1
|
Yadav P, Tanweer S, Garg M, Verma M, Khan AS, Rahman SS, Ali A, Grover S, Kumar P, Kamthan M. Structural inscrutabilities of Histone (H2BK123) monoubiquitination: A systematic review. Int J Biol Macromol 2024; 280:135977. [PMID: 39322127 DOI: 10.1016/j.ijbiomac.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Histone H2B monoubiquitination in budding yeast is a highly conserved post-translational modification. It is involved in normal functions of the cells like DNA Repair, RNA Pol II activation, trans-histone H3K and H79K methylation, meiosis, vesicle budding, etc. Deregulation of H2BK123ub can lead to the activation of proto-oncogenes and is also linked to neurodegenerative and heart diseases. Recent discoveries have enhanced the mechanistic underpinnings of H2BK123ub. For the first time, the Rad6's acidic tail has been implicated in histone recognition and interaction with Bre1's RBD domain. The non-canonical backside of Rad6 showed inhibition in polyubiquitination activity. Bre1 domains RBD and RING play a role in site-specific ubiquitination. The role of single Alaline residue in Rad6 activity. Understanding the mechanism of ubiquitination before moving to therapeutic applications is important. Current advancements in this field indicate the creation of novel therapeutic approaches and a foundation for further study.
Collapse
Affiliation(s)
- Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sana Tanweer
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Melling N, Fard-Aghaie MH, Hube-Magg C, Kluth M, Simon R, Tachezy M, Ghadban T, Reeh M, Izbicki JR, Sauter G, Grupp K. The 3-Biomarker Classifier-A Novel and Simple Molecular Risk Score Predicting Overall Survival in Patients with Colorectal Cancer. Cancers (Basel) 2024; 16:3223. [PMID: 39335194 PMCID: PMC11430685 DOI: 10.3390/cancers16183223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Several new molecular markers in colorectal carcinomas have been discovered; however, classical histopathological predictors are still being used to predict survival in patients. We present a novel risk score, which uses molecular markers, to predict outcomes in patients with colorectal carcinoma. METHODS The immunohistochemistry of tissue micro arrays was used to detect and quantify H2BUB1, RBM3 and Ki-67. Different intensities of staining were categorized for these markers and a score was established. A multivariate analysis was performed and survival curves were established. RESULTS 1791 patients were evaluated, and multivariate analysis revealed that our risk score, the 3-biomarker classifier, is an independent marker to predict survival. We found a high risk-score to be associated with dismal median survival for the patients. CONCLUSIONS A more personalized score might be able to better discriminate low- and high-risk patients and suggest adjuvant treatment compared to classical pathological staging. Our score can serve as a tool to predict outcomes in patients suffering from colorectal carcinoma.
Collapse
Affiliation(s)
- Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Mohammad H. Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (C.H.-M.); (M.K.); (R.S.); (G.S.)
| | - Katharina Grupp
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (N.M.); (M.T.); (T.G.); (M.R.); (J.R.I.); (K.G.)
| |
Collapse
|
3
|
Ekstrom TL, Hussain S, Bedekovics T, Ali A, Paolini L, Mahmood H, Rosok RM, Koster J, Johnsen SA, Galardy PJ. USP44 Overexpression Drives a MYC-Like Gene Expression Program in Neuroblastoma through Epigenetic Reprogramming. Mol Cancer Res 2024; 22:812-825. [PMID: 38775808 PMCID: PMC11372370 DOI: 10.1158/1541-7786.mcr-23-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024]
Abstract
Neuroblastoma is an embryonic cancer that contributes disproportionately to death in young children. Sequencing data have uncovered few recurrently mutated genes in this cancer, although epigenetic pathways have been implicated in disease pathogenesis. We used an expression-based computational screen that examined the impact of deubiquitinating enzymes on patient survival to identify potential new targets. We identified the histone H2B deubiquitinating enzyme USP44 as the enzyme with the greatest impact on survival in patients with neuroblastoma. High levels of USP44 significantly correlate with metastatic disease, unfavorable histology, advanced patient age, and MYCN amplification. The subset of patients with tumors expressing high levels of USP44 had significantly worse survival, including those with tumors lacking MYCN amplification. We showed experimentally that USP44 regulates neuroblastoma cell proliferation, migration, invasion, and neuronal development. Depletion of the histone H2B ubiquitin ligase subunit RNF20 resulted in similar findings, strongly implicating this histone mark as the target of USP44 activity in this disease. Integration of transcriptome and epigenome in analyses demonstrates a distinct set of genes that are regulated by USP44, including those in Hallmark MYC target genes in both murine embryonic fibroblasts and the SH-SY5Y neuroblastoma cell line. We conclude that USP44 is a novel epigenetic regulator that promotes aggressive features and may be a novel target in neuroblastoma. Implications: This study identifies a new genetic marker of aggressive neuroblastoma and identifies the mechanisms by which its overactivity contributes to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Thomas L. Ekstrom
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota.
