1
|
Mughal KS, Ikram M, Uddin Z, Rashid A, Rashid U, Khan M, Zehra N, Mughal US, Shah N, Amirzada I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem Biophys Res Commun 2024; 734:150777. [PMID: 39383831 DOI: 10.1016/j.bbrc.2024.150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.
Collapse
Affiliation(s)
- Khoula Sharif Mughal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amna Rashid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Momina Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Naseem Zehra
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umair Sharif Mughal
- Department of Medicine, Ayub Teaching Hospital, Abbottabad, 22040, Khyber Pakhtunkhwa, Pakistan
| | - Nabi Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Skapinker E, Aucoin EB, Kombargi HL, Yaish AM, Li Y, Baghaie L, Szewczuk MR. Contemporaneous Inflammatory, Angiogenic, Fibrogenic, and Angiostatic Cytokine Profiles of the Time-to-Tumor Development by Cancer Cells to Orchestrate Tumor Neovascularization, Progression, and Metastasis. Cells 2024; 13:1739. [PMID: 39451257 PMCID: PMC11506673 DOI: 10.3390/cells13201739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytokines can promote various cancer processes, such as angiogenesis, epithelial to mesenchymal transition (EMT), invasion, and tumor progression, and maintain cancer stem-cell-like (CSCs) cells. The mechanism(s) that continuously promote(s) tumors to progress in the TME still need(s) to be investigated. The data in the present study analyzed the inflammatory, angiogenic, fibrogenic, and angiostatic cytokine profiles in the host serum during tumor development in a mouse model of human pancreatic cancer. Pancreatic MiaPaCa-2-eGFP cancer cells were subcutaneously implanted in RAG2xCγ double mutant mice. Blood samples were collected before cancer cell implantation and every week until the end point of the study. The extracted serum from the blood of each mouse at different time points during tumor development was analyzed using a Bio-Plex microarray analysis and a Bio-Plex 200 system for proinflammatory (IL-1β, IL-10, IFN-γ, and TNF-α) and angiogenic and fibrogenic (IL-15, IL-18, basic FGF, LIF, M-CSF, MIG, MIP-2, PDGF-BB, and VEGF) cytokines. Here, we find that during cancer cell colonization for tumor development, host angiogenic, fibrogenic, and proinflammatory cytokine profiling in the tumor-bearing mice has been shown to significantly reduce host angiostatic and proinflammatory cytokines that restrain tumor development and increase those for tumor growth. The proinflammatory cytokines IL-15, IL-18, and IL-1β profiles reveal a significant host serum increase after day 35 when the tumor began to progress in growth. In contrast, the angiostatic cytokine profiles of TNFα, MIG, M-CSF, IL-10, and IFNγ in the host serum revealed a dramatic and significant decrease after day 5 post-implantation of cancer cells. OP treatment of tumor-bearing mice on day 35 maintained high levels of angiostatic and fibrogenic cytokines. The data suggest an entirely new regulation by cancer cells for tumor development. The findings identify for the first time how pancreatic cancer cells use host cytokine profiling to orchestrate the initiation of tumor development.
Collapse
Affiliation(s)
- Elizabeth Skapinker
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (Y.L.)
| | - Emilyn B. Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Haley L. Kombargi
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (H.L.K.); (A.M.Y.)
| | - Abdulrahman M. Yaish
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (H.L.K.); (A.M.Y.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (Y.L.)
