower risk of brain metastasis and with better survival, particularly in ER+/HER2-. High CMP enriched epithelial-to-mesenchymal transition and angiogenesis pathways, and less cell proliferation and DNA repair gene sets. High CMP ER+/HER2- was associated with less immune cell infiltration and cytolytic activity ( P <0.001). CMP infiltration correlated with neoadjuvant chemoimmunotherapy response for both ER+/HER2- and TNBC in the ISPY-2 cohort (AUC=0.69 and 0.74, respectively). CONCLUSIONS CMP in BC is inversely associated with cell proliferation and brain metastasis, better response to immunotherapy, and survival. This is the first to report the clinical relevance of CMP infiltration in BC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Shipra Gandhi
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Akimitsu Yamada
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
7
|
Chen X, Peng H, Zhang Z, Yang C, Liu Y, Chen Y, Yu F, Wu S, Cao L. SPDYC serves as a prognostic biomarker related to lipid metabolism and the immune microenvironment in breast cancer. Immunol Res 2024; 72:1030-1050. [PMID: 38890248 DOI: 10.1007/s12026-024-09505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer remains the most common malignant carcinoma among women globally and is resistant to several therapeutic agents. There is a need for novel targets to improve the prognosis of patients with breast cancer. Bioinformatics analyses were conducted to explore potentially relevant prognostic genes in breast cancer using The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) databases. Gene subtypes were categorized by machine learning algorithms. The machine learning-related breast cancer (MLBC) score was evaluated through principal component analysis (PCA) of clinical patients' pathological statuses and subtypes. Immune cell infiltration was analyzed using the xCell and CIBERSORT algorithms. Kyoto Encyclopedia of Genes and Genomes enrichment analysis elucidated regulatory pathways related to speedy/RINGO cell cycle regulator family member C (SPDYC) in breast cancer. The biological functions and lipid metabolic status of breast cancer cell lines were validated via quantitative real-time polymerase chain reaction (RT‒qPCR) assays, western blotting, CCK-8 assays, PI‒Annexin V fluorescence staining, transwell assays, wound healing assays, and Oil Red O staining. Key differentially expressed genes (DEGs) in breast cancer from the TCGA and GEO databases were screened and utilized to establish the MLBC score. Moreover, the MLBC score we established was negatively correlated with poor prognosis in breast cancer patients. Furthermore, the impacts of SPDYC on the tumor immune microenvironment and lipid metabolism in breast cancer were revealed and validated. SPDYC is closely related to activated dendritic cells and macrophages and is simultaneously correlated with the immune checkpoints CD47, cytotoxic T lymphocyte antigen-4 (CTLA-4), and poliovirus receptor (PVR). SPDYC strongly correlated with C-C motif chemokine ligand 7 (CCL7), a chemokine that influences breast cancer patient prognosis. A significant relationship was discovered between key genes involved in lipid metabolism and SPDYC, such as ELOVL fatty acid elongase 2 (ELOVL2), malic enzyme 1 (ME1), and squalene epoxidase (SQLE). Potent inhibitors targeting SPDYC in breast cancer were also discovered, including JNK inhibitor VIII, AICAR, and JW-7-52-1. Downregulation of SPDYC expression in vitro decreased proliferation, increased the apoptotic rate, decreased migration, and reduced lipid droplets. SPDYC possibly influences the tumor immune microenvironment and regulates lipid metabolism in breast cancer. Hence, this study identified SPDYC as a pivotal biomarker for developing therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhentao Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Changnian Yang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yingqi Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanzhen Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Reinstein ZZ, Zhang Y, Ospina OE, Nichols MD, Chu VA, Pulido ADM, Prieto K, Nguyen JV, Yin R, Moran Segura C, Usman A, Sell B, Ng S, de la Iglesia JV, Chandra S, Sosman JA, Cho RJ, Cheng JB, Ivanova E, Koralov SB, Slebos RJC, Chung CH, Khushalani NI, Messina JL, Sarnaik AA, Zager JS, Sondak VK, Vaske C, Kim S, Brohl AS, Mi X, Pierce BG, Wang X, Fridley BL, Tsai KY, Choi J. Preexisting Skin-Resident CD8 and γδ T-cell Circuits Mediate Immune Response in Merkel Cell Carcinoma and Predict Immunotherapy Efficacy. Cancer Discov 2024; 14:1631-1652. [PMID: 39058036 DOI: 10.1158/2159-8290.cd-23-0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 04/26/2024] [Indexed: 07/28/2024]
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with a ∼50% response rate to immune checkpoint blockade (ICB) therapy. To identify predictive biomarkers, we integrated bulk and single-cell RNA sequencing (RNA-seq) with spatial transcriptomics from a cohort of 186 samples from 116 patients, including bulk RNA-seq from 14 matched pairs pre- and post-ICB. In nonresponders, tumors show evidence of increased tumor proliferation, neuronal stem cell markers, and IL1. Responders have increased type I/II interferons and preexisting tissue resident (Trm) CD8 or Vδ1 γδ T cells that functionally converge with overlapping antigen-specific transcriptional programs and clonal expansion of public T-cell receptors. Spatial transcriptomics demonstrated colocalization of T cells with B and dendritic cells, which supply chemokines and costimulation. Lastly, ICB significantly increased clonal expansion or recruitment of Trm and Vδ1 cells in tumors specifically in responders, underscoring their therapeutic importance. These data identify potential clinically actionable biomarkers and therapeutic targets for MCC. Significance: MCC serves as a model of ICB response. We utilized the largest-to-date, multimodal MCC dataset (n = 116 patients) to uncover unique tumor-intrinsic properties and immune circuits that predict response. We identified CD8 Trm and Vδ1 T cells as clinically actionable mediators of ICB response in major histocompatibility complex-high and -low MCCs, respectively.
Collapse
Affiliation(s)
- Zachary Z Reinstein
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Oscar E Ospina
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matt D Nichols
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Victoria A Chu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alvaro de Mingo Pulido
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Karol Prieto
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan V Nguyen
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Carlos Moran Segura
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ahmed Usman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Brittney Sell
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Spencer Ng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Janis V de la Iglesia
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sunandana Chandra
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeffrey A Sosman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, California
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, California
- Department of Dermatology, Veterans Affairs Medical Center, San Francisco, California
| | - Ellie Ivanova
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University, Grossman School of Medicine, New York, New York
| | - Robbert J C Slebos
- Department of Head and Neck Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Christine H Chung
- Department of Head and Neck Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nikhil I Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jane L Messina
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amod A Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Sungjune Kim
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Andrew S Brohl
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xinlei Mi
- Department of Preventive Medicine-Biostatistics Quantitative Data Sciences Core, Northwestern University, Chicago, Illinois
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Department of Tumor Metastasis and Microenvironment, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Genetic Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois
| |
Collapse
|
9
|
Guenther C. Stiffness regulates dendritic cell and macrophage subtype development and increased stiffness induces a tumor-associated macrophage phenotype in cancer co-cultures. Front Immunol 2024; 15:1434030. [PMID: 39211033 PMCID: PMC11358102 DOI: 10.3389/fimmu.2024.1434030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Mechanical properties of tissues including their stiffness change throughout our lives, during both healthy development but also during chronic diseases like cancer. How changes to stiffness, occurring during cancer progression, impact leukocytes is unknown. To address this, myeloid phenotypes resulting from mono- and cancer co-cultures of primary murine and human myeloid cells on 2D and 3D hydrogels with varying stiffnesses were analyzed. On soft hydrogels, conventional DCs (cDCs) developed, whereas on stiff hydrogels plasmacytoid DCs (pDCs) developed. Soft substrates promoted T cell proliferation and activation, while phagocytosis was increased on stiffer substrates. Cell populations expressing macrophage markers CD14, Ly6C, and CD16 also increased on stiff hydrogels. In cancer co-cultures, CD86+ populations decreased on higher stiffnesses across four different cancer types. High stiffness also led to increased vascular endothelial growth factor A (VEGFA), matrix metalloproteinases (MMP) and CD206 expression; 'M2' markers expressed by tumor-associated macrophages (TAMs). Indeed, the majority of CD11c+ cells expressed CD206 across human cancer models. Targeting the PI3K/Akt pathway led to a decrease in CD206+ cells in murine cultures only, while human CD86+ cells increased. Increased stiffness in cancer could, thus, lead to the dysregulation of infiltrating myeloid cells and shift their phenotypes towards a M2-like TAM phenotype, thereby actively enabling tumor progression. Additionally, stiffness-dependent intracellular signaling appears extremely cell context-dependent, potentially contributing to the high failure rate of clinical trials.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Wu L, Zheng H, Guo X, Li N, Qin L, Li X, Lou G. Integrative analyses of genes associated with oxidative stress and cellular senescence in triple-negative breast cancer. Heliyon 2024; 10:e34524. [PMID: 39130410 PMCID: PMC11315143 DOI: 10.1016/j.heliyon.2024.e34524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Background Oxidative stress and cellular senescence (OSCS) have great impacts on the occurrence and progression of triple-negative breast cancer (TNBC). This study was intended to construct a prognostic model based on oxidative stress and cellular senescence related difference expression genes (OSCSRDEGs) for TNBC. Methods The Cancer Genome Atlas (TCGA) databases and two Gene Expression Omnibus (GEO) databases were used to identify OSCSRDEGs. The relationship between OSCSRDEGs and immune infiltration was examined using single-sample gene-set enrichment analysis (ssGSEA), ESTIMATE, and the CIBERSORT algorithm. Least absolute shrinkage and selection operator (LASSO) regression analyses, Cox regression and Kaplan-Meier analysis were employed to construct a prognostic model. Receiver operating characteristic (ROC) curves, nomograms, and decision curve analysis (DCA) were used to evaluate the prognostic efficacy. Gene Set Enrichment Analysis (GSEA) Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to explore the potential functions and mechanism. Results A comprehensive analysis identified a total of 27 OSCSRDEGs, out of which 15 genes selected for development of a prognostic model. A high degree of statistical significance was observed for the riskscores derived from this model to accurately predict TNBC Overall survival. The decision curve analysis (DCA) and ROC curve analysis further confirmed the superior accuracy of the OSCSRDEGs prognostic model in predicting efficacy. Notably, the nomogram analysis highlighted that DMD exhibited the highest utility within the model. In comparison between high and low OSCScore groups, the infiltration abundance of immune cells was statistically different in the TCGA-TNBC dataset. Conclusion These studies have effectively identified four essential OSCSRDEGs (CFI, DMD, NDRG2, and NRP1) and meticulously developed an OSCS-associated prognostic model for individuals diagnosed with TNBC. These discoveries have the potential to significantly contribute to the comprehension of the involvement of OSCS in TNBC.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Hongyan Zheng
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaorong Guo
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Luyao Qin
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xiaoqing Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ge Lou
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
11
|
Barbagallo D, Ponti D, Bassani B, Bruno A, Pulze L, Akkihal SA, George-William JN, Gundamaraju R, Campomenosi P. MiR-223-3p in Cancer Development and Cancer Drug Resistance: Same Coin, Different Faces. Int J Mol Sci 2024; 25:8191. [PMID: 39125761 PMCID: PMC11311375 DOI: 10.3390/ijms25158191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either an oncogenic or oncosuppressive miRNA, depending on specific molecular landscapes. MiR-223 has also been linked to either the sensitivity or resistance of cancer cells to treatments in a context-dependent way. Through this detailed review, we highlight that for some cancers (i.e., breast, non-small cell lung carcinoma, and glioblastoma), the oncosuppressive role of miR-223 is consistently reported in the literature, while for others (i.e., colorectal, ovarian, and pancreatic cancers, and acute lymphocytic leukemia), an oncogenic role prevails. In prostate cancer and other hematological malignancies, although an oncosuppressive role is frequently described, there is less of a consensus. Intriguingly, NLRP3 and FBXW7 are consistently identified as miR-223 targets when the miRNA acts as an oncosuppressor or an oncogene, respectively, in different cancers. Our review also describes that miR-223 was increased in biological fluids or their extracellular vesicles in most of the cancers analyzed, as compared to healthy or lower-risk conditions, confirming the potential application of this miRNA as a diagnostic and prognostic biomarker in the clinic.