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Family Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Tibor Bedekovics
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Asma Ali
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Lucia Paolini
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | - Hina Mahmood
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| | - Raya M. Rosok
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany.
| | - Jan Koster
- Department of CEMM, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
4
|
Ma Y, Field NR, Xie T, Briscas S, Kokinogoulis EG, Skipper TS, Alghalayini A, Sarker FA, Tran N, Bowden NA, Dickson KA, Marsh DJ. Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies-Therapeutic Vulnerabilities in Treatment-Resistant Subtypes. Cancers (Basel) 2024; 16:3068. [PMID: 39272926 PMCID: PMC11393890 DOI: 10.3390/cancers16173068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42-67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69-100% of SCCOHT cases and SMARCA2 silencing seen 86-100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade.
Collapse
Affiliation(s)
- Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natisha R Field
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sarina Briscas
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emily G Kokinogoulis
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tali S Skipper
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amani Alghalayini
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Farhana A Sarker
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nikola A Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
5
|
Zhang F, Chen XL, Wang HF, Guo T, Yao J, Jiang ZS, Pei Q. The prognostic significance of ubiquitination-related genes in multiple myeloma by bioinformatics analysis. BMC Med Genomics 2024; 17:164. [PMID: 38898455 PMCID: PMC11186196 DOI: 10.1186/s12920-024-01937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Immunoregulatory drugs regulate the ubiquitin-proteasome system, which is the main treatment for multiple myeloma (MM) at present. In this study, bioinformatics analysis was used to construct the risk model and evaluate the prognostic value of ubiquitination-related genes in MM. METHODS AND RESULTS The data on ubiquitination-related genes and MM samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The consistent cluster analysis and ESTIMATE algorithm were used to create distinct clusters. The MM prognostic risk model was constructed through single-factor and multiple-factor analysis. The ROC curve was plotted to compare the survival difference between high- and low-risk groups. The nomogram was used to validate the predictive capability of the risk model. A total of 87 ubiquitination-related genes were obtained, with 47 genes showing high expression in the MM group. According to the consistent cluster analysis, 4 clusters were determined. The immune infiltration, survival, and prognosis differed significantly among the 4 clusters. The tumor purity was higher in clusters 1 and 3 than in clusters 2 and 4, while the immune score and stromal score were lower in clusters 1 and 3. The proportion of B cells memory, plasma cells, and T cells CD4 naïve was the lowest in cluster 4. The model genes KLHL24, HERC6, USP3, TNIP1, and CISH were highly expressed in the high-risk group. AICAr and BMS.754,807 exhibited higher drug sensitivity in the low-risk group, whereas Bleomycin showed higher drug sensitivity in the high-risk group. The nomogram of the risk model demonstrated good efficacy in predicting the survival of MM patients using TCGA and GEO datasets. CONCLUSIONS The risk model constructed by ubiquitination-related genes can be effectively used to predict the prognosis of MM patients. KLHL24, HERC6, USP3, TNIP1, and CISH genes in MM warrant further investigation as therapeutic targets and to combat drug resistance.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China.
| | - Xiao-Lei Chen
- Department of Endocrinology, Kunming First People's Hospital, Kunming, 650051, China
| | - Hong-Fang Wang
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China
| | - Tao Guo
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China
| | - Jin Yao
- Multidisciplinary Diagnosis and Treatment Center for Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Zong-Sheng Jiang
- Department of Hematology, Kunming First People's Hospital, Kunming, 650051, China
| | - Qiang Pei
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| |
Collapse
|
6
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
7
|
Onishi S, Uchiyama K, Sato K, Okada C, Kobayashi S, Hamada K, Nishizawa T, Nureki O, Ogata K, Sengoku T. Structure of the human Bre1 complex bound to the nucleosome. Nat Commun 2024; 15:2580. [PMID: 38519511 PMCID: PMC10959955 DOI: 10.1038/s41467-024-46910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
Histone H2B monoubiquitination (at Lys120 in humans) regulates transcription elongation and DNA repair. In humans, H2B monoubiquitination is catalyzed by the heterodimeric Bre1 complex composed of Bre1A/RNF20 and Bre1B/RNF40. The Bre1 proteins generally function as tumor suppressors, while in certain cancers, they facilitate cancer cell proliferation. To obtain structural insights of H2BK120 ubiquitination and its regulation, we report the cryo-electron microscopy structure of the human Bre1 complex bound to the nucleosome. The two RING domains of Bre1A and Bre1B recognize the acidic patch and the nucleosomal DNA phosphates around SHL 6.0-6.5, which are ideally located to recruit the E2 enzyme and ubiquitin for H2BK120-specific ubiquitination. Mutational experiments suggest that the two RING domains bind in two orientations and that ubiquitination occurs when Bre1A binds to the acidic patch. Our results provide insights into the H2BK120-specific ubiquitination by the Bre1 proteins and suggest that H2B monoubiquitination can be regulated by nuclesomal DNA flexibility.
