1
|
Rebstock AS, Wiedmann M, Stelte-Ludwig B, Wong H, Johnson AJ, Izumi R, Hamdy A, Lerchen HG. Neutrophil elastase as a versatile cleavage enzyme for activation of αvβ3 integrin-targeted small molecule drug conjugates with different payload classes in the tumor microenvironment. Front Pharmacol 2024; 15:1358393. [PMID: 38495100 PMCID: PMC10943695 DOI: 10.3389/fphar.2024.1358393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction: The development of bioconjugates for the targeted delivery of anticancer agents is gaining momentum after recent success of antibody drug conjugates (ADCs) in the clinic. Smaller format conjugates may have several advantages including better tumor penetration; however, cellular uptake and trafficking may be substantially different from ADCs. To fully leverage the potential of small molecule drug conjugates (SMDCs) with potent binding molecules mediating tumor homing, novel linker chemistries susceptible for efficient extracellular activation and payload release in the tumor microenvironment (TME) need to be explored. Methods: We designed a novel class of SMDCs, which target αvβ3 integrins for tumor homing and are cleaved by neutrophil elastase (NE), a serine protease active in the TME. A peptidomimetic αvβ3 ligand was attached via optimized linkers composed of substrate peptide sequences of NE connected to different functional groups of various payload classes, such as camptothecins, monomethyl auristatin E, kinesin spindle protein inhibitors (KSPi) and cyclin-dependent kinase 9 inhibitors (CDK-9i). Results: NE-mediated cleavage was found compatible with the diverse linker attachments via hindered ester bonds, amide bonds and sulfoximide bonds. Efficient and traceless release of the respective payloads was demonstrated in biochemical assays. The newly designed SMDCs were highly stable in buffer as well as in rat and human plasma. Cytotoxicity of the SMDCs in cancer cell lines was clearly dependent on NE. IC50 values were in the nanomolar or sub-nanomolar range across several cancer cell lines reaching similar potencies as compared to the respective payloads only in the presence of NE. In vivo pharmacokinetics evaluating SMDC and free payload exposures in rat and particularly the robust efficacy with good tolerability in triple negative breast and small cell lung cancer murine models demonstrate the utility of this approach for selective delivery of payloads to the tumor. Discussion: These results highlight the broad scope of potential payloads and suitable conjugation chemistries paving the way for future SMDCs harnessing the safety features of targeted delivery approaches in combination with NE cleavage in the TME.
Collapse
Affiliation(s)
| | | | | | - Harvey Wong
- Vincerx Pharma, Inc., Palo Alto, CA, United States
| | | | - Raquel Izumi
- Vincerx Pharma, Inc., Palo Alto, CA, United States
| | - Ahmed Hamdy
- Vincerx Pharma, Inc., Palo Alto, CA, United States
| | | |
Collapse
|
2
|
Nejabat M, Hadizadeh F, Sahebkar A. The Application of Kinesin Inhibitors in Medical Issues. Curr Rev Clin Exp Pharmacol 2024; 19:370-378. [PMID: 38275041 DOI: 10.2174/0127724328277623231204064614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 01/27/2024]
Abstract
Kinesins are a group of motor proteins in charge of several crucial functions in the cell. These proteins often bind to microtubules and perform their functions using the energy produced by ATP hydrolysis. One function of mitotic kinesin, a subclass of kinesin that is expressed during cell division at the mitotic phase, is to create the mitotic spindle. Uncontrolled cell growth is one trait of cancerous cells. Traditional anticancer medications still used in clinics include taxanes (paclitaxel) and vinca alkaloids (vincristine, vinblastine), which interfere with microtubule dynamics. However, because non-dividing cells like post-mitotic neurons contain microtubules, unwanted side effects like peripheral neuropathy are frequently found in patients taking these medications. More than ten members of the mitotic kinesin family play distinct or complementary roles during mitosis. The mitotic kinesin family's KSP, or Eg5, is regarded as its most dramatic target protein. The current work systematically reviews the use of kinesin inhibitors in the medical field. The challenges of KSP and the practical solutions are also examined, and the outcomes of the previous works are reported. The significant gaps and shortcomings of the related works are also highlighted, which can be an onset topic for future works.