Collapse
Affiliation(s)
- Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Laura Pulze
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Shreya A. Akkihal
- Independent Researcher, 35004 SE Swenson St, Snoqualmie, WA 98065, USA;
| | - Jonahunnatha N. George-William
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi, 93, 20054 Segrate, Italy;
| | - Rohit Gundamaraju
- Department of Laboratory Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
- ER Stress and Mucosal Immunology Team, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| |
Collapse
|
12
|
Ji Y, Heng Y, Zhu X, Zhang D, Tang D, Zhou J, Lin H, Ma J, Ding X, Tao L, Lu L. Increased tumor-infiltrating plasmacytoid dendritic cells express high levels of PD-L2 and affect CD8 + T lymphocyte infiltration in human laryngeal squamous cell carcinoma. Transl Oncol 2024; 45:101936. [PMID: 38678970 PMCID: PMC11068930 DOI: 10.1016/j.tranon.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
The infiltration and prognostic significance of tumor-infiltrating plasmacytoid dendritic cells (TI-pDC) have been elucidated in various human solid cancers. However, the infiltrating patterns and functional importance of TI-pDC in laryngeal squamous cell carcinoma (LSCC) remain unknown. In this study, flow cytometric analyses were conducted to characterize the infiltration of dendritic cells and T lymphocytes, along with their respective subgroups in tumor tissues (TT), para-carcinoma tissues (PT), and peripheral blood (PB) from LSCC patients. Immunohistochemical staining for CD4 and CD8, as well as immunofluorescence staining for CD123, were performed on serial tissue sections to investigate the co-localization of TI-pDC and tumor-infiltrating T lymphocytes (TIL) within the tumor microenvironment (TME). Our results demonstrated significantly lower percentages of all three DC subsets in PB compared to TT and PT. Notably, the pDC percentage was markedly higher in TT than in PT. Moreover, TI-pDC percentage was significantly elevated in N+ stage patients compared to those with N0 stage. The results of survival analysis consistently demonstrated that high levels of TI-pDC infiltration were indicative of a poor prognosis. Further investigation revealed a significant negative correlation between TI-pDC and CD8+ TILs; notably, pDCs expressed an inhibitory surface molecule PD-L2 rather than PD-L1 within PT. Collectively, our findings suggest that increased TI-pDC is associated with adverse outcomes in LSCC patients while exhibiting an inhibitory phenotype that may play a crucial role in suppressing CD8+ TILs within LSCC tumors. These results highlight the potential therapeutic strategy targeting PD-L2+ pDCs for immunotherapies against LSCC.
Collapse
Affiliation(s)
- Yangyang Ji
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Yu Heng
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Xiaoke Zhu
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Duo Zhang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Di Tang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Jian Zhou
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Hanqing Lin
- Department of Otorhinolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China
| | - Jingyu Ma
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Xuping Ding
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Lei Tao
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of otorhinolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China.
| | - Liming Lu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
13
|
Gerashchenko T, Frolova A, Patysheva M, Fedorov A, Stakheyeva M, Denisov E, Cherdyntseva N. Breast Cancer Immune Landscape: Interplay Between Systemic and Local Immunity. Adv Biol (Weinh) 2024; 8:e2400140. [PMID: 38727796 DOI: 10.1002/adbi.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is one of the most common malignancies in women worldwide. Numerous studies in immuno-oncology and successful trials of immunotherapy have demonstrated the causal role of the immune system in cancer pathogenesis. The interaction between the tumor and the immune system is known to have a dual nature. Despite cytotoxic lymphocyte activity against transformed cells, a tumor can escape immune surveillance and leverage chronic inflammation to maintain its own development. Research on antitumor immunity primarily focuses on the role of the tumor microenvironment, whereas the systemic immune response beyond the tumor site is described less thoroughly. Here, a comprehensive review of the formation of the immune profile in breast cancer patients is offered. The interplay between systemic and local immune reactions as self-sustaining mechanism of tumor progression is described and the functional activity of the main cell populations related to innate and adaptive immunity is discussed. Additionally, the interaction between different functional levels of the immune system and their contribution to the development of the pro- or anti-tumor immune response in BC is highlighted. The presented data can potentially inform the development of new immunotherapy strategies in the treatment of patients with BC.
Collapse
Affiliation(s)
- Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anastasia Frolova
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| | - Marina Patysheva
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anton Fedorov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Marina Stakheyeva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Nadezda Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Researc, Medical Center, Russian Academy of Sciences, Kooperativny Str. 5, Tomsk, 634009, Russia
- Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
| |
Collapse
|
14
|
Mazzoccoli L, Liu B. Dendritic Cells in Shaping Anti-Tumor T Cell Response. Cancers (Basel) 2024; 16:2211. [PMID: 38927916 PMCID: PMC11201542 DOI: 10.3390/cancers16122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Among professional antigen-presenting cells, dendritic cells (DCs) orchestrate innate and adaptive immunity and play a pivotal role in anti-tumor immunity. DCs are a heterogeneous population with varying functions in the tumor microenvironment (TME). Tumor-associated DCs differentiate developmentally and functionally into three main subsets: conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (MoDCs). There are two major subsets of cDCs in TME, cDC1 and cDC2. cDC1 is critical for cross-presenting tumor antigens to activate cytotoxic CD8+ T cells and is also required for priming earlier CD4+ T cells in certain solid tumors. cDC2 is vital for priming anti-tumor CD4+ T cells in multiple tumor models. pDC is a unique subset of DCs and produces type I IFN through TLR7 and TLR9. Studies have shown that pDCs are related to immunosuppression in the TME through the secretion of immunosuppressive cytokines and by promoting regulatory T cells. MoDCs differentiate separately from monocytes in response to inflammatory cues and infection. Also, MoDCs can cross-prime CD8+ T cells. In this review, we summarize the subsets and functions of DCs. We also discuss the role of different DC subsets in shaping T cell immunity in TME and targeting DCs for potential immunotherapeutic benefits against cancer.
Collapse
Affiliation(s)
- Luciano Mazzoccoli
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Oshi M, Roy AM, Yan L, Kinoshita S, Tamura Y, Kosaka T, Akiyama H, Kunisaki C, Takabe K, Endo I. Enhanced epithelial-mesenchymal transition signatures are linked with adverse tumor microenvironment, angiogenesis and worse survival in gastric cancer. Cancer Gene Ther 2024; 31:746-754. [PMID: 38532115 DOI: 10.1038/s41417-024-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial mechanism that facilitates cancer cell metastasis. Despite its importance, the clinical significance of EMT in gastric cancer (GC) patients has yet to be clearly demonstrated. For gauging the extent of EMT in GC, we employed gene set variation analysis to score 807 patient samples from two large cohorts: TCGA and GSE84437. In both cohorts, EMT high GC showed a significant association with worse overall survival (hazard ratio (HR) = 1.74, p = 0.011 and HR = 2.01, p < 0.001, respectively). This association was stronger when considering the EMT signature score compared to the individual expressions of EMT-related genes (CDH1, CDH2, VIM, and FN1). While the EMT signature level did not differ among various cancers, high EMT signature specifically correlated with survival in GC alone. Mucinous and diffuse histological types exhibited higher EMT levels compared to others (p < 0.001), and the EMT signature level was correlated with tumor depth and AJCC stage (all p < 0.001). Interestingly, the EMT score was an independent factor for overall and disease-specific survival (multivariate; p = 0.006 and 0.032, respectively). EMT high GC displayed a lower fraction of Th1 cells and a higher fraction of dendritic cells, M1 macrophages and several stromal cells. EMT high GC exhibited an inverse correlation with cell proliferation-related gene sets. While they significantly enriched multiple pro-cancerous gene sets, such as TGF-β signaling, hypoxia, and angiogenesis. The presence of EMT signature in a bulk tumor was linked to TGF-β signaling, hypoxia, and angiogenesis, and was also associated with poorer survival outcomes in GC patients.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan.