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada;
| |
Collapse
|
3
|
Chen D, Kang Z, Chen H, Fu P. Polysaccharide from Areca catechu L. inflorescence enhances the intestinal mucosal immunity to maintain immune homeostasis. Int J Biol Macromol 2024; 278:134900. [PMID: 39168192 DOI: 10.1016/j.ijbiomac.2024.134900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Being the first line of defense, intestinal mucosal immunity serves as in maintaining immune homeostasis among organisms. This study investigated the impact of the areca inflorescence polysaccharide (AFP) on intestinal mucosal immunity and elucidated the mechanisms responsible for the immunomodulatory effects of AFP. The immunosuppression mouse model was established using the cyclophosphamide. The intestinal mucosal status was evaluated based on the intestinal integrity, chemical and mucosal immune barriers, and intestinal flora. According to the findings, AFP enhances intestinal integrity by up-regulating the expression of tight junction proteins and reinforcing the chemical barrier through increased mucin-2, β-defensins, and SIgA expression and secretion. Furthermore, AFP restores the mucosal immune barrier by regulating immune cells within Peyer's patches and lamina propria. AFP also reverses the intestinal flora balance and regulates its metabolism. Additionally, AFP effectively modulates the immune response in the spleen and peripheral blood. Together, these results indicated that AFP repairs mucosal damage and restores mucosal immunity, thereby preserving the immune homeostasis of organisms.
Collapse
Affiliation(s)
- Di Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Science and Engineering, Hainan University, Haikou, PR China; Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zonghua Kang
- Hunan Kouweiwang Group Co., Ltd, Changsha 413499, China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Science and Engineering, Hainan University, Haikou, PR China; Huachuang Institute of Areca Research-Hainan, Haikou 570228, China.
| | - Pengcheng Fu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Science and Engineering, Hainan University, Haikou, PR China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Piper M, Gadwa J, Hodgson C, Knitz M, Yee E, Zhu Y, Larson KY, Klein C, Amann M, Saviola A, Karam SD. IL15/IL15Rα complex induces an anti-tumor immune response following radiation therapy only in the absence of Tregs and fails to induce expansion of progenitor TCF1+ CD8 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613691. [PMID: 39345626 PMCID: PMC11429847 DOI: 10.1101/2024.09.18.613691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background This work seeks to understand whether IL15-incorporating treatments improve response to radiotherapy and uncover mechanistic rationale for overcoming resistance to IL15 agonism using novel therapeutic combinations. Experimental Design Orthotopic tumor models of PDAC were used to determine response to treatment. IL15-/- and Rag1-/- mouse models were employed to determine dependence on IL15 and CTLs, respectively. Flow cytometry was used to assess immune cell frequency and activation state. Phospho-proteomic analyses were used to characterize intracellular signaling pathways. Results We show that the combination of radiation therapy (RT) and an IL15/IL15Ra fusion complex (denoted IL15c) fails to confer anti-tumor efficacy; however, a CD8-driven anti-tumor immune response is elicited with the concurrent administration of an aCD25 Treg-depleting antibody. Using IL15-/- and Rag1-/- mice, we demonstrate that response to RT + IL15c + aCD25 is dependent on both IL15 and CTLs. Furthermore, despite an equivalent survival benefit following treatment with RT + IL15c + aCD25 and combination RT + PD1-IL2v, a novel immunocytokine with PD-1 and IL2Rβγ binding domains, CTL immunophenotyping and phospho-proteomic analysis of intracellular metabolites showed significant upregulation of activation and functionality in CD8 T cells treated with RT + PD1-IL2v. Finally, we show the immunostimulatory response to RT + PD1-IL2v is significantly diminished with a concurrent lack of TCF+ CD8 T cell generation in the absence of functional IL15 signaling. Conclusions Our results are illustrative of a mechanism wherein unimpeded effector T cell activation through IL2Rβ signaling and Treg inhibition are necessary in mediating an anti-tumor immune response.
Collapse
|
5
|
Duléry R, Piccinelli S, Beg MS, Jang JE, Romee R. Haploidentical hematopoietic cell transplantation as a platform for natural killer cell immunotherapy. Am J Hematol 2024. [PMID: 39248561 DOI: 10.1002/ajh.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
An innovative approach is crucially needed to manage relapse after allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematological malignancies. This review explores key aspects of haploidentical HCT with post-transplant cyclophosphamide, highlighting the potential and suitability of this platform for natural killer (NK) cell immunotherapy. NK cells, known for their unique abilities to eliminate cancer cells, can also exhibit memory-like features and enhanced cytotoxicity when activated by cytokines. By discussing promising results from clinical trials, the review delves into the recent major advances: donor-derived NK cells can be expanded ex vivo in large numbers, cytokine activation may enhance NK cell persistence and efficacy in vivo, and post-HCT NK cell infusion can improve outcomes in high-risk and/or relapsed myeloid malignancies without increasing the risk of graft-versus-host disease, severe cytokine release syndrome, or neurotoxicity. Looking ahead, cytokine-activated NK cells can be synergized with immunomodulatory agents and/or genetically engineered to enhance their tumor-targeting specificity, cytotoxicity, and persistence while preventing exhaustion. The ongoing exploration of these strategies holds promising preliminary results and could be rapidly translated into clinical applications for the benefit of the patients.