Collapse
Affiliation(s)
- Shuhei Onishi
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotone Uchiyama
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ko Sato
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chikako Okada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunsuke Kobayashi
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
8
|
Che Y, Li J, Wang P, Yu W, Lin J, Su Z, Ye F, Zhang Z, Xu P, Xie Z, Wu Y, Shen H. Iron deficiency-induced ferritinophagy impairs skeletal muscle regeneration through RNF20-mediated H2Bub1 modification. SCIENCE ADVANCES 2023; 9:eadf4345. [PMID: 37976359 PMCID: PMC10656073 DOI: 10.1126/sciadv.adf4345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Iron deficiency (ID) is a widespread condition concomitant with disease and results in systemic dysfunction of target tissues including skeletal muscle. Activated by ID, ferritinophagy is a recently found type of selective autophagy, which plays an important role in various physiological and pathological conditions. In this study, we demonstrated that ID-mediated ferritinophagy impeded myogenic differentiation. Mechanistically, ferritinophagy induced RNF20 degradation through the autophagy-lysosomal pathway and then negatively regulated histone H2B monoubiquitination at lysine-120 in the promoters of the myogenic markers MyoD and MyoG, which inhibited myogenic differentiation and regeneration. Conditional knockout of NCOA4 in satellite cells, overexpression of RNF20 or treatment with 3-methyladenine restored skeletal muscle regenerative potential under ID conditions. In patients with ID, RNF20 and H2Bub1 protein expression is downregulated in skeletal muscle. In conclusion, our study indicated that the ferritinophagy-RNF20-H2Bub1 axis is a pathological molecular mechanism underlying ID-induced skeletal muscle impairment, suggesting potential therapeutic prospects.
Collapse
Affiliation(s)
- Yunshu Che
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Feng Ye
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Zhaoqiang Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518000, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, P.R. China
| |
Collapse
|
9
|
Chen H, Su Y, Yang L, Xi L, Li X, Lan B, Liu M, Xuan C. CBX8 promotes lung adenocarcinoma growth and metastasis through transcriptional repression of CDKN2C and SCEL. J Cell Physiol 2023; 238:2710-2723. [PMID: 37733753 DOI: 10.1002/jcp.31124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Dysregulation of polycomb group (PcG) proteins that mediate epigenetic gene silencing contributes to tumorigenesis. As core components of the polycomb repressive complex 1 (PRC1), chromobox (CBX) proteins recognize H3K27me3 to recruit PRC1 to maintain a repressive transcriptional state. However, the individual biological functions of these CBX proteins in tumorigenesis warrant in-depth investigation. In this study, we analyzed the mRNA expression of CBX family genes across multiple cancers using The Cancer Genome Atlas data and found different expression patterns of the five CBX genes in different types of cancer. This analyses together with the result of immunohistochemistry indicated that CBX8 expression was significantly higher in lung adenocarcinoma (LUAD) tissues compared to adjacent nontumor tissues. Overexpression approaches demonstrated that CBX8 facilitated LUAD cell proliferation and migration in vitro. Consistently, CBX8 knockdown reduced LUAD cell proliferation and migration in both cell culture and mouse models. RNA sequencing combined with real-time RT-PCR assays revealed CDKN2C and SCEL as target genes of CBX8. Furthermore, chromatin immunoprecipitation assays indicated that CBX8 directly bound to the promoters of CDKN2C and SCEL to establish H2AK119ub. CBX8 depletion reduced the enrichment of H2AK119ub on CDKN2C and SCEL promoters. Moreover, depletion of CDKN2C and SCEL restored the repressed growth and invasion ability of LUAD cells caused by CBX8 knockdown. These findings demonstrate that CBX8 promotes LUAD growth and metastasis through the transcriptional repression of CDKN2C and SCEL. Our study uncovers the oncogenic role of CBX8 in LUAD progression and provides a new target for the diagnosis and therapy of LUAD.