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Arya Mariam Roy
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Sachika Kinoshita
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yuko Tamura
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Takashi Kosaka
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hirotoshi Akiyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Chikara Kunisaki
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuaki Takabe
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, 14263, USA
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| |
Collapse
|
16
|
Sarkar J, Oshi M, Satyananda V, Chida K, Yan L, Maiti A, Hait N, Endo I, Takabe K. Spinster Homologue 2 Expression Correlates With Improved Patient Survival in Hepatocellular Carcinoma Despite Association With Lymph-Angiogenesis. World J Oncol 2024; 15:181-191. [PMID: 38545475 PMCID: PMC10965268 DOI: 10.14740/wjon1732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Spinster homologue 2 (SPNS2) is a transporter of sphingosine-1-phosphate (S1P), a bioactive lipid linked to cancer progression. We studied the link between SPNS2 gene expression, tumor aggressiveness, and outcomes in patients with hepatocellular carcinoma (HCC). METHODS Gene expression in patients with HCC was analyzed from the Cancer Genome Atlas (TCGA) (n = 350) and GSE76427 (n = 115) as a validation cohort, as well as liver tissue cohort GSE6764 (n = 75). RESULTS High-SPNS2 HCC was significantly associated with high level of lymph-angiogenesis-related factors. SPNS2 expression was significantly higher in normal liver and early HCC versus advanced HCC (P < 0.02). High SPNS2 levels enriched immune response-related gene sets; inflammatory, interferon (IFN)-α, IFN-γ responses, and tumor necrosis factor (TNF)-α, interleukin (IL)-6/Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling, complement and allograft rejection, but did not significantly infiltrate specific immune cells nor cytolytic activity score. High-SPNS2 HCC enriched tumor aggravating pathway gene sets such as KRAS (Kirsten rat sarcoma virus) signaling, but inversely correlated with Nottingham histological grade, MKI67 (marker of proliferation Ki-67) expression, and cell proliferation-related gene sets. Further, high-SPNS2 HCC had significantly high infiltration of stromal cells, showing that low-SPNS2 HCC is highly proliferative. Finally, high-SPNS2 HCC was associated with better disease-free, disease-specific, and overall survival (P = 0.031, 0.046, and 0.040, respectively). CONCLUSIONS Although SPNS2 expression correlated with lymph-angiogenesis and other cancer-promoting pathways, it also enriched immune response. SPNS2 levels were higher in normal liver compared to HCC, and inversely correlated with cancer cell proliferation and better survival. SPNS2 expression may be beneficial in HCC patients despite detrimental in-vitro effects.
Collapse
Affiliation(s)
- Joy Sarkar
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- These authors contributed equally to this work
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
- These authors contributed equally to this work
| | - Vikas Satyananda
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aparna Maiti
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nitai Hait
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gastroenterological Surgery, Yokohama, Kanagawa 236-004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
17
|
Akinsipe T, Mohamedelhassan R, Akinpelu A, Pondugula SR, Mistriotis P, Avila LA, Suryawanshi A. Cellular interactions in tumor microenvironment during breast cancer progression: new frontiers and implications for novel therapeutics. Front Immunol 2024; 15:1302587. [PMID: 38533507 PMCID: PMC10963559 DOI: 10.3389/fimmu.2024.1302587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The breast cancer tumor microenvironment (TME) is dynamic, with various immune and non-immune cells interacting to regulate tumor progression and anti-tumor immunity. It is now evident that the cells within the TME significantly contribute to breast cancer progression and resistance to various conventional and newly developed anti-tumor therapies. Both immune and non-immune cells in the TME play critical roles in tumor onset, uncontrolled proliferation, metastasis, immune evasion, and resistance to anti-tumor therapies. Consequently, molecular and cellular components of breast TME have emerged as promising therapeutic targets for developing novel treatments. The breast TME primarily comprises cancer cells, stromal cells, vasculature, and infiltrating immune cells. Currently, numerous clinical trials targeting specific TME components of breast cancer are underway. However, the complexity of the TME and its impact on the evasion of anti-tumor immunity necessitate further research to develop novel and improved breast cancer therapies. The multifaceted nature of breast TME cells arises from their phenotypic and functional plasticity, which endows them with both pro and anti-tumor roles during tumor progression. In this review, we discuss current understanding and recent advances in the pro and anti-tumoral functions of TME cells and their implications for developing safe and effective therapies to control breast cancer progress.
Collapse
Affiliation(s)
- Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Rania Mohamedelhassan
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Ayuba Akinpelu
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Satyanarayana R. Pondugula
- Department of Chemical Engineering, College of Engineering, Auburn University, Auburn, AL, United States
| | - Panagiotis Mistriotis
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - L. Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
18
|
Palomares F, Pina A, Dakhaoui H, Leiva-Castro C, Munera-Rodriguez AM, Cejudo-Guillen M, Granados B, Alba G, Santa-Maria C, Sobrino F, Lopez-Enriquez S. Dendritic Cells as a Therapeutic Strategy in Acute Myeloid Leukemia: Vaccines. Vaccines (Basel) 2024; 12:165. [PMID: 38400148 PMCID: PMC10891551 DOI: 10.3390/vaccines12020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Dendritic cells (DCs) serve as professional antigen-presenting cells (APC) bridging innate and adaptive immunity, playing an essential role in triggering specific cellular and humoral responses against tumor and infectious antigens. Consequently, various DC-based antitumor therapeutic strategies have been developed, particularly vaccines, and have been intensively investigated specifically in the context of acute myeloid leukemia (AML). This hematological malignancy mainly affects the elderly population (those aged over 65), which usually presents a high rate of therapeutic failure and an unfavorable prognosis. In this review, we examine the current state of development and progress of vaccines in AML. The findings evidence the possible administration of DC-based vaccines as an adjuvant treatment in AML following initial therapy. Furthermore, the therapy demonstrates promising outcomes in preventing or delaying tumor relapse and exhibits synergistic effects when combined with other treatments during relapses or disease progression. On the other hand, the remarkable success observed with RNA vaccines for COVID-19, delivered in lipid nanoparticles, has revealed the efficacy and effectiveness of these types of vectors, prompting further exploration and their potential application in AML, as well as other neoplasms, loading them with tumor RNA.
Collapse
Affiliation(s)
- Francisca Palomares
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
- Institute of Biomedicine of Seville (IBiS) HUVR/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| | - Alejandra Pina
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Hala Dakhaoui
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Camila Leiva-Castro
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Ana M. Munera-Rodriguez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Marta Cejudo-Guillen
- Institute of Biomedicine of Seville (IBiS) HUVR/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- Department of Pharmacology, Pediatry, and Radiology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Beatriz Granados
- Distrito Sanitario de Atención Primaria Málaga, Sistema Sanitario Público de Andalucía, 29004 Malaga, Spain;
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Francisco Sobrino
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain; (A.P.); (H.D.); (C.L.-C.); (A.M.M.-R.); (G.A.); (F.S.)
- Institute of Biomedicine of Seville (IBiS) HUVR/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
| |
Collapse
|
19
|
Cao Z, Guan M, Cheng C, Wang F, Jing Y, Zhang K, Jiao J, Ruan L, Chen Z. KIF20B and MET, hub genes of DIAPHs, predict poor prognosis and promote pancreatic cancer progression. Pathol Res Pract 2024; 254:155046. [PMID: 38266456 DOI: 10.1016/j.prp.2023.155046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND The DIAPHs (DIAPH1, DIAPH2, and DIAPH3) are members of the diaphanous subfamily of the formin family. KIF20B and MET, hub genes of DIAPHs, play crucial roles in cytoskeletal remodeling, cell migration, and adhesion. However, their combined prognostic and treatment value in pancreatic adenocarcinoma (PC) warrants further investigation. METHODS Multiomics analysis tools were used to comprehensively assess the genomic expression and prognostic value of KIF20B and MET in PC. Immune cell infiltration, functional enrichment, single-cell RNA-seq (scRNA) analysis, potential therapeutic drugs, and nomograms were established and analyzed. CCK-8 levels, transwell assay, Co-IP assay, mass spectrometry, and western blotting were performed to assess the role of KIF20B and MET as modulators of β-catenin and Lactate Dehydrogenase A (LDHA) in vitro. Xenograft tumor models were used to evaluate the anti-tumor effects in vivo. RESULTS DIAPHs, KIF20B, and MET were overexpressed and functioned as poor prognostic markers of PC. Immunoinfiltration analysis revealed that pDC and NK cells were enriched with low expression levels of KIF20B and MET, whereas Th2 cells were enriched with high expression levels of these two genes. The copy number variations (CNVs) in KIF20B and MET were positively correlated with B cell and CD4 + T cell infiltration. Immunological checkpoints NT5E and CD44 were positively correlated with KIF20B and MET expression. Moreover, the nomogram constructed based on KIF20B and MET demonstrated predictive value for overall survival. scRNA-Seq analysis indicated that KIF20B and MET were enriched in endothelial, malignant, B, T, and CD8 + T cells, which correlated with glycolysis and the epithelial-mesenchymal transition (EMT). The interactions of KIF20B and MET with β-catenin and LDHA were verified by Co-IP assay and mass spectrometry. Knockdown of KIF20B and MET downregulates β-catenin and LDHA in vitro. Furthermore, dual knockdown of KIF20B and MET exhibited a synergistic suppressive effect on PC progression in vitro and in vivo. CONCLUSION DIAPHs, KIF20B, and MET are promising candidates for the prognosis and treatment of PC. More importantly, downregulation of KIF20B and MET inhibited pancreatic cancer progression by regulating LDHA and EMT.
Collapse
Affiliation(s)
- Zhangqi Cao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingwei Guan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chienshan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanhua Jing
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
20
|
Nelson ED, Benesch MGK, Wu R, Ishikawa T, Takabe K. High EIF4EBP1 expression reflects mTOR pathway activity and cancer cell proliferation and is a biomarker for poor breast cancer prognosis. Am J Cancer Res 2024; 14:227-242. [PMID: 38323277 PMCID: PMC10839327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) is regulated by the mTOR (mammalian target of rapamycin) signaling pathway. Phosphorylated EIF4EBP1 protein leads to pathway activation and correlates with aggressive breast cancer features. However, the clinical relevance of EIF4EBP1 gene expression as a prognostic biomarker in bulk breast tumors is not understood. In this study, EIF4EBP1 expression was analyzed in over 5000 breast cancers from three large independent cohorts, TCGA, METABRIC, and SCAN-B (GSE96058), and expression was dichotomized into low and high groups by the median. We also performed gene set enrichment analysis (GSEA) and cell cybersorting via the xCell algorithm to investigate EIF4EBP1 biology and expression patterns within the tumor microenvironment (TME). We additionally confirmed EIF4EBP1 expression location in the TME via single cell RNA sequencing. EIF4EBP1 expression was highest in both triple negative and high-grade tumors (both P<0.001), and tumor mutational burden scores were highest in the high EIF4EBP1-expression groups (all P<0.001). High EIF4EBP1 expression significantly correlated to worse overall survival in all three cohorts (hazard ratios (HR) 1.4-1.9), and worse distant relapse-free survival in patients treated with neoadjuvant taxane-anthracycline chemotherapy (HR 2.4). GSEA demonstrated enriched mTOR and cell proliferation-related gene sets, including, MYC, G2M checkpoint, and E2F targets across all three bulk tumor and single cell RNA sequencing cohorts. Phenotypically, these pathways were reflected by increased Ki67 gene expression and signaling via pharmacologically-activated mTOR gene sets in EIF4EBP1 high-expressing tumors (all P<0.001). EIF4EBP1 expression was increased in whole breast tumors compared to normal breast tissue (P<0.001), and was expressed predominantly in cancer epithelial cells, particularly in basal epithelial cell subclasses. EIF4EBP1 expression did not correlate to a consistent immune system phenotype across all three cohorts. Overall, these findings support that high EIF4EBP1 gene expression in bulk breast tumors could represent a poor prognostic marker via mTOR signaling pathways activation and upregulation of cell cycling, ultimately leading to increased tumorigenesis.