Collapse
Affiliation(s)
- Rémy Duléry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Piccinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ji Eun Jang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Fan Y, Wu J, Huang W, Li S, Zeng Q, Gesang Z, Silang Y, Zhang C, Fu G. Immunomodulatory effect of tibetan medicine compound extracts against ORFV in vitro by metabolomics. BMC Vet Res 2024; 20:366. [PMID: 39143608 PMCID: PMC11325804 DOI: 10.1186/s12917-024-04204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Ovine contagious pustular dermatitis (ORF) is one of the main diseases of sheep and is a zoonotic disease caused by Ovine contagious pustular dermatitis virus (ORFV) infection, posing a significant constraint on sheep breeding industry and human health. The Tibetan medical formulation composed of Polygonum leucoides, Polygonum xanthoxylum and Acanthophora rotunda significantly regulated lymphocyte immune function following ORFV stimulation, although the mechanism remains unclear. In order to study the immunomodulatory effects and mechanism of three Tibetan medicinal extracts (Polygonum leucoides, Polygonum xanthoxylum, and Acanthophora rotunda) against ORFV in vitro, sheep peripheral blood lymphocytes were isolated in vitro and treated with different concentrations of Tibetan medicine compound extract solution after ORFV infection. The cytokine expression levels in lymphocytes were measured at 4 h, 8 h and 12 h. Additionally endogenous metabolites in lymphocytes at 0 h, 4 h, 8 h and 12 h were quantified by untargeted metabolomics method. The results showed that, the extracts could regulate the lymphocyte immune factors altered by ORFV, and regulate the lymphocyte immune function through cysteine and methionine metabolic pathways as well as the pyrimidine metabolic pathways, potentially alleviating the immune evasion induced by ORFV.
Collapse
Affiliation(s)
- Yueyuan Fan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiao Wu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Huang
- College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China
| | - Saiju Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Qin Zeng
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhuoga Gesang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Yuzhen Silang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China.
| | - Chong Zhang
- Kunming Customs Technology Center, Kunming, 650228, China.
| | - Guowen Fu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
7
|
Tominaga M, Uto T, Fukaya T, Mitoma S, Riethmacher D, Umekita K, Yamashita Y, Sato K. Crucial role of dendritic cells in the generation of anti-tumor T-cell responses and immunogenic tumor microenvironment to suppress tumor development. Front Immunol 2024; 15:1200461. [PMID: 39206204 PMCID: PMC11349553 DOI: 10.3389/fimmu.2024.1200461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic cells (DCs) are known as unique professional antigen (Ag)-presenting cells (APCs) to prime naïve T cells for the initiation of adaptive immunity. While DCs are believed to play a pivotal role in generating anti-tumor T-cell responses, the importance of DCs in the protection from the progression of tumors remains elusive. Here, we show how the constitutive deficiency of CD11chi DCs influences the progression of tumors with the use of binary transgenic mice with constitutive loss of CD11chi DCs. Constitutive loss of CD11chi DCs not only enhances the progression of tumors but also reduces the responses of Ag-specific T cells. Furthermore, the congenital deficiency of CD11chi DCs generates the immunosuppressive tumor microenvironment (TME) that correlates with the marked accumulation of myeloid-derived suppressor cells (MDSCs) and the prominent productions of immunosuppressive mediators. Thus, our findings suggest that CD11chi DCs are crucial for generating anti-tumor T-cell responses and immunogenic TME to suppress the development of tumors.