Collapse
Affiliation(s)
- Hao Chen
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yijie Su
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lihong Yang
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lishan Xi
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuanyuan Li
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Bei Lan
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Min Liu
- Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenghao Xuan
- Department of Biochemistry and Molecular Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Ferrari AJ, Rawat P, Rendulich HS, Annapragada AV, Kinose Y, Zhang X, Devins K, Budina A, Scharpf RB, Mitchell MA, Tanyi JL, Morgan MA, Schwartz LE, Soong TR, Velculescu VE, Drapkin R. H2Bub1 loss is an early contributor to clear cell ovarian cancer progression. JCI Insight 2023; 8:e164995. [PMID: 37345659 PMCID: PMC10371241 DOI: 10.1172/jci.insight.164995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic aberrations, including posttranslational modifications of core histones, are major contributors to cancer. Here, we define the status of histone H2B monoubiquitylation (H2Bub1) in clear cell ovarian carcinoma (CCOC), low-grade serous carcinoma, and endometrioid carcinomas. We report that clear cell carcinomas exhibited profound loss, with nearly all cases showing low or negative H2Bub1 expression. Moreover, we found that H2Bub1 loss occurred in endometriosis and atypical endometriosis, which are established precursors to CCOCs. To examine whether dysregulation of a specific E3 ligase contributes to the loss of H2Bub1, we explored expression of ring finger protein 40 (RNF40), ARID1A, and UBR7 in the same case cohort. Loss of RNF40 was significantly and profoundly correlated with loss of H2Bub1. Using genome-wide DNA methylation profiles of 230 patients with CCOC, we identified hypermethylation of RNF40 in CCOC as a likely mechanism underlying the loss of H2Bub1. Finally, we demonstrated that H2Bub1 depletion promoted cell proliferation and clonogenicity in an endometriosis cell line. Collectively, our results indicate that H2Bub1 plays a tumor-suppressive role in CCOCs and that its loss contributes to disease progression.
Collapse
Affiliation(s)
- Adam J. Ferrari
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
- Graduate Program in Cell and Molecular Biology; and
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priyanka Rawat
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
| | - Hannah S. Rendulich
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
| | - Akshaya V. Annapragada
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yasuto Kinose
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
| | - Xiaoming Zhang
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle Devins
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna Budina
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert B. Scharpf
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marilyn A. Mitchell
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
| | - Janos L. Tanyi
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
| | - Mark A. Morgan
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
| | - Lauren E. Schwartz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Victor E. Velculescu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology
- Graduate Program in Cell and Molecular Biology; and
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
12
|
Li J, Zhao J, Gan X, Wang Y, Jiang D, Chen L, Wang F, Xu J, Pei H, Huang J, Chen X. The RPA-RNF20-SNF2H cascade promotes proper chromosome segregation and homologous recombination repair. Proc Natl Acad Sci U S A 2023; 120:e2303479120. [PMID: 37155876 PMCID: PMC10193940 DOI: 10.1073/pnas.2303479120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.
Collapse
Affiliation(s)
- Jimin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jingyu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yanyan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Donghao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Fangwei Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Jun Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Wang H, Langlais D, Nijnik A. Histone H2A deubiquitinases in the transcriptional programs of development and hematopoiesis: a consolidated analysis. Int J Biochem Cell Biol 2023; 157:106384. [PMID: 36738766 DOI: 10.1016/j.biocel.2023.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Monoubiquitinated lysine 119 of histone H2A (H2AK119ub) is a highly abundant epigenetic mark, associated with gene repression and deposited on chromatin by the polycomb repressor complex 1 (PRC1), which is an essential regulator of diverse transcriptional programs in mammalian development and tissue homeostasis. While multiple deubiquitinases (DUBs) with catalytic activity for H2AK119ub (H2A-DUBs) have been identified, we lack systematic analyses of their roles and cross-talk in transcriptional regulation. Here, we address H2A-DUB functions in epigenetic regulation of mammalian development and tissue maintenance by conducting a meta-analysis of 248 genomics datasets from 32 independent studies, focusing on the mouse model and covering embryonic stem cells (ESCs), hematopoietic, and immune cell lineages. This covers all the publicly available datasets that map genomic H2A-DUB binding and H2AK119ub distributions (ChIP-Seq), and all datasets assessing dysregulation in gene expression in the relevant H2A-DUB knockout models (RNA-Seq). Many accessory datasets for PRC1-2 and DUB-interacting proteins are also analyzed and interpreted, as well as further data assessing chromatin accessibility (ATAC-Seq) and transcriptional activity (RNA-seq). We report co-localization in the binding of H2A-DUBs BAP1, USP16, and to a lesser extent others that is conserved across different cell-types, and also the enrichment of antagonistic PRC1-2 protein complexes at the same genomic locations. Such conserved sites enriched for the H2A-DUBs and PRC1-2 are proximal to transcriptionally active genes that engage in housekeeping cellular functions. Nevertheless, they exhibit H2AK119ub levels significantly above the genomic average that can undergo further increase with H2A-DUB knockout. This indicates a cooperation between H2A-DUBs and PRC1-2 in the modulation of housekeeping transcriptional programs, conserved across many cell types, likely operating through their antagonistic effects on H2AK119ub and the regulation of local H2AK119ub turnover. Our study further highlights existing knowledge gaps and discusses important directions for future work.