Collapse
Affiliation(s)
- Erek D Nelson
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, NY 14263, USA
| |
Collapse
|
21
|
Colombani T, Rogers ZJ, Bhatt K, Sinoimeri J, Gerbereux L, Hamrangsekachaee M, Bencherif SA. Hypoxia-inducing cryogels uncover key cancer-immune cell interactions in an oxygen-deficient tumor microenvironment. Bioact Mater 2023; 29:279-295. [PMID: 37600932 PMCID: PMC10432785 DOI: 10.1016/j.bioactmat.2023.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 08/22/2023] Open
Abstract
Hypoxia is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O2) control, leading to non-pathophysiological tumor responses. Therefore, it is essential to develop better cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O2 locally and induce long-standing hypoxia. HICs promoted changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in the plasmacytoid DC (pDC) subset and an impaired conventional DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and has great potential to deepen our understanding of cancer-immune cell relationship in low O2 conditions and may pave the way for developing more effective therapies.
Collapse
Affiliation(s)
- Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - James Sinoimeri
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | - Lauren Gerbereux
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
| | | | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
22
|
Chen Y, Qi Y, Wang K. Neoadjuvant chemotherapy for breast cancer: an evaluation of its efficacy and research progress. Front Oncol 2023; 13:1169010. [PMID: 37854685 PMCID: PMC10579937 DOI: 10.3389/fonc.2023.1169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Neoadjuvant chemotherapy (NAC) for breast cancer is widely used in the clinical setting to improve the chance of surgery, breast conservation and quality of life for patients with advanced breast cancer. A more accurate efficacy evaluation system is important for the decision of surgery timing and chemotherapy regimen implementation. However, current methods, encompassing imaging techniques such as ultrasound and MRI, along with non-imaging approaches like pathological evaluations, often fall short in accurately depicting the therapeutic effects of NAC. Imaging techniques are subjective and only reflect macroscopic morphological changes, while pathological evaluation is the gold standard for efficacy assessment but has the disadvantage of delayed results. In an effort to identify assessment methods that align more closely with real-world clinical demands, this paper provides an in-depth exploration of the principles and clinical applications of various assessment approaches in the neoadjuvant chemotherapy process.
Collapse
Affiliation(s)
- Yushi Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Yu Qi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, Basic Medical School, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Wu R, Oshi M, Asaoka M, Yan L, Benesch MG, Khoury T, Nagahashi M, Miyoshi Y, Endo I, Ishikawa T, Takabe K. Intratumoral Tumor Infiltrating Lymphocytes (TILs) are Associated With Cell Proliferation and Better Survival But Not Always With Chemotherapy Response in Breast Cancer. Ann Surg 2023; 278:587-597. [PMID: 37318852 PMCID: PMC10481934 DOI: 10.1097/sla.0000000000005954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To investigate the clinical relevance of intratumoral tumor infiltrating lymphocytes (TILs) in breast cancer as measured by computational deconvolution of bulk tumor transcriptomes. SUMMARY BACKGROUND DATA Commonly assessed TILs, located in tumor stroma without direct contact with cancer cells (stromal TILs), correlate with breast cancer treatment response and survival. The clinical relevance of intratumoral TILs has been less studied partly due to their rarity; however, they may have nonnegligible effects given their direct contact with cancer cells. METHODS In all, 5870 breast cancer patients from TCGA, METABRIC, GSE96058, GSE25066, GSE163882, GSE123845, and GSE20271 cohorts were analyzed and validated. RESULTS The intratumoral TIL score was established by the sum of all types of lymphocytes using the xCell algorithm. This score was the highest in triple-negative breast cancer (TNBC) and the lowest in the ER-positive/HER2-negative subtype. It correlated with cytolytic activity and infiltrations of dendritic cells, macrophages, and monocytes, and uniformly enriched immune-related gene sets regardless of subtype. Intratumoral TIL-high tumors correlated with higher mutation rates and significant cell proliferation on biological, pathological, and molecular analyses only in the ER-positive/HER2-negative subtype. It was significantly associated with pathological complete response after anthracycline- and taxane-based neoadjuvant chemotherapy in about half of the cohorts, regardless of the subtype. Intratumoral TIL-high tumors correlated with better overall survival in HER2-positive and TNBC subtypes consistently in 3 cohorts. CONCLUSIONS Intratumoral TILs estimated by transcriptome computation were associated with increased immune response and cell proliferation in ER-positive/HER2-negative and better survival in HER2-positive and TNBC subtypes, but not always with pathological complete response after neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Mariko Asaoka
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Masayuki Nagahashi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
24
|
Li XM, Liu SP, Li Y, Cai XM, Zhang SB, Xie ZF. Identification of disulfidptosis-related genes with immune infiltration in hepatocellular carcinoma. Heliyon 2023; 9:e18436. [PMID: 37520990 PMCID: PMC10382636 DOI: 10.1016/j.heliyon.2023.e18436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant primary tumor that is usually diagnosed at an advanced stage; thus, there is an urgent need for efficient and sensitive novel diagnostic markers to determine the prognosis and halt disease progression in patients with HCC. Disulfidptosis is a recently discovered form of programmed cell death, essentially an abnormal accumulation of intracellular bisulfides. Therefore, our study aimed to investigate the role of disulfidptosis-related genes (DRGs) in the pathogenesis of HCC. Based on public databases, our work demonstrates the relationship between DRG and expression, immunity, mutation/drug sensitivity, and functional enrichment in HCC. We also revealed the significant heterogeneity of HCC in different DRGs sub-clusters and in differentially expressed genes (DEGs), respectively. Subsequently, the most relevant candidate gene, SLC7A11, was screened by machine learning to further validate the significance of SLC7A11 in the clinical features, prognosis, nomogram pattern, and immune infiltration of HCC. Our study, which elucidates the potential mechanisms of DRGs and HCC, reveals that SLC7A11 can serve as a novel prognostic biomarker and provides opportunities and challenges for individualized cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Xiao-min Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shan-peng Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yu Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-ming Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shao-bo Zhang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ze-feng Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
25
|
Oshi M, Roy AM, Yan L, Sasamoto M, Tokumaru Y, Wu R, Yamada A, Yamamoto S, Chishima T, Narui K, Endo I, Takabe K. Accelerated glycolysis in tumor microenvironment is associated with worse survival in triple-negative but not consistently with ER+/HER2- breast cancer. Am J Cancer Res 2023; 13:3041-3054. [PMID: 37559984 PMCID: PMC10408485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/06/2023] [Indexed: 08/11/2023] Open
Abstract
Metabolic reprogramming to sustain immortality is a hallmark of cancer and glycolysis is an important way to attain this. Thus, we investigate the association of glycolysis and associated pathways in the survival of breast cancer. A total of 5,176 breast cancer patients from multiple independent cohorts were analyzed. We determined the glycolytic signaling score by the degree of enrichment by Gene Set Variant Analysis and the median was used to divide each cohort into high vs low score groups. Glycolysis high breast cancer significantly enriched the hallmark cell proliferation-related gene sets (E2F targets, G2M checkpoint, and MYC targets v1 and v2) and was associated with high MKI67 expression. In all cohorts, triple-negative breast cancer (TNBC) was associated with the highest glycolysis score. It was found that in TNBC, glycolysis high breast cancer was associated with worse survival but in ER-positive/HER2-negative breast cancer this was not observed consistently. The glycolysis high TNBC enriched multiple pro-cancerous gene sets and was infiltrated with a low level of B-cells and anti-cancerous immune cells, and significantly associated with a decreased level of cytolytic activity. It was also observed that the glycolysis was higher in the metastatic sites than in the primary breast cancer and the survival was not affected by the metastatic sites. In conclusion, accelerated glycolysis is associated with cancer cell proliferation and worse survival in TNBC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Arya Mariam Roy
- Department of Medical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Mahato Sasamoto
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Shinya Yamamoto
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazutaka Narui
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| |
Collapse
|
26
|
Oshi M, Ziazadeh D, Wu R, Chida K, Yamada A, Yamamoto S, Narui K, Yan L, Ishikawa T, Endo I, Takabe K. GALNT1 Expression Is Associated with Angiogenesis and Is a Prognostic Biomarker for Breast Cancer in Adolescents and Young Adults (AYA). Cancers (Basel) 2023; 15:3489. [PMID: 37444599 PMCID: PMC10341315 DOI: 10.3390/cancers15133489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
It is well established that genetic information differs amongst the adolescent and young adult population (AYA) and older patients. Although several studies on genetic information have been conducted, no current prognostic biomarker exists to help differentiate survival outcomes amongst AYA patients. The GALNT family of genes have been associated with several cancer etiologies, such as the Tn antigen and epithelial-mesenchymal transition (EMT); however, the clinical significance of GALNT1 expression in breast cancer (BC) remains unclear. We investigated the clinical relevance of GALNT1 expression in BC using two large independent cohorts. We found that, although triple-negative BC (TNBC) had the highest GALNT1 expression compared to ER-positive/HER2-negative BC, GALNT1 levels in BC were not associated with clinical aggressiveness, including histological grade, AJCC stage and N-category, and patient survival, consistently in both the METABRIC and GSE96058 cohorts. There was also no biological difference between low- and high-GALNT1 expression BC, as analyzed by hallmark gene sets via gene set enrichment analysis (GSEA). Further, no significant difference was found in GALNT1 expression levels among AYAs and older patients. However, high GALNT1 expression was associated with significantly worse survival in AYA patients, in both cohorts. Furthermore, high GALNT1 expression was found to be an independent factor among several clinical features, including subtype, histological grade, AJCC T and N-category, in AYA patients. In both cohorts, BC with high GALNT1 expression demonstrated low levels of CD8+ T-cell infiltration, but not other anti-cancerous or pro-cancerous immune cells. Finally, high levels of GALNT1 BC demonstrated increased EMT, angiogenesis, and protein secretion in the AYA population, but not in older patients. In conclusion, our findings demonstrate that GALNT1 expression was found to be associated with angiogenesis and EMT, and may have potential as prognostic biomarker, specifically in AYA patients.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (D.Z.); (K.C.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (A.Y.)
| | - Danya Ziazadeh
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (D.Z.); (K.C.)
| | - Rongrong Wu
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
| | - Kohei Chida
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (D.Z.); (K.C.)