Collapse
Affiliation(s)
- Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Li Y, Wang Z, Dong Y, Yu X, Lu J, Jin N, Shang C, Li X, Fan S. A novel antibody-KSP inhibitor conjugate improves KSP inhibitor efficacy in vitro and in vivo. Biomaterials 2023; 301:122258. [PMID: 37523792 DOI: 10.1016/j.biomaterials.2023.122258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Many clinical trials of kinesin spindle protein (KSP) inhibitors have failed due to issues such as high toxicity and a short circulation half-life in vivo. To address the limitations of current KSP inhibitors and thus broad its use in antitumor therapy, this study applied antibody-drug conjugate (ADC) technology to the KSP inhibitor SB-743921, which was coupled with the HER2-specific antibody trastuzumab using a cathepsin B-dependent valine-alanine (Val-Ala, VA) dipeptide-type linker to generate H2-921. Ex vivo and in vivo analyses of H2-921 showed an increased half-life of SB-743921 and prolonged contact time with tumor cells. Furthermore, H2-921 induced apoptosis and incomplete autophagy in HER2-positive cells. In the in vivo analyses, H2-921 had significant tumor-targeting properties, and tumor inhibition by H2-921 was greater than that by traditional KSP inhibitors but similar to that by the positive control drug T-DM1. In conclusion, this study describes a novel application of ADC technology that enhances the antitumor effects of a KSP inhibitor and thus may effectively address the poor clinical efficacy of KSP inhibitors.
Collapse
Affiliation(s)
- Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuchao Dong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiaoyang Yu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xiao Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
4
|
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B 2023; 13:4025-4059. [PMID: 37799390 PMCID: PMC10547921 DOI: 10.1016/j.apsb.2023.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lantu Gou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
5
|
Zhang Y, Xing Z, Mi L, Li Z, Zhu J, Wei T, Wu W. Novel Agents For Relapsed and Refractory Classical Hodgkin Lymphoma: A Review. Front Oncol 2022; 12:929012. [PMID: 35928877 PMCID: PMC9344040 DOI: 10.3389/fonc.2022.929012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is the most common type of HL that occurs mainly in people aged between 15–30 and over 55 years. Although its general prognosis is favorable, 10%–30% of patients with cHL will ultimately develop relapsed or refractory disease (r/r cHL). Improving the cure rate of r/r cHL has proven to be challenging. Some novel agents, such as brentuximab vedotin and immune checkpoint inhibitors, which have been used in conventional regimens for patients with r/r cHL in the past decade, have been shown to have good curative effects. This paper reviews the conventional regimens for patients with r/r cHL and focuses on the newest clinical trials and treatment measures to prolong prognosis and reduce adverse events. The evaluation of prognosis plays a vital role in analyzing the risk of relapse or disease progression; thus, finding new predictive strategies may help treat patients with r/r cHL more efficaciously.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Xing
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mi
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenshuang Wu, ; Tao Wei,
| | - Wenshuang Wu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenshuang Wu, ; Tao Wei,
| |
Collapse
|
6
|
El-Kadiry AEH, Beaudoin S, Plouffe S, Rafei M. Accum™ Technology: A Novel Conjugable Primer for Onco-Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123807. [PMID: 35744930 PMCID: PMC9227040 DOI: 10.3390/molecules27123807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022]
Abstract