Collapse
Affiliation(s)
- HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada; McGill Genome Centre, Montreal, QC, Canada.
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada; McGill University Research Centre on Complex Traits, McGill University, QC, Canada.
| |
Collapse
|
14
|
Shi M, Zhao J, Zhang S, Huang W, Li M, Bai X, Zhang W, Zhang K, Chen X, Xiang S. Structural basis for the Rad6 activation by the Bre1 N-terminal domain. eLife 2023; 12:84157. [PMID: 36912886 PMCID: PMC10036116 DOI: 10.7554/elife.84157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The mono-ubiquitination of the histone protein H2B (H2Bub1) is a highly conserved histone post-translational modification that plays critical roles in many fundamental processes. In yeast, this modification is catalyzed by the conserved Bre1-Rad6 complex. Bre1 contains a unique N-terminal Rad6-binding domain (RBD), how it interacts with Rad6 and contributes to the H2Bub1 catalysis is unclear. Here, we present crystal structure of the Bre1 RBD-Rad6 complex and structure-guided functional studies. Our structure provides a detailed picture of the interaction between the dimeric Bre1 RBD and a single Rad6 molecule. We further found that the interaction stimulates Rad6's enzymatic activity by allosterically increasing its active site accessibility and likely contribute to the H2Bub1 catalysis through additional mechanisms. In line with these important functions, we found that the interaction is crucial for multiple H2Bub1-regulated processes. Our study provides molecular insights into the H2Bub1 catalysis.
Collapse
Affiliation(s)
- Meng Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Mengfei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Wenxue Zhang
- Department of Radiation Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Chakraborty P, Paul R, Chowdhury A, Mukherjee N, Nath S, Roychoudhury S. The anaphase promoting complex/cyclosome ubiquitylates histone H2B on the promoter during UbcH10 transactivation. FEBS Lett 2023; 597:437-447. [PMID: 36520528 DOI: 10.1002/1873-3468.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Among various post-translational modifications of histones, ubiquitylation plays a crucial role in transcription regulation. Histone mono-ubiquitylation by RING finger motif-containing ubiquitin ligases is documented in this respect. The RING finger ligases primarily regulate the cell cycle, where the anaphase-promoting complex/cyclosome (APC/C) takes charge as mitotic ubiquitin machinery. Reportedly, APC/C participates in transcriptional activation of the ubiquitin carrier protein UbcH10. However, the ubiquitylation activity of APC/C on the UBCH10 promoter remains elusive. This study shows that APC/C, with its adapter protein Cdc20, catalyses mono-ubiquitylation of Lysine-120 in histone 2B on the UBCH10 promoter. This study also identified a cell-cycle-specific pattern of this modification. Finally, APC/C-driven crosstalk of acetylation and ubiquitylation was found operational on UBCH10 trans-regulation. Together, these findings suggest a role for APC/C catalysed promoter ubiquitylation in managing transcription of cell cycle regulatory genes.