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (A.Y.)
| | - Shinya Yamamoto
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama 232-0024, Japan; (S.Y.); (K.N.)
| | - Kazutaka Narui
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama 232-0024, Japan; (S.Y.); (K.N.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (A.Y.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.O.); (D.Z.); (K.C.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (A.Y.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
27
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
28
|
Kalatskaya I, Giovannoni G, Leist T, Cerra J, Boschert U, Rolfe PA. Revealing the immune cell subtype reconstitution profile in patients from the CLARITY study using deconvolution algorithms after cladribine tablets treatment. Sci Rep 2023; 13:8067. [PMID: 37202447 DOI: 10.1038/s41598-023-34384-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Immune Cell Deconvolution methods utilizing gene expression profiling to quantify immune cells in tissues and blood are an appealing alternative to flow cytometry. Our objective was to investigate the applicability of deconvolution approaches in clinical trial settings to better investigate the mode of action of drugs for autoimmune diseases. Popular deconvolution methods CIBERSORT and xCell were validated using gene expression from the publicly available GSE93777 dataset that has comprehensive matching flow cytometry. As shown in the online tool, ~ 50% of signatures show strong correlation (r > 0.5) with the remainder showing moderate correlation, or in a few cases, no correlation. Deconvolution methods were then applied to gene expression data from the phase III CLARITY study (NCT00213135) to evaluate the immune cell profile of relapsing multiple sclerosis patients treated with cladribine tablets. At 96 weeks after treatment, deconvolution scores showed the following changes vs placebo: naïve, mature, memory CD4+ and CD8+ T cells, non-class switched, and class switched memory B cells and plasmablasts were significantly reduced, naïve B cells and M2 macrophages were more abundant. Results confirm previously described changes in immune cell composition following cladribine tablets treatment and reveal immune homeostasis of pro- vs anti-inflammatory immune cell subtypes, potentially supporting long-term efficacy.
Collapse
Affiliation(s)
- Irina Kalatskaya
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), 45 Middlesex Turnpike, Billerica, MA, 01821, USA.
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Thomas Leist
- Division of Clinical Neuroimmunology, Jefferson University, Comprehensive MS Center, Philadelphia, PA, USA
| | - Joseph Cerra
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), 45 Middlesex Turnpike, Billerica, MA, 01821, USA
- BISC Global, Boston, MA, USA
| | - Ursula Boschert
- Ares Trading S.A. (an affiliate of Merck KGaA), Eysins, Switzerland
| | - P Alexander Rolfe
- EMD Serono Research & Development Institute, Inc. (an affiliate of Merck KGaA), 45 Middlesex Turnpike, Billerica, MA, 01821, USA
| |
Collapse
|
29
|
Zahari S, Syafruddin SE, Mohtar MA. Impact of the Cancer Cell Secretome in Driving Breast Cancer Progression. Cancers (Basel) 2023; 15:2653. [PMID: 37174117 PMCID: PMC10177134 DOI: 10.3390/cancers15092653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is a complex and heterogeneous disease resulting from the accumulation of genetic and epigenetic alterations in breast epithelial cells. Despite remarkable progress in diagnosis and treatment, breast cancer continues to be the most prevalent cancer affecting women worldwide. Recent research has uncovered a compelling link between breast cancer onset and the extracellular environment enveloping tumor cells. The complex network of proteins secreted by cancer cells and other cellular components within the tumor microenvironment has emerged as a critical player in driving the disease's metastatic properties. Specifically, the proteins released by the tumor cells termed the secretome, can significantly influence the progression and metastasis of breast cancer. The breast cancer cell secretome promotes tumorigenesis through its ability to modulate growth-associated signaling pathways, reshaping the tumor microenvironment, supporting pre-metastatic niche formation, and facilitating immunosurveillance evasion. Additionally, the secretome has been shown to play a crucial role in drug resistance development, making it an attractive target for cancer therapy. Understanding the intricate role of the cancer cell secretome in breast cancer progression will provide new insights into the underlying mechanisms of this disease and aid in the development of more innovative therapeutic interventions. Hence, this review provides a nuanced analysis of the impact of the cancer cell secretome on breast cancer progression, elucidates the complex reciprocal interaction with the components of the tumor microenvironment and highlights emerging therapeutic opportunities for targeting the constituents of the secretome.
Collapse
Affiliation(s)
| | | | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (S.Z.); (S.E.S.)
| |
Collapse
|
30
|
Yu H, Mei Y, Dong Y, Chen C, Lin X, Jin H, Yu J, Liu X. CCR9-CCL25 mediated plasmacytoid dendritic cell homing and contributed the immunosuppressive microenvironment in gastric cancer. Transl Oncol 2023; 33:101682. [PMID: 37126939 PMCID: PMC10172990 DOI: 10.1016/j.tranon.2023.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023] Open
Abstract
OBJECTIVES Plasmacytoid dendritic cells (pDCs) play a crucial role in the microenvironment of tumor. Evidences has been shown that chemokine receptor 9 (CCR9) is an important molecule that attracts pDCs homing to the digestive tract and the latter are involved in the formation of digestive tract immune tolerance. The aim of this study was to explore the role of CCR9-CCL25 interaction in pDC-mediated immunosuppression microenvironment of gastric cancer (GC). MATERIALS AND METHODS Regulatory T cells (Tregs) and pDCs were detected by immunohistochemistry. CCR9, which expressed on pDC was visualized by immunofluorescence. Western Blot was applied to evaluate the expression of CCL-25. Total pDCs, CCR9+pDCs, CCR9-pDCs, total Tregs, inducible costimulator + (ICOS) Tregs and ICOS-Tregs in peripheral blood and draining lymph nodes were analyzed by flow cytometry. Plasma concentration of the cytokines were measured by enzyme-linked immunosorbent assay RESULTS: Total Tregs, pDCs and CCR9+pDCs were higher in GC tissue. CCL-25 was over-expressed in carcinoma tissue. Peripheral total pDCs, CCR9-pDCs, total Tregs, ICOS+ Tregs, ICOS- Tregs were significantly increased in GC patients. More total pDCs, CCR9+ pDCs, total Tregs, ICOS+ Tregs were found in metastatic lymph nodes. Plasma concentrations of IL-6 and IL-10 were significantly higher in GC patients. More CCR9+ pDCs were found infiltrating carcinoma tissue in patients with later T staging and lymph node metastasis and conferred a poor prognosis. CONCLUSION CCR9-CCL25 interaction might play an important role in mediating PDC homing to metastatic lymph nodes and carcinoma tissue, which contributed to the formation of tumor immunosuppressive microenvironment and poor prognosis.
Collapse
Affiliation(s)
- Hang Yu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Ying Mei
- Department of Precision Medicine Clinical Research Center, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, Zhejiang, 313003, China
| | - Yang Dong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Chao Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Xianke Lin
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Hailong Jin
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China
| | - Jiren Yu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China.
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou, Zhejiang Province, 310003, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
31
|
He J, Kang D, Xu M, Han Z, Guo W, Fu F, Qiu L, Zheng L, Xi G, Wang W, Ren W, Han X, Tu H, Li L, Wang C, Chen J. Combining the guidelines and multiphoton imaging methods to improve the prognostic value of tumor-infiltrating lymphocytes in breast cancer. JOURNAL OF BIOPHOTONICS 2023:e202300060. [PMID: 36965036 DOI: 10.1002/jbio.202300060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Multiphoton microscopy (MPM) was introduced to label-freely obtain tumor-infiltrating lymphocytes (TILs) images from a total of 611 patients, and the prognostic value of TILs in breast cancer was assessed by the MPM method (TILs-MPM) and guidelines method proposed by the International Immuno-Oncology Biomarker Working Group (TILs-WG), respectively. Moreover, the clinical (CLI) model, TILs-WG + TILs-MPM model, and full model (CLI + TILs-WG + TILs-MPM) were developed to investigate the prognostic value of TILs. The results show that TILs-WG performs better in estrogen receptor (ER)-negative subgroup, and TILs-MPM is comparable with TILs-WG in the ER-negative subgroup, but has the best performance in the ER-positive subgroup. Furthermore, the TILs-WG + TILs-MPM model can significantly improve the prognostic power compared with the TILs-WG model, and the full model has excellent performance, with high area under the curve (AUC) and hazard ratio (HR) in both ER-positive, ER-negative subgroups, and the complete cohort. Our results suggest that the combination of TILs-WG with TILs-MPM model can greatly improve the prognostic value of TILs.