Compromised activity is a common impediment for biologics requiring endosome trafficking into target cells. In cancer cells, antibody-drug conjugates (ADCs) are trapped in endosomes or subsequently pumped extracellularly, leading to a reduction in intracellular accumulation. In subsets of dendritic cells (DCs), endosome-engulfed antigens face non-specific proteolysis and collateral damage to epitope immunogenicity before proteasomal processing and subsequent surface presentation. To bypass these shortcomings, we devised Accum™, a conjugable biotechnology harboring cholic acid (ChAc) and a nuclear localization signal (NLS) sequence for endosome escape and prompt nuclear targeting. Combined, these mechanisms culminate in enhanced intracellular accumulation and functionalization of coupled biologics. As proof-of-principle, we have biochemically characterized Accum, demonstrating its adaptability to ADCs or antigens in different cancer settings. Additionally, we have validated that endosome escape and nuclear routing are indispensable for effective intracellular accumulation and guaranteed target cell selectivity. Importantly, we have demonstrated that the unique mechanism of action of Accum translates into enhanced tumor cytotoxicity when coupled to ADCs, and durable therapeutic and prophylactic anti-cancer immunogenicity when coupled to tumor antigens. As more pre-clinical evidence accumulates, the adaptability, unique mechanism of action, and high therapeutic potency of Accum signal a promising transition into clinical investigations in the context of onco-immunotherapy.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| | - Simon Beaudoin
- Defence Therapeutics Inc., Research and Development Branch, Vancouver, BC V6C 3L6, Canada; (S.B.); (S.P.)
| | - Sebastien Plouffe
- Defence Therapeutics Inc., Research and Development Branch, Vancouver, BC V6C 3L6, Canada; (S.B.); (S.P.)
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Molecular Biology Program, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-(514)-343-6931
| |
Collapse
|
7
|
Sommer A, Berndt S, Lerchen HG, Forveille S, Sauvat A, Mumberg D, Kroemer G, Kepp O. Antibody–drug conjugates harboring a kinesin spindle protein inhibitor with immunostimulatory properties. Oncoimmunology 2022; 11:2037216. [PMID: 35154909 PMCID: PMC8837233 DOI: 10.1080/2162402x.2022.2037216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Antibody–drug conjugates (ADCs) are used to target cancer cells by means of antibodies directed to tumor-associated antigens, causing the incorporation of a cytotoxic payload into target cells. Here, we characterized the mode of action of ADC costing of a TWEAKR-specific monoclonal antibody conjugated to a small molecule kinesin spindle protein (KSP) inhibitor (KSPi). These TWEAKR-KSPi-ADCs showed strong efficacy in a TWEAKR expressing CT26 colon cancer model in mice. TWEAKR-KSPi-ADCs controlled the growth of CT26 colon cancers in immunodeficient as well as in immunocompetent mice. However, when treated with suboptimal doses, TWEAKR-KSPi-ADCs were still active in immunocompetent but not in immunodeficient mice, indicating that TWEAKR-KSPi-ADCs act – in addition to the cytotoxic mode of action – through an immunological mechanism. Indeed, in vitro experiments performed with a cell-permeable small molecule KSPi closely related to the active payload released from the TWEAKR-KSPi-ADCs revealed that KSPi was capable of stimulating several hallmarks of immunogenic cell death (ICD) on three different human cancer cell lines: cellular release of adenosine triphosphate (ATP) and high mobility group B1 protein (HMGB1), exposure of calreticulin on the cell surface as well as a transcriptional type-I interferon response. Further, in vivo experiments confirmed that treatment with TWEAKR-KSPi-ADCs activated immune responses via enhancing the infiltration of CD4+ and CD8+ T lymphocytes in tumors and the local production of interferon-γ, interleukin-2, and tumor necrosis factor-α. In conclusion, the antineoplastic effects of TWEAKR-KSPi-ADCs can partly be attributed to its ICD-stimulatory properties.