Collapse
Affiliation(s)
- Puja Chakraborty
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Ratnadip Paul
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | | | - Nayonika Mukherjee
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| | - Susanta Roychoudhury
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India.,CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
16
|
Zhao L, Kang M, Liu X, Wang Z, Wang Y, Chen H, Liu W, Liu S, Li B, Li C, Chang A, Tang B. UBR7 inhibits HCC tumorigenesis by targeting Keap1/Nrf2/Bach1/HK2 and glycolysis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:330. [PMID: 36419136 PMCID: PMC9686014 DOI: 10.1186/s13046-022-02528-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glycolysis metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options. The ubiquitin-proteasome system facilitates the turnover of most intracellular proteins with E3 ligase conferring the target selection and specificity. Ubiquitin protein ligase E3 component N-recognin 7 (UBR7), among the least studied E3 ligases, recognizes its substrate through a plant homeodomain (PHD) finger. Here, we bring into focus on its suppressive role in glycolysis and HCC tumorigenesis, dependent on its E3 ubiquitin ligase activity toward monoubiquitination of histone H2B at lysine 120 (H2BK120ub). METHODS In this study, we carried out high-throughput RNAi screening to identify epigenetic candidates in regulating lactic acid and investigated its possible roles in HCC progression. RESULTS UBR7 loss promotes HCC tumorigenesis both in vitro and in vivo. UBR7 inhibits glycolysis by indirectly suppressing HK2 expression, a downstream target of Nrf2/Bach1 axis. Mechanically, UBR7 regulates H2BK120ub to bind to Keap1 promoter through H2BK120ub monoubiquitination, thereby modulating Keap1 expression and downstream Nrf2/Bach1/HK2 signaling. Pharmaceutical and genetic inhibition of glycolytic enzymes attenuate the promoting effect of UBR7 deficiency on tumor growth. In addition, methyltransferase ALKBH5, downregulated in HCC, regulated UBR7 expression in an m6A-dependent manner. CONCLUSIONS These results collectively establish UBR7 as a critical negative regulator of aerobic glycolysis and HCC tumorigenesis through regulation of the Keap1/Nrf2/Bach1/HK2 axis, providing a potential clinical and therapeutic target for the HCC treatment.
Collapse
Affiliation(s)
- Liang Zhao
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Min Kang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaomeng Liu
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhenran Wang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Yan Wang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Haiqiang Chen
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Wenhui Liu
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Shiqian Liu
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Baibei Li
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Chong Li
- grid.9227.e0000000119573309Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Antao Chang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, 300060 China
| | - Bo Tang
- grid.412594.f0000 0004 1757 2961Department of Hepatobiliary Surgery and Oncology, The First Affiliated Hospital of Guangxi Medical University, No 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
17
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
18
|
STING mediates nuclear PD-L1 targeting-induced senescence in cancer cells. Cell Death Dis 2022; 13:791. [PMID: 36109513 PMCID: PMC9477807 DOI: 10.1038/s41419-022-05217-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023]
Abstract
Immune checkpoint molecule programmed death-ligand 1 (PD-L1) is overexpressed in cancer cells and imparts resistance to cancer therapy. Although membrane PD-L1 has been targeted for cancer immune therapy, nuclear PD-L1 was reported to confer cancer resistance. Therefore, it is important to regulate the nuclear PD-L1. The mechanisms underlying the therapeutic efficacy of PD-L1 targeting have not been well-established. Cellular senescence has been considered a pivotal mechanism to prevent cancer progression, and recently, PD-L1 inhibition was shown to be involved in cancer cell senescence. However, the relevance of PD-L1 targeting-induced senescence and the role of stimulator of interferon genes (STING) has not been reported. Therefore, we aimed to identify the role of PD-L1 in cancer progression and how it regulates cancer prevention. In this study, we found that PD-L1 depletion-induced senescence via strong induction of STING expression in mouse melanoma B16-F10 and colon cancer CT26 cells, and in human melanoma A375 and lung cancer A549 cells. Interestingly, nuclear PD-L1 silencing increased STING promoter activity, implying that PD-L1 negatively regulates STING expression via transcriptional modulation. Furthermore, we showed that PD-L1 binds to the STING promoter region, indicating that PD-L1 directly controls STING expression to promote cancer growth. In addition, when we combined PD-L1 silencing with the senescence-inducing chemotherapeutic agent doxorubicin, the effect of PD-L1-targeting was even more powerful. Overall, our findings can contribute to the understanding of the role of PD-L1 in cancer therapy by elucidating a novel mechanism for PD-L1 targeting in cancer cells.
Collapse
|
19
|
SMYD3 promotes aerobic glycolysis in diffuse large B-cell lymphoma via H3K4me3-mediated PKM2 transcription. Cell Death Dis 2022; 13:763. [PMID: 36057625 PMCID: PMC9440895 DOI: 10.1038/s41419-022-05208-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Genetic abnormalities in histone methyltransferases (HMTs) frequently occur in diffuse large B-cell lymphoma (DLBCL) and are related to its progression. SET and MYND domain containing 3 (SMYD3) is an HMT that is upregulated in various tumors and promotes their malignancy. However, to the best of our knowledge, the function of SMYD3 in DLBCL has not been investigated thus far. In the present study, 22 HMT genes related to cancer development were first selected according to current literature, and it was found that high SMYD3 expression was significantly associated with poor progression-free survival in patients with DLBCL. SMYD3 protein levels were upregulated and positively associated with poor prognosis and poor responsiveness to chemotherapy in patients with DLBCL. Functional examinations demonstrated that SMYD3 increased cell proliferation and the flux of aerobic glycolysis in DLBCL cells in vitro and in vivo and decreased cell sensitivity to doxorubicin in vitro. Moreover, SMYD3 could directly bind to specific sequences of Pyruvate Kinase M2 (PKM2) and promote DLBCL cell proliferation and aerobic glycolysis via H3K4me3-mediated PKM2 transcription. Clinically, SMYD3 expression positively correlated with that of PKM2, and high SMYD3 was significantly associated with high maximum standardized uptake value (SUVmax) detected by [(18)F]-fluorodeoxyglucose ((18)F-FDG) PET/computed tomography (PET/CT) in DLBCL samples. Concomitant expression of SMYD3 and PKM2 positively correlated with poor progression-free and overall survival in patients with DLBCL and may serve as novel biomarkers in DLBCL.