Collapse
Affiliation(s)
- Jiajia He
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Meifang Xu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhonghua Han
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Lida Qiu
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, 350108, China
| | - Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Gangqin Xi
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Wei Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Wenjiao Ren
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Xiahui Han
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
32
|
Laheurte C, Seffar E, Gravelin E, Lecuelle J, Renaudin A, Boullerot L, Malfroy M, Marguier A, Lecoester B, Gaugler B, Saas P, Truntzer C, Ghiringhelli F, Adotevi O. Interplay between plasmacytoid dendritic cells and tumor-specific T cells in peripheral blood influences long-term survival in non-small cell lung carcinoma. Cancer Immunol Immunother 2023; 72:579-589. [PMID: 35989364 DOI: 10.1007/s00262-022-03271-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/28/2022] [Indexed: 02/24/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a subset of antigen-presenting cells that play an ambivalent role in cancer immunity. Here, we investigated the clinical significance of circulating pDCs and their interaction with tumor-specific T cell responses in patients with non-small cell lung cancer (NSCLC, n = 126) . The relation between intratumoral pDC signature and immune checkpoint inhibitors efficacy was also evaluated. Patients with NSCLC had low level but activated phenotype pDC compared to healthy donors. In overall population, patients with high level of pDC (pDChigh) had improved overall survival (OS) compared to patients with pDClow, median OS 30.4 versus 20.7 months (P = 0.013). This clinical benefit was only observed in stage I to III patients, but not in metastatic disease. We showed that patients harboring pDChigh profile had high amount of Th1-diffentiation cytokine interleukin-12 (IL-12) in blood and had functional T cells directed against a broad range of tumor antigens. Furthermore, a high pDC signature in the tumor microenvironment was associated with improved clinical outcome in patients treated with anti-PD-(L)1 therapy. Overall, this study showed that circulating pDChigh is associated with long-term OS in NSCLC and highlighted the predictive value of intratumor pDC signature in the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Caroline Laheurte
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Evan Seffar
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Eléonore Gravelin
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Julie Lecuelle
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue du Professeur Marion, 21000, Dijon, France.,UMR INSERM 1231, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - Adeline Renaudin
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Laura Boullerot
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Marine Malfroy
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Amélie Marguier
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Benoit Lecoester
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Béatrice Gaugler
- INSERM UMR938, Centre de Recherche Saint-Antoine (CRSA), 75012, Paris, France
| | - Philippe Saas
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France.,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue du Professeur Marion, 21000, Dijon, France.,UMR INSERM 1231, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - Francois Ghiringhelli
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center - UNICANCER, 1 rue du Professeur Marion, 21000, Dijon, France.,UMR INSERM 1231, 7 Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte Tumeur/Ingénierie Cellulaire et Génique, Univ. Bourgogne Franche-Comté, 25000, Besançon, France. .,INSERM CIC-1431, Clinical Investigation Center in Biotherapy, Plateforme de Biomonitoring, 25000, Besançon, France. .,Service Oncologie médicale, University Hospital of Besançon, 25000, Besançon, France. .,INSERM UMR1098, RIGHT Institute, EFS Bourgogne Franche-Comté, 8, rue du Docteur JF-Xavier Girod, BP 1937, 25020, Besançon Cedex, France.
| |
Collapse
|
33
|
New Biomarkers Based on Dendritic Cells for Breast Cancer Treatment and Prognosis Diagnosis. Int J Mol Sci 2023; 24:ijms24044058. [PMID: 36835467 PMCID: PMC9963148 DOI: 10.3390/ijms24044058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Dendritic cells(DCs) play a protective role in the antitumor immunity of most cancers, which can be divided into conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). Most current studies are only based on either cDCs or pDCs for the study of the relationship between DCs and breast cancer prognosis, without combining the two together. We aimed to select new biomarkers from pDCs and cDCs. In this paper, the xCell algorithm was first used to calculate the cellular abundance of 64 types of immune cells and stromal cells in tumor samples from the TCGA database, and the high-abundance pDC group and cDC group were divided according to the results of a survival analysis. Then, we looked for the co-expressed gene module of highly infiltrating pDC and cDC patients with a weighted correlation network analysis (WGCNA) and screened out the hub genes, including RBBP5, HNRNPU, PEX19, TPR, and BCL9. Finally, we analyzed the biological functions of the hub genes, and the results showed that RBBP5, TPR, and BCL9 were significantly related to the immune cells and prognosis of patients, and RBBP5 and BCL9 were involved in responding to TCF-related instructions of the Wnt pathway. In addition, we also evaluated the response of pDCs and cDCs with different abundances to chemotherapy, and the results showed that the higher the abundance of pDCs and cDCs, the higher their sensitivity to drugs. This paper revealed new biomarkers related to DCs-among them, BCL9, TPR, and RBBP5 were proven to be closely related to dendritic cells in cancer. For the first time, this paper puts forward that HNRNPU and PEX19 are related to the prognosis of dendritic cells in cancer, which also provides new possibilities for finding new targets for breast cancer immunotherapy.
Collapse
|
34
|
Zhang J, Liu G, Dai Z, Xie F, Zheng R, Yuan B, Guo L. Novel RNA N6-methyladenosine regulator related signature for predicting clinical and immunological characteristics in breast cancer. Gene X 2023; 853:147095. [PMID: 36464173 DOI: 10.1016/j.gene.2022.147095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Epigenetic mechanismshave been reported to involve in shaping tumor immune microenvironment (TME). However, the role of RNA N6-methyladenosine (m6A) modification in breast cancerhas not been fully explored. METHODS Based on m6A modification and TME infiltration characteristics of 2249 breast cancer patients, we comprehensively correlated m6A modification with immune landscapeby screeningcandidate genes, function analysis and constructing m6Asignatures. Principal component analysis was used to establish the m6Ascore. Both LASSO and Cox regression analyses were used to evaluate its prognostic value.Functional assays and immunohistochemistry were used to evaluate the expression of m6A regulators and immune cell infiltration. RESULTS Based on the dysregulated expression of m6A, three distinct clusters were identified that displayed diverse types of tumour-associated TME cell infiltration in breast cancer.Gene signatures, stromal activity, and clinical prognosis were assessed by the m6Ascore. m6Ascore could function as a biomarker for predicting the therapeutic response to targeted therapy and immunotherapy.The dysregulated expression of m6Aregulators mediated the immune cell infiltration in the TME. CONCLUSION Basedonthestudy,weidentified the signature and potential mechanism of m6AmodificationsthatmodifyTME cell infiltration. Thus, targeting m6A regulators may provide a promisingmethodoftreatingBRCA.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Guihong Liu
- Department of Radiation Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Fuchuan Xie
- Department of Radiation Oncology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Benchao Yuan
- Department of Oncology and Hematology, The Sixth People's Hospital of Huizhou City, Huiyang Hospital Affiliated to Southern Medical University, Huizhou, China
| | - Liyi Guo
- Department of Oncology and Hematology, The Sixth People's Hospital of Huizhou City, Huiyang Hospital Affiliated to Southern Medical University, Huizhou, China..
| |
Collapse
|
35
|
Sakref C, Bendriss-Vermare N, Valladeau-Guilemond J. Phenotypes and Functions of Human Dendritic Cell Subsets in the Tumor Microenvironment. Methods Mol Biol 2023; 2618:17-35. [PMID: 36905506 DOI: 10.1007/978-1-0716-2938-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) play a key role in the antitumor immunity, as they are at the interface of innate and adaptive immunity. This important task can only be performed thanks to the broad range of mechanisms that DCs can perform to activate other immune cells. As DCs are well known for their outstanding capacity to prime and activate T cells through antigen presentation, DCs were intensively investigated during the past decades. Numerous studies have identified new DC subsets, leading to a large variety of subsets commonly separated into cDC1, cDC2, pDCs, mature DCs, Langerhans cells, monocyte-derived DCs, Axl-DCs, and several other subsets. Here, we review the specific phenotypes, functions, and localization within the tumor microenvironment (TME) of human DC subsets thanks to flow cytometry and immunofluorescence but also with the help of high-output technologies such as single-cell RNA sequencing and imaging mass cytometry (IMC).
Collapse
Affiliation(s)
- Candice Sakref
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
- LabEx DEVweCAN, Lyon, France.
| |
Collapse
|
36
|
Oshi M, Tokumaru Y, Benesch MGK, Sugito N, Wu R, Yan L, Yamada A, Chishima T, Ishikawa T, Endo I, Takabe K. High miR-99b expression is associated with cell proliferation and worse patient outcomes in breast cancer. Am J Cancer Res 2022; 12:4840-4852. [PMID: 36381329 PMCID: PMC9641402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023] Open
Abstract
Although miR-99b is a known suppressive microRNA (miRNA) in several cancers, its role in breast cancer has not been elucidated. In this study, we examined the clinical relevance of miR-99b expression in breast cancer. We analyzed miRNA and mRNA expression and their relationships with clinical parameters in 1,961 breast cancer samples from two independent large cohorts, the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and The Cancer Genome Atlas (TCGA). Several algorithms, including gene set enrichment analysis (GSEA) and xCell, have been used to investigate biological functions and the tumor microenvironment. High miR-99b expression significantly enriched the mTORC1 signaling gene set in breast cancer (NES = 1.63, FDR = 0.03, and NES = 1.58, FDR = 0.10, in METABRIC and TCGA, respectively). No other mechanisms, including the epithelial mesenchymal transition, NFκB, and TGF-β signaling, were consistently enriched in both cohorts. MiR-99b-high breast cancer was associated with high homologous recombination deficiencies, intratumor heterogeneity, and high rates of mutation and neoantigens. In agreement, miR-99b-high breast cancer was associated with increased cell proliferation, correlating with Nottingham histological grade, and significant enrichment of E2F targets, G2/M checkpoint, and mitotic spindle gene sets consistently in both cohorts (P = 0.01, P < 0.001). High miR-99b levels were also associated with low stromal cell fractions in the tumor microenvironment, including adipocytes, keratinocytes, and lymphatic endothelial cells (P < 0.001). However, in both cohorts, miR-99b expression was not associated with significant infiltration of immune cells, except dendritic cells (P = 0.006, 0.020). Finally, in both cohorts, breast cancer with high miR-99b expression was significantly associated with worse disease-free survival (DSS) and overall survival (OS), particularly in estrogen receptor (ER)-positive/human epidermal growth factor (HER)2-negative breast cancer (DSS hazard ratio (HR) 1.29, 95% confidence interval (CI) 1.10-1.51, P < 0.001 in the METABRIC cohort and HR 1.82, 95% CI 1.12-2.98, P = 0.017 in the TCGA cohort). In conclusion, breast cancer with high miR-99b expression was significantly associated with mTORC1 signaling, cell proliferation, and decreased patient survival, particularly in the ER-positive/HER2-negative subtype.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, New York, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, New York, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, New York, USA
| | - Nobuhiko Sugito
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, New York, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo 14263, New York, USA
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo 14263, New York, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo 14263, New York, USA
| |
Collapse
|
37
|
Mestrallet G, Sone K, Bhardwaj N. Strategies to overcome DC dysregulation in the tumor microenvironment. Front Immunol 2022; 13:980709. [PMID: 36275666 PMCID: PMC9583271 DOI: 10.3389/fimmu.2022.980709] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Dendritic cells (DCs) play a key role to modulate anti-cancer immunity in the tumor microenvironment (TME). They link innate to adaptive immunity by processing and presenting tumor antigens to T cells thereby initiating an anti-tumor response. However, subsets of DCs also induce immune-tolerance, leading to tumor immune escape. In this regard, the TME plays a major role in adversely affecting DC function. Better understanding of DC impairment mechanisms in the TME will lead to more efficient DC-targeting immunotherapy. Here, we review the different subtypes and functions of DCs in the TME, including conventional DCs, plasmacytoid DC and the newly proposed subset, mregDC. We further focus on how cancer cells modulate DCs to escape from the host's immune-surveillance. Immune checkpoint expression, small molecule mediators, metabolites, deprivation of pro-immunogenic and release of pro-tumorigenic cytokine secretion by tumors and tumor-attracted immuno-suppressive cells inhibit DC differentiation and function. Finally, we discuss the impact of established therapies on DCs, such as immune checkpoint blockade. Creative DC-targeted therapeutic strategies will be highlighted, including cancer vaccines and cell-based therapies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kazuki Sone
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
38
|
Plasmacytoid Dendritic Cells as a Novel Cell-Based Cancer Immunotherapy. Int J Mol Sci 2022; 23:ijms231911397. [PMID: 36232698 PMCID: PMC9570010 DOI: 10.3390/ijms231911397] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are multifaceted immune cells with a wide range of innate and adaptive immunological functions. They constitute the first line of defence against multiple viral infections and have also been reported to actively participate in antitumor immune responses. The clinical implication of the presence of pDCs in the tumor microenvironment (TME) is still ambiguous, but it is clear that pDCs possess the ability to modulate tumor-specific T cell responses and direct cytotoxic functions. Therapeutic strategies designed to exploit these qualities of pDCs to boost tumor-specific immune responses could represent an attractive alternative compared to conventional therapeutic approaches in the future, and promising antitumor effects have already been reported in phase I/II clinical trials. Here, we review the many roles of pDCs in cancer and present current advances in developing pDC-based immunotherapeutic approaches for treating cancer.