Collapse
Affiliation(s)
- Moe Tominaga
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomofumi Uto
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Project for Promotion of Cancer Research and Therapeutic Evolution (P-PROMOTE), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Tomohiro Fukaya
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Project for Promotion of Cancer Research and Therapeutic Evolution (P-PROMOTE), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Shuya Mitoma
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Project for Promotion of Cancer Research and Therapeutic Evolution (P-PROMOTE), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Kunihiko Umekita
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Project for Promotion of Cancer Research and Therapeutic Evolution (P-PROMOTE), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
8
|
Rehman M, Qaiser A, Khan HS, Manzoor S, Ashraf J. Enhancing CAR T cells function: role of immunomodulators in cancer immunotherapy. Clin Exp Med 2024; 24:180. [PMID: 39105978 PMCID: PMC11303469 DOI: 10.1007/s10238-024-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
CAR T-cell therapy is a promising immunotherapy, providing successful results for cancer patients who are unresponsive to standard and traditional therapeutic approaches. However, there are limiting factors which create a hurdle in the therapy performing its role optimally. CAR T cells get exhausted, produce active antitumor responses, and might even produce toxic reactions. Specifically, in the case of solid tumors, chimeric antigen receptor T (CAR-T) cells fail to produce the desired outcomes. Then, the need to use supplementary agents such as immune system modifying immunomodulatory agents comes into play. A series of the literature was studied to evaluate the role of immunomodulators including a phytochemical, Food and Drug Administration (FDA)-approved targeted drugs, and ILs in support of their achievements in boosting the efficiency of CAR-T cell therapy. Some of the most promising out of them are reported in this article. It is expected that by using the right combinations of immunotherapy, immunomodulators, and traditional cancer treatments, the best possible cancer defying results may be produced in the future.
Collapse
Affiliation(s)
- Maheen Rehman
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hassan Sardar Khan
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javed Ashraf
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.
- Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
9
|
Matson AW, Hullsiek R, Dixon KJ, Wang S, Lindstedt AJ, Friess RR, Phung SK, Freedman TS, Felices M, Truckenbrod EN, Wu J, Miller JS, Walcheck B. Enhanced IL-15-mediated NK cell activation and proliferation by an ADAM17 function-blocking antibody involves CD16A, CD137, and accessory cells. J Immunother Cancer 2024; 12:e008959. [PMID: 39053944 DOI: 10.1136/jitc-2024-008959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are being extensively studied as a cell therapy for cancer. These cells are activated by recognition of ligands and antigens on tumor cells. Cytokine therapies, such as IL-15, are also broadly used to stimulate endogenous and adoptively transferred NK cells in patients with cancer. These stimuli activate the membrane protease ADAM17, which cleaves various cell-surface receptors on NK cells as a negative feedback loop to limit their cytolytic function. ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo. In this study, we investigated the underlying mechanism of this process. METHODS Peripheral blood mononuclear cells (PBMCs) or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15±an ADAM17 function-blocking antibody. Different fully human versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab')2, and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A binding. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell antitumor activity. RESULTS The ADAM17 function-blocking monoclonal antibody (mAb) Medi-1 markedly increased early NK cell activation by IL-15. By using different engineered versions of the antibody, we demonstrate involvement by CD16A, an activating Fcγ receptor and well-described ADAM17 substrate. Hence, Medi-1 when bound to ADAM17 on NK cells is engaged by CD16A and blocks its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide or dysfunction. Synergistic signaling by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A+ NK cells and augmented their proliferation in the presence of PBMC accessory cells or an anti-CD137 agonistic mAb. CONCLUSIONS Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively, with the latter requiring PBMC accessory cells. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the antitumor activity of NK cells in patients with cancer.