Collapse
|
20
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
21
|
Atypical Ubiquitination and Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23073705. [PMID: 35409068 PMCID: PMC8998352 DOI: 10.3390/ijms23073705] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ubiquitination (the covalent attachment of ubiquitin molecules to target proteins) is one of the main post-translational modifications of proteins. Historically, the type of polyubiquitination, which involves K48 lysine residues of the monomeric ubiquitin, was the first studied type of ubiquitination. It usually targets proteins for their subsequent proteasomal degradation. All the other types of ubiquitination, including monoubiquitination; multi-monoubiquitination; and polyubiquitination involving lysine residues K6, K11, K27, K29, K33, and K63 and N-terminal methionine, were defined as atypical ubiquitination (AU). Good evidence now exists that AUs, participating in the regulation of various cellular processes, are crucial for the development of Parkinson's disease (PD). These AUs target various proteins involved in PD pathogenesis. The K6-, K27-, K29-, and K33-linked polyubiquitination of alpha-synuclein, the main component of Lewy bodies, and DJ-1 (another PD-associated protein) is involved in the formation of insoluble aggregates. Multifunctional protein kinase LRRK2 essential for PD is subjected to K63- and K27-linked ubiquitination. Mitophagy mediated by the ubiquitin ligase parkin is accompanied by K63-linked autoubiquitination of parkin itself and monoubiquitination and polyubiquitination of mitochondrial proteins with the formation of both classical K48-linked ubiquitin chains and atypical K6-, K11-, K27-, and K63-linked polyubiquitin chains. The ubiquitin-specific proteases USP30, USP33, USP8, and USP15, removing predominantly K6-, K11-, and K63-linked ubiquitin conjugates, antagonize parkin-mediated mitophagy.
Collapse
|
22
|
Parafibromin Is Highly Expressed in Hepatocellular Carcinoma and Its Expression Correlates with Poor Prognosis. J Clin Med 2022; 11:jcm11071773. [PMID: 35407381 PMCID: PMC9000084 DOI: 10.3390/jcm11071773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Much progress has been made regarding the understanding of hepatocarcinogenesis, yet the long-term survival rate of HCC patients remains poor. Recent efforts have shown parafibromin has a pathologic role in many human cancers, but little is known about the effects of parafibromin in HCC. This study aimed to investigate the pattern of parafibromin expression and its clinicopathologic significance in human HCC. Immunohistochemical analysis of HCC and matched non-tumor liver tissues from 50 HCC patients showed that the nuclear expression of parafibromin was higher in HCC tissues (50/50 cases) than in non-tumor liver tissues (17/50 cases). Moreover, elevated parafibromin expression was found to be significantly correlated with the presence of microvascular invasion (p = 0.017), hepatitis virus infection-induced occurrence (p = 0.005), and poorer tumor differentiation (Edmondson-Steiner grade; p = 0.000). Kaplan-Meier analysis showed that HCC patients with elevated parafibromin expression had poorer recurrence-free (p = 0.014, log-rank test = 6.079) and overall survival (p = 0.036, log-rank test = 4.414). These findings indicate parafibromin may be related to the pathogenesis of HCC and a potential prognostic marker for HCC patients after hepatectomy.