Collapse
|
39
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Mukhopadhyay S, Tokumaru Y, Oshi M, Endo I, Yoshida K, Takabe K. Low adipocyte hepatocellular carcinoma is associated with aggressive cancer biology and with worse survival. Am J Cancer Res 2022; 12:4028-4039. [PMID: 36119828 PMCID: PMC9442007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide, and non-alcoholic fatty liver disease is strongly associated with its development. To explore the role of adipocytes in HCC, we investigated intratumoral adipocytes, also known as cancer-associated adipocytes (CAA). Based on our prior breast cancer findings, we hypothesized that low intratumoral adipocytes would be associated with aggressive cancer biology, worse tumor microenvironment (TME), and clinical outcomes. The Cancer Genome Atlas (TCGA) was used and validated by the Gene Expression Omnibus (GEO) cohort. xCell algorithm was used to quantify intratumoral adipocytes and top 90% were defined as adipocyte high (AH) and bottom 10% as adipocyte low (AL). We found that AL-HCC was significantly associated with worse disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). AL-HCC were higher-grade, had high MKI67 expression, enriched cell proliferation-related gene sets, and had increased altered fraction, aneuploidy, and homologous recombination defects. Also, anti-cancer immune cells, CD8, Th1, and M1 cells, as well as pro-cancer Th2 cells were increased in AL-HCC. Micro-RNAs miR-122 (associated with cholesterol metabolism) and miR-885 (associated with liver pathologies) were significantly increased in the AL TME. In conclusion, we found that AL-HCC has worse patient outcomes and is biologically more aggressive with enhanced cell proliferation. Our findings take initial steps to clarify the role of adipocytes in HCC.
Collapse
Affiliation(s)
- Swagoto Mukhopadhyay
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University Graduate School of Medicine1-1 Yanagido, Gifu 501-1194, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New YorkBuffalo, New York 14263, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
| |
Collapse
|
41
|
Oshi M, Sarkar J, Tokumaru Y, Yan L, Kosaka T, Akiyama H, Nagahashi M, Kunisaki C, Endo I, Takabe K. Higher intra-tumoral expression of pro-coagulation genes is a predictor of angiogenesis, epithelial mesenchymal transition and worse patient survival in gastric cancer. Am J Cancer Res 2022; 12:4001-4014. [PMID: 36119815 PMCID: PMC9442006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023] Open
Abstract
Coagulation regulates angiogenesis in cancer, and is associated with tumor development and metastasis. To date, there have been no studies quantifying the state of intra-tumoral coagulation. We measured intra-tumoral coagulation gene expression using the "Hallmark-COAGULATION" gene set in the MSigDB, performing gene set variation analysis and then assigning a "coagulation score" to quantify gene expression. Clinical, histologic, and genetic data were analyzed in 807 gastric cancer patients from the TCGA_STAD and GSE84437 databases. Tumors with increased expression of pro-coagulation genes were consistently associated with higher AJCC T-categories (p = 0.018), lymph node metastasis (p = 0.036), and stage (p = 0.006) in both cohorts. Patients with high coagulation scores were found to have worse disease-specific survival and overall survival (OS) (p = 0.019 and 0.011, respectively) in TCGA, and worse OS in GSE84437 cohort (p = 0.012). Higher expression of pro-coagulation genes correlated with increased intra-tumoral angiogenesis, as well as increased proportions of lymphatic and microvascular endothelial cells, endothelial cells, and pericytes, calculated by xCell algorithm. High coagulation scores were significantly associated with low tumor mutation burden, but not with intratumor heterogeneity and homologous recombination deficiency. Gastric cancers with high coagulation scores contained higher amounts of M1 macrophages and dendritic cells, and low numbers of Th1 cells (all P<0.001). Genes for epithelial mesenchymal transition (EMT), myogenesis, apical junction, transforming growth factor (TGF)-β signaling, and angiogenesis were enriched in high coagulation score-gastric cancers (all false discovery rate <0.25). In conclusion, gastric cancers expressing higher levels of pro-coagulation genes demonstrate increased angiogenesis, EMT, TGF-β signaling and worse patient prognosis.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Joy Sarkar
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Takashi Kosaka
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Hirotoshi Akiyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
| | - Chikara Kunisaki
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| |
Collapse
|
42
|
Oshi M, Patel A, Wu R, Le L, Tokumaru Y, Yamada A, Yan L, Matsuyama R, Ishikawa T, Endo I, Takabe K. Enhanced immune response outperform aggressive cancer biology and is associated with better survival in triple-negative breast cancer. NPJ Breast Cancer 2022; 8:92. [PMID: 35945417 PMCID: PMC9363489 DOI: 10.1038/s41523-022-00466-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
Although the value of tumor-infiltrating lymphocytes is well known, the clinical relevance of an increased immune response, specifically in breast cancer, has not been investigated across large cohorts of patients using computational algorithms. Our hypothesis stated that an enhanced immune response is associated with an improvement in outcomes. To quantify the immune response, we utilized the allograft rejection score correlated with cytolytic activity and with all the other Hallmark immune-related gene sets. The score reflected the amount of infiltrating immune cells that correlated with the immune checkpoint molecule expressions, including CD4+ and CD8+ T cells, T helper type 1 (Th1) and type 2 (Th2) cells, M1 macrophages, B cells, and plasmacytoid dendritic cells (pDC). A high score was associated with high levels of intratumor heterogeneity, homologous recombination defects, mutation rate, histological grade, advanced stage, and lymph node metastasis. Breast malignancy with a high score enriched immune-related gene sets and pro-cancer-related gene sets, including epithelial–mesenchymal transition and KRAS pathway, in ER-positive/HER2-negative and triple-negative breast cancer (TNBC) groups. TNBC had the highest score compared to other subtypes, and was associated with better survival. In conclusion, we found that breast cancer with a high immune response is associated with aggressive cancer biology, but with better survival in TNBC.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Ankit Patel
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Lan Le
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.,Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA. .,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan. .,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, 160-8402, Japan. .,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8520, Japan. .,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan. .,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, 14263, USA.
| |
Collapse
|
43
|
Abundance of reactive oxygen species (ROS) is associated with tumor aggressiveness, immune response, and worse survival in breast cancer. Breast Cancer Res Treat 2022; 194:231-241. [PMID: 35639264 PMCID: PMC9987174 DOI: 10.1007/s10549-022-06633-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Reactive oxygen species (ROS) are oxygen-containing molecules that have high reactivity and play roles in protection or harm the cancer cells. We aimed to clarify the clinical relevance of ROS in breast cancer (BC) tumor microenvironment (TME). We hypothesized that it is associated with worse BC patient outcomes. METHODS ROS score was generated by Gene Set Variation Analysis of Hallmark ROS pathway gene set and a total of 6245 BC patients were analyzed. RESULTS High ROS BC significantly enriched cell proliferation-related gene sets (MYC targets v1 and v2, G2M checkpoint, E2F targets), pro-cancer-related gene sets (DNA repair, unfolded protein response, MTORC1 signaling, PI3K/AKT/MTOR signaling, glycolysis, and oxidative phosphorylation), immune-related gene sets (inflammatory response, allograft rejection, interferon-α and γ responses, complement, and IL6/JAK/STAT3 signaling), and infiltrated immune cells (CD4+ memory and CD8+ T cells, Th1 and Th2, dendritic cells, Tregs, M1 and M2 macrophages) and B cells, as well as elevated cytolytic activity consistently in both METABRIC and GSE96058 cohorts. Cancer cells were the major source of ROS in BC TME of single-cell sequence (GSE75688) cohort. High ROS was associated with intratumor heterogeneity, homologous recombination defects, mutation rates, and neoantigens, and with clinical aggressiveness in AJCC stage, Nottingham grade and Ki67 expression, as well as worse overall survival in both GSE96058 and METABRIC, and with worse disease-specific survival in METABRIC. CONCLUSION Abundant ROS in BC patients is associated with abundant mutations, aggressive cancer biology, immune response, and worse survival.