Collapse
Affiliation(s)
- Anders W Matson
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Rob Hullsiek
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sam Wang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anders J Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan R Friess
- Graduate Program in Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shee Kwan Phung
- Graduate Program in Comparative and Molecular Biosciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Tanya S Freedman
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Emily N Truckenbrod
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
11
|
Lang X, Wang X, Han M, Guo Y. Nanoparticle-Mediated Synergistic Chemoimmunotherapy for Cancer Treatment. Int J Nanomedicine 2024; 19:4533-4568. [PMID: 38799699 PMCID: PMC11127654 DOI: 10.2147/ijn.s455213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Until now, there has been a lack of effective strategies for cancer treatment. Immunotherapy has high potential in treating several cancers but its efficacy is limited as a monotherapy. Chemoimmunotherapy (CIT) holds promise to be widely used in cancer treatment. Therefore, identifying their involvement and potential synergy in CIT approaches is decisive. Nano-based drug delivery systems (NDDSs) are ideal delivery systems because they can simultaneously target immune cells and cancer cells, promoting drug accumulation, and reducing the toxicity of the drug. In this review, we first introduce five current immunotherapies, including immune checkpoint blocking (ICB), adoptive cell transfer therapy (ACT), cancer vaccines, oncolytic virus therapy (OVT) and cytokine therapy. Subsequently, the immunomodulatory effects of chemotherapy by inducing immunogenic cell death (ICD), promoting tumor killer cell infiltration, down-regulating immunosuppressive cells, and inhibiting immune checkpoints have been described. Finally, the NDDSs-mediated collaborative drug delivery systems have been introduced in detail, and the development of NDDSs-mediated CIT nanoparticles has been prospected.
Collapse
Affiliation(s)
- Xiaoxue Lang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Matson AW, Hullsiek RH, Dixon KJ, Wang S, Lindstedt AJ, Friess RR, Phung SK, Freedman TS, Felices M, Truckenbrod EN, Wu J, Miller JS, Walcheck B. Enhanced IL-15-mediated NK cell activation and proliferation by an ADAM17 function-blocking antibody involves CD16A, CD137, and accessory cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593347. [PMID: 38798522 PMCID: PMC11118905 DOI: 10.1101/2024.05.09.593347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background NK cells are being extensively studied as a cell therapy for cancer. Their effector functions are induced by the recognition of ligands on tumor cells and by various cytokines. IL-15 is broadly used to stimulate endogenous and adoptively transferred NK cells in cancer patients. These stimuli activate the membrane protease ADAM17, which then cleaves assorted receptors on the surface of NK cells as a negative feedback loop to limit their activation and function. We have shown that ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo . In this study, we investigated the underlying mechanism of this process. Methods PBMCs or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15 +/- an ADAM17 function-blocking antibody. Different versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab') 2 , and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A engagement on NK cells. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell anti-tumor activity. Results The ADAM17 function-blocking mAb Medi-1 markedly increased initial NK cell activation by IL-15. Using different engineered versions of the antibody revealed that the activating Fcγ receptor CD16A, a well-described ADAM17 substrate, was critical for enhancing IL-15 stimulation. Hence, Medi-1 bound to ADAM17 on NK cells can be engaged by CD16A and block its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide, phagocytosis, or dysfunction. Synergistic activity by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A + NK cells and augmented their proliferation in the presence of PBMC accessory cells. Conclusions Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the anti-tumor activity of NK cells in cancer patients. What is already known on this topic NK cell therapies are being broadly investigated to treat cancer. NK cell stimulation by IL-15 prolongs their survival in cancer patients. Various stimuli including IL-15 activate ADAM17 in NK cells, a membrane protease that regulates the cell surface density of various receptors as a negative feedback mechanism. What this study adds Treating NK cells with the ADAM17 function-blocking mAb Medi-1 markedly enhanced their activation and proliferation. Our study reveals that the Fc and Fab regions of Medi-1 function synergistically with IL-15 in NK cell activation. Medi-1 treatment augments the upregulation of CD137 by NK cells, which enhances their proliferation in the presence of PBMC accessory cells. How this study might affect research practice or policy Our study is of translational importance as Medi-1 treatment in combination with IL-15 could potentially augment the proliferation and function of endogenous or adoptively transferred NK cells in cancer patients. Graphical abstract
Collapse