Collapse
|
23
|
USP49-mediated histone H2B deubiquitination regulates HCT116 cell proliferation through MDM2-p53 axis. Mol Cell Biol 2022; 42:e0043421. [PMID: 35072515 DOI: 10.1128/mcb.00434-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Post-translational histone modifications play important roles in regulating chromatin structure and transcriptional regulation. Histone H2B monoubiquitination (H2Bub) is an essential regulator for transcriptional elongation and ongoing transcription. Here we reported that USP49, as a histone H2B deubiquitinase, is involved in HCT116 cell proliferation through modulating MDM2-p53 pathway genes. USP49 knockout contributes to increased HCT116 cell proliferation and migration. Importantly, USP49 knockout stimulated MDM2 transcriptional level and then inhibited the mRNA levels of TP53 target genes. Conversely, overexpression of USP49 suppressed MDM2 gene expression and then promoted TP53 target genes. Moreover, chromatin immunoprecipitation revealed that USP49 directly bound to the promoter of MDM2 gene. USP49 knockout increased the H2Bub enrichment at MDM2 gene whereas USP49 overexpression downregulated the H2Bub level at MDM2 gene. Therefore, our findings indicated that USP49-mediated H2B deubiquitination controls the transcription of MDM2-p53 axis genes in the process of HCT116 cell proliferation.
Collapse
|
24
|
Li Q, Zhang J, Liu S, Zhang F, Zhuang J, Chen Y. MicroRNA-17-3p is upregulated in psoriasis and regulates keratinocyte hyperproliferation and pro-inflammatory cytokine secretion by targeting <em>CTR9</em>. Eur J Histochem 2022; 66. [PMID: 35016493 PMCID: PMC8764465 DOI: 10.4081/ejh.2022.3275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. Although miRNAs are reported to be associated with the pathogenesis of psoriasis, the contribution of individual microRNAs toward psoriasis remains unclear. The miR-17-92 cluster regulates cell growth and immune functions that are associated with psoriasis. miR-17-3p is a member of miR-17-92 cluster; however, its role in dermatological diseases remains unclear. Our study aims at investigating the effects of miR-17-3p and its potential target gene on keratinocytes proliferation and secretion of pro-inflammatory cytokine and their involvement in psoriasis. Initially, we found that miR-17-3p was upregulated in psoriatic skin lesions, and bioinformatic analyses suggested that CTR9 is likely to be a target gene of miR-17-3p. Quantitative reverse-transcriptase PCR and immunohistochemical analysis revealed that CTR9 expression was downregulated in psoriatic lesions. Using dual-luciferase reporter assays, we identified CTR9 as a direct target of miR-17-3p. Further functional experiments demonstrated that miR-17-3p promoted the proliferation and pro-inflammatory cytokine secretion of keratinocytes, whereas CTR9 exerted the opposite effects. Gain-of-function studies confirmed that CTR9 suppression partially accounted for the effects of miR- 17-3p in keratinocytes. Furthermore, Western blot revealed that miR-17-3p activates the downstream STAT3 signaling pathway while CTR9 inactivates the STAT3 signaling pathway. Together, these findings indicate that miR-17-3p regulates keratinocyte proliferation and pro-inflammatory cytokine secretion partially by targeting the CTR9, which inactivates the downstream STAT3 protein, implying that miR-17-3p might be a novel therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Qingwen Li
- Dermatology Hospital, Southern Medical University, Guangzhou.
| | - Jiao Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou.
| | - Shougang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou.
| | - Fangfei Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou.
| | - Jiayi Zhuang
- Dermatology Hospital, Southern Medical University, Guangzhou.
| | - Yongfeng Chen
- Dermatology Hospital, Southern Medical University, Guangzhou.
| |
Collapse
|
25
|
HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins. Genes (Basel) 2021; 13:genes13010042. [PMID: 35052383 PMCID: PMC8774506 DOI: 10.3390/genes13010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the “Epigenetic Code Replication Machinery,” ECREM, a large protein complex that includes several epigenetic players, such as the ubiquitin-like containing plant homeodomain (PHD) and an interesting new gene (RING), finger domains 1 (UHRF1), as well as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), histone methyltransferase G9a, and histone acetyltransferase TIP60. Due to its deubiquitinase activity and its ability to team up through direct interactions with several epigenetic regulators, mainly UHRF1, DNMT1, TIP60, the histone lysine methyltransferase EZH2, and the lysine-specific histone demethylase LSD1, HAUSP positions itself at the top of the regulatory hierarchies involved in epigenetic silencing of tumor suppressor genes in cancer. This review highlights the increasing role of HAUSP as an epigenetic master regulator that governs a set of epigenetic players involved in both the maintenance of DNA methylation and histone post-translational modifications.
Collapse
|
26
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
27
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
28
|
Massively parallel in vivo CRISPR screening identifies RNF20/40 as epigenetic regulators of cardiomyocyte maturation. Nat Commun 2021; 12:4442. [PMID: 34290256 PMCID: PMC8295283 DOI: 10.1038/s41467-021-24743-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
The forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.
Collapse
|