Collapse
|
44
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
45
|
Sugimura R, Chao Y. Deciphering Innate Immune Cell-Tumor Microenvironment Crosstalk at a Single-Cell Level. Front Cell Dev Biol 2022; 10:803947. [PMID: 35646915 PMCID: PMC9140036 DOI: 10.3389/fcell.2022.803947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor microenvironment encompasses various innate immune cells which regulate tumor progression. Exploiting innate immune cells is a new frontier of cancer immunotherapy. However, the classical surface markers for cell-type classification cannot always well-conclude the phenotype, which will further hinge our understanding. The innate immune cells include dendritic cells, monocytes/macrophages, natural killer cells, and innate lymphoid cells. They play important roles in tumor growth and survival, in some cases promoting cancer, in other cases negating cancer. The precise characterization of innate immune cells at the single-cell level will boost the potential of cancer immunotherapy. With the development of single-cell RNA sequencing technology, the transcriptome of each cell in the tumor microenvironment can be dissected at a single-cell level, which paves a way for a better understanding of the cell type and its functions. Here, we summarize the subtypes and functions of innate immune cells in the tumor microenvironment based on recent literature on single-cell technology. We provide updates on recent achievements and prospects for how to exploit novel functions of tumor-associated innate immune cells and target them for cancer immunotherapy.
Collapse
|
46
|
Wu R, Patel A, Tokumaru Y, Asaoka M, Oshi M, Yan L, Ishikawa T, Takabe K. High RAD51 gene expression is associated with aggressive biology and with poor survival in breast cancer. Breast Cancer Res Treat 2022; 193:49-63. [PMID: 35249172 PMCID: PMC8995390 DOI: 10.1007/s10549-022-06552-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/18/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Although the DNA repair mechanism is important in preventing carcinogenesis, its activation in established cancer cells may support their proliferation and aggravate cancer progression. RAD51 cooperates with BRCA2 and is essential in the homologous recombination of DNA repair. To this end, we hypothesized that RAD51 gene expression is associated with cancer cell proliferation and poor prognosis of breast cancer (BC) patients. METHODS A total of 8515 primary BC patients with transcriptome and clinical data from 17 independent cohorts were analyzed. The median value was used to divide each cohort into high and low RAD51 expression groups. RESULTS High RAD51 expression enriched the DNA repair gene set and was correlated with DNA repair-related genes. Nottingham histological grade, Ki67 expression and cell proliferation-related gene sets (E2F Targets, G2M Checkpoint and Myc Targets) were all significantly associated with the high RAD51 BC group. RAD51 expression was positively correlated with Homologous Recombination Deficiency, as well as both mutational burden and neoantigens that accompanied a higher infiltration of immune cells. Primary BC with lymph node metastases was associated with high expression of RAD51 in two cohorts. There was no strong correlation between RAD51 expression and drug sensitivity in cell lines, and RAD51 expression was lower after the neoadjuvant chemotherapy compared to before the treatment. High RAD51 BC was associated with poor prognosis consistently in three independent cohorts. CONCLUSION RAD51 gene expression is associated with aggressive cancer biology, cancer cell proliferation, and poor survival in breast cancer.
Collapse
|
47
|
Wu R, Oshi M, Asaoka M, Huyser MR, Tokumaru Y, Yamada A, Yan L, Endo I, Ishikawa T, Takabe K. APOBEC3F expression in triple-negative breast cancer is associated with tumor microenvironment infiltration and activation of cancer immunity and improved survival. Am J Cancer Res 2022; 12:744-762. [PMID: 35261799 PMCID: PMC8899983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023] Open
Abstract
The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) causes a point mutation from cytidine to uracil in DNA and/or RNA. The role of APOBEC3A and APOBEC3B in breast cancer has been well described, whereas that of APOBEC3F remains unknown. To investigate the clinical relevance of APOBEC3F expression, we analyzed a total of 3000 breast cancer cases from multiple independent large patient cohorts including METABRIC, TCGA, GSE75688, and GSE114725. High expression of APOBEC3F was associated with improved disease-specific and overall survival in triple negative breast cancer (TNBC). APOBEC3F is not usually a reflection of cancer cell biology in TNBC or luminal breast cancer, except for homologous recombination deficiency in TNBC. In the TNBC homologous recombination deficiency group, APOBEC3F expression was not consistently associated with intratumor heterogeneity, mutation rates, or neoantigens. APOBEC3F expression did not correlate with response to any of the drugs tested in breast cancer cell lines in vitro. However, high APOBEC3F expression was associated with enrichment of several immune-related gene sets and immune activity. High APOBEC3F expression also accompanied higher infiltration of anti-cancer immune cell infiltration in TNBC. However, in luminal breast cancer, high APOBEC3F tumor significantly enriched not only immune-related gene sets, but also cell proliferation-, metastasis-, and apoptosis-related gene sets. Analysis of single-cell transcriptomes showed APOBEC3F exclusively expressed in immune cells and significantly associated with cytolytic activity of the immune cells, immune response, and immune cell proliferation. Expression of immune checkpoint genes was uniformly elevated in APOBEC3F-high tumors. We conclude that APOBEC3F is exclusively expressed in immune cells and this expression is associated with enhanced anti-cancer immune response as well as improved survival in TNBC.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Mariko Asaoka
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Michelle R Huyser
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu UniversityGifu, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer InstituteBuffalo, NY, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Cancer InstituteBuffalo, NY, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama, Kanagawa, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, NY, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata, Japan
- Department of Breast Surgery, Fukushima Medical UniversityFukushima, Japan
| |
Collapse
|
48
|
Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R, Schmitz M. Tumor-associated human dendritic cell subsets: phenotype, functional orientation, and clinical relevance. Eur J Immunol 2022; 52:1750-1758. [PMID: 35106759 DOI: 10.1002/eji.202149487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in orchestrating innate and adaptive antitumor immunity. Activated DCs can produce large amounts of various proinflammatory cytokines, initiate T cell responses, and exhibit direct cytotoxicity against tumor cells. They also efficiently enhance the antitumoral properties of natural killer cells and T lymphocytes. Based on these capabilities, immunogenic DCs promote tumor elimination and are associated with improved survival of patients. Furthermore, they can essentially contribute to the clinical efficacy of immunotherapeutic strategies for cancer patients. However, depending on their intrinsic properties and the tumor microenvironment, DCs can be rendered dysfunctional and mediate tolerance by producing immunosuppressive cytokines and activating regulatory T cells. Such tolerogenic DCs can foster tumor progression and are linked to poor prognosis of patients. Here, we focus on recent studies exploring the phenotype, functional orientation, and clinical relevance of tumor-infiltrating conventional DC1, conventional DC2, plasmacytoid DCs, and monocyte-derived DCs in translational and clinical settings. In addition, recent findings demonstrating the influence of DCs on the efficacy of immunotherapeutic strategies are summarized. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
49
|
Angarita FA, Oshi M, Yamada A, Yan L, Matsuyama R, Edge SB, Endo I, Takabe K. Low RUFY3 expression level is associated with lymph node metastasis in older women with invasive breast cancer. Breast Cancer Res Treat 2022; 192:19-32. [PMID: 35018543 PMCID: PMC8844209 DOI: 10.1007/s10549-021-06482-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Sentinel lymph node biopsy is omitted in older women (≥ 70 years old) with clinical lymph node (LN)-negative hormone receptor-positive breast cancer as it does not influence adjuvant treatment decision-making. However, older women are heterogeneous in frailty while the chance of recurrence increase with improving longevity. Therefore, a biomarker that identifies LN metastasis may facilitate treatment decision-making. RUFY3 is associated with cancer progression. We evaluated RUFY3 expression level as a biomarker for LN-positive breast cancer in older women. METHODS Clinical and transcriptomic data of breast cancer patients were obtained from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, n = 1903) and The Cancer Genome Atlas (TCGA, n = 1046) Pan-cancer study cohorts. RESULTS A total of 510 (METABRIC) and 211 (TCGA) older women were identified. LN-positive breast cancer, which represented 51.4% (METABRIC) and 48.4% (TCGA), demonstrated worse disease-free, disease-specific, and overall survival. RUFY3 levels were significantly lower in LN-positive tumors regardless of age. The area under the curve for the receiver operator characteristic (AUC-ROC) curves showed RUFY3-predicted LN metastasis. Low RUFY3 enriched oxidative phosphorylation, DNA repair, MYC targets, unfolded protein response, and mtorc1 signaling gene sets, was associated with T helper type 1 cell infiltration, and with intratumor heterogeneity and fraction altered. Low RUFY3 expression was associated with LN-positive breast cancer and with worse disease-specific survival among older women. CONCLUSION Older women with breast cancers who had low expression level of RUFY3 were more frequently diagnosed with LN-positive tumors, which translated into worse prognosis.
Collapse
Affiliation(s)
- Fernando A. Angarita
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA;,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akimitsu Yamada
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Stephen B. Edge
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA;,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA;,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan;,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA;,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan;,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
50
|
Deng J, Fleming JB. Inflammation and Myeloid Cells in Cancer Progression and Metastasis. Front Cell Dev Biol 2022; 9:759691. [PMID: 35127700 PMCID: PMC8814460 DOI: 10.3389/fcell.2021.759691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
To date, the most immunotherapy drugs act upon T cell surface proteins to promote tumoricidal T cell activity. However, this approach has to date been unsuccessful in certain solid tumor types including pancreatic, prostate cancer and glioblastoma. Myeloid-related innate immunity can promote tumor progression through direct and indirect effects on T cell activity; improved understanding of this field may provide another therapeutic avenue for patients with these tumors. Myeloid cells can differentiate into both pro-inflammatory and anti-inflammatory mature form depending upon the microenvironment. Most cancer type exhibit oncogenic activating point mutations (ex. P53 and KRAS) that trigger cytokines production. In addition, tumor environment (ex. Collagen, Hypoxia, and adenosine) also regulated inflammatory signaling cascade. Both the intrinsic and extrinsic factor driving the tumor immune microenvironment and regulating the differentiation and function of myeloid cells, T cells activity and tumor progression. In this review, we will discuss the relationship between cancer cells and myeloid cells-mediated tumor immune microenvironment to promote cancer progression and immunotherapeutic resistance. Furthermore, we will describe how cytokines and chemokines produced by cancer cells influence myeloid cells within immunosuppressive environment. Finally, we will comment on the development of immunotherapeutic strategies with respect to myeloid-related innate immunity.
Collapse
Affiliation(s)
- Jenying Deng
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason B. Fleming
- H. Lee Moffitt Cancer Center, Department of Gastrointestinal Oncology, Tampa, FL, United States
- *Correspondence: Jason B. Fleming,
| |
Collapse
|