|
13
|
Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS NANO 2024; 18:11503-11524. [PMID: 38629397 DOI: 10.1021/acsnano.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The limitations of conventional therapeutic treatments prevailed in the development of nanotechnology-based medical formulations, termed nanomedicine. Nanomedicine is an advanced medicine that often consists of therapeutic agent(s) embedded in biodegradable or biocompatible nanomaterial-based formulations. Among nanomedicine approaches, tablet (oral) nanomedicine is still under development. In tabletized nanomedicine, the dynamic interplay between nanoformulations and the intricate milieu of the gastrointestinal tract simulates a pivotal role, particularly accentuating the influence exerted upon the luminal, mucosal, and epithelial cells. In this work, we document the perspectives and opportunities of nanoformulations toward the development of tabletized nanomedicine. This review also unveils the notion of integrating nanomedicine within a tablet formulation, which facilitates the controlled release of drugs, biomolecules, and agent(s) from the formulation to achieve a better therapeutic response. Finally, an attempt was made to explore current trends in nanomedicine technology such as bacteriophage, probiotic, and oligonucleotide tabletized nanomedicine and the combination of nanomedicine with imaging agents, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meghana Kolli
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Sumeet Chauhan
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
14
|
Saleh RO, Jasim SA, Kadhum WR, Hjazi A, Faraz A, Abid MK, Yumashev A, Alawadi A, Aiad IAZ, Alsalamy A. Exploring the detailed role of interleukins in cancer: A comprehensive review of literature. Pathol Res Pract 2024; 257:155284. [PMID: 38663179 DOI: 10.1016/j.prp.2024.155284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 05/12/2024]
Abstract
The cancer cells that are not normal can grow into tumors, invade surrounding tissues, and travel to other parts of the body via the lymphatic or circulatory systems. Interleukins, a vital class of signaling proteins, facilitate cell-to-cell contact within the immune system. A type of non-coding RNA known as lncRNAs mediates its actions by regulating miRNA-mRNA roles (Interleukins). Because of their dual function in controlling the growth of tumors and altering the immune system's response to cancer cells, interleukins have been extensively studied concerning cancer. Understanding the complex relationships between interleukins, the immune system, the tumor microenvironment, and the components of interleukin signaling pathways that impact the miRNA-mRNA axis, including lncRNAs, has advanced significantly in cancer research. Due to the significant and all-encompassing influence of interleukins on the immune system and the development and advancement of cancers, lncRNAs play a crucial role in cancer research by modulating interleukins. Their diverse effects on immune system regulation, tumor growth encouragement, and tumor inhibition make them appealing candidates for potential cancer treatments and diagnostics. A deeper understanding of the relationship between the biology of interleukin and lncRNAs will likely result in more effective immunotherapy strategies and individualized cancer treatments.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Pharmacy Department, Al-Huda University College, Anbar, Iraq; Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq.
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq; Advanced Research Center, Kut University College, Kut, Wasit 52001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ibrahim Ahmed Zaki Aiad
- Department of Pediatrics, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
15
|
Campos GM, Américo MF, Dos Santos Freitas A, Barroso FAL, da Cruz Ferraz Dutra J, Quaresma LS, Cordeiro BF, Laguna JG, de Jesus LCL, Fontes AM, Birbrair A, Santos TM, Azevedo V. Lactococcus lactis as an Interleukin Delivery System for Prophylaxis and Treatment of Inflammatory and Autoimmune Diseases. Probiotics Antimicrob Proteins 2024; 16:352-366. [PMID: 36746838 PMCID: PMC9902259 DOI: 10.1007/s12602-023-10041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Target delivery of therapeutic agents with anti-inflammatory properties using probiotics as delivery and recombinant protein expression vehicles is a promising approach for the prevention and treatment of many diseases, such as cancer and intestinal immune disorders. Lactococcus lactis, a Lactic Acid Bacteria (LAB) widely used in the dairy industry, is one of the most important microorganisms with GRAS status for human consumption, for which biotechnological tools have already been developed to express and deliver recombinant biomolecules with anti-inflammatory properties. Cytokines, for example, are immune system communication molecules present at virtually all levels of the immune response. They are essential in cellular and humoral processes, such as hampering inflammation or adjuvating in the adaptive immune response, making them good candidates for therapeutic approaches. This review discusses the advances in the development of new therapies and prophylactic approaches using LAB to deliver/express cytokines for the treatment of inflammatory and autoimmune diseases in the future.