Collapse
Affiliation(s)
| | | | | | - Sabrina Forveille
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Allan Sauvat
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | | | - Guido Kroemer
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institutet, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Equipe Labellisée Par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche Des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
8
|
Popescu VB, Kanhaiya K, Năstac DI, Czeizler E, Petre I. Network controllability solutions for computational drug repurposing using genetic algorithms. Sci Rep 2022; 12:1437. [PMID: 35082323 PMCID: PMC8791995 DOI: 10.1038/s41598-022-05335-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Control theory has seen recently impactful applications in network science, especially in connections with applications in network medicine. A key topic of research is that of finding minimal external interventions that offer control over the dynamics of a given network, a problem known as network controllability. We propose in this article a new solution for this problem based on genetic algorithms. We tailor our solution for applications in computational drug repurposing, seeking to maximize its use of FDA-approved drug targets in a given disease-specific protein-protein interaction network. We demonstrate our algorithm on several cancer networks and on several random networks with their edges distributed according to the Erdős-Rényi, the Scale-Free, and the Small World properties. Overall, we show that our new algorithm is more efficient in identifying relevant drug targets in a disease network, advancing the computational solutions needed for new therapeutic and drug repurposing approaches.
Collapse
Affiliation(s)
| | | | - Dumitru Iulian Năstac
- POLITEHNICA University of Bucharest, Faculty of Electronics, Telecommunications and Information Technology, 061071, Bucharest, Romania
| | - Eugen Czeizler
- Computer Science, Åbo Akademi University, 20500, Turku, Finland
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania
| | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, 20014, Turku, Finland.
- National Institute for Research and Development in Biological Sciences, 060031, Bucharest, Romania.
| |
Collapse
|
9
|
Chu Y, Zhou X, Wang X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol 2021; 14:88. [PMID: 34090506 PMCID: PMC8180036 DOI: 10.1186/s13045-021-01097-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a promising class of immunotherapies with the potential to specifically target tumor cells and ameliorate the therapeutic index of cytotoxic drugs. ADCs comprise monoclonal antibodies, cytotoxic payloads with inherent antitumor activity, and specialized linkers connecting the two. In recent years, three ADCs, brentuximab vedotin, polatuzumab vedotin, and loncastuximab tesirine, have been approved and are already establishing their place in lymphoma treatment. As the efficacy and safety of ADCs have moved in synchrony with advances in their design, a plethora of novel ADCs have garnered growing interest as treatments. In this review, we provide an overview of the essential elements of ADC strategies in lymphoma and elucidate the up-to-date progress, current challenges, and novel targets of ADCs in this rapidly evolving field.
Collapse
Affiliation(s)
- Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
10
|
Patnaik MM, Mughal TI, Brooks C, Lindsay R, Pemmaraju N. Targeting CD123 in hematologic malignancies: identifying suitable patients for targeted therapy. Leuk Lymphoma 2021; 62:2568-2586. [PMID: 33999767 DOI: 10.1080/10428194.2021.1927021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following the observation of interleukin 3 receptor α chain (IL-3Rα; CD123) upregulation on leukemia stem cells (LSCs) almost two decades ago, targeted treatment via CD123-diptheria toxin conjugates has now been tested in patients with diverse myeloid malignancies. Targeted eradication of LSCs could result in effective treatments for many challenging diseases initiated by these cells. Consequently, considerable effort has been directed toward targeting CD123 as a potential strategy for treating patients with hematologic malignancies in which CD123 is overexpressed. However, these therapies have had limited success so far, highlighting the need for suitable criteria to identify patients who could benefit from them. Given the diversity in CD123 expression across different hematologic malignancies, understanding CD123 expression patterns and the functional pathogenetic significance is crucial. Here, we review the methodologies available for CD123 assessment and discuss the biological and clinical characteristics of patients for whom CD123-targeting therapies may have a clinical impact.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tariq I Mughal
- Division of Hematology-Oncology, Tufts University School of Medicine, Boston, MA, USA.,Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Christopher Brooks
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Ross Lindsay
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Naveen Pemmaraju
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|