Collapse
Affiliation(s)
- Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andria Dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bárbara Fernandes Cordeiro
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aparecida Maria Fontes
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tulio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Uniclon Biotecnologia, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Li Y, Yang X, Jin T, Li Q, Li X, Ma L. Correlation between S100A7 and immune characteristics, methylation, tumor stemness and tumor heterogeneity in pan-cancer and its role in chemotherapy resistance in breast cancer. Aging (Albany NY) 2024; 16:5581-5600. [PMID: 38499391 PMCID: PMC11006463 DOI: 10.18632/aging.205665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To explore the relationships between S100A7 and the immune characteristics, tumor heterogeneity, and tumor stemness pan-cancer as well as the effect of S100A7 on chemotherapy sensitivity in breast cancer. METHODS TCGA-BRCA and TCGA-PANCANCER RNA-seq data and clinical follow-up survival data were collected from the University of California Santa Cruz database. Survival analyses were performed to explore the relationship between S100A7 expression and pan-cancer prognosis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and Gene Set Enrichment Analysis (GSEA) were used to identify the potential pathways related to the differentially expressed genes in breast cancer. Spearman's and Wilcoxon's tests were used to investigate the relationships between S100A7 expression and immune characteristics, methylation, tumor heterogeneity, and tumor stemness. The potential functions of S100A7 and its influence on chemotherapy sensitivity in breast cancer were elucidated using reverse transcription-quantitative PCR, Cell Counting Kit-8 (CCK-8) assay, Transwell assay, and wound healing assay. RESULTS S100A7 was highly expressed in most types of tumors and was associated with poor prognosis. S100A7 was closely associated with immunomodulators, immune checkpoint and immune cell infiltration. Further, S100A7 was related to tumor mutational burden, tumor heterogeneity, methylation and tumor stemness in breast cancer. High S100A7 expression was associated with the invasiveness, migration, proliferation and chemotherapy resistance of breast cancer cells in vitro experiments. CONCLUSION High S100A7 expression was related with poor prognosis and chemotherapy resistance in breast cancer, making it a potential immune and chemotherapy resistance biomarker.
Collapse
Affiliation(s)
- Yilun Li
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolu Yang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Jin
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Qiuli Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Xiaolong Li
- Department of Breast Disease Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
19
|
Maia A, Tarannum M, Lérias JR, Piccinelli S, Borrego LM, Maeurer M, Romee R, Castillo-Martin M. Building a Better Defense: Expanding and Improving Natural Killer Cells for Adoptive Cell Therapy. Cells 2024; 13:451. [PMID: 38474415 DOI: 10.3390/cells13050451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Natural killer (NK) cells have gained attention as a promising adoptive cell therapy platform for their potential to improve cancer treatments. NK cells offer distinct advantages over T-cells, including major histocompatibility complex class I (MHC-I)-independent tumor recognition and low risk of toxicity, even in an allogeneic setting. Despite this tremendous potential, challenges persist, such as limited in vivo persistence, reduced tumor infiltration, and low absolute NK cell numbers. This review outlines several strategies aiming to overcome these challenges. The developed strategies include optimizing NK cell expansion methods and improving NK cell antitumor responses by cytokine stimulation and genetic manipulations. Using K562 cells expressing membrane IL-15 or IL-21 with or without additional activating ligands like 4-1BBL allows "massive" NK cell expansion and makes multiple cell dosing and "off-the-shelf" efforts feasible. Further improvements in NK cell function can be reached by inducing memory-like NK cells, developing chimeric antigen receptor (CAR)-NK cells, or isolating NK-cell-based tumor-infiltrating lymphocytes (TILs). Memory-like NK cells demonstrate higher in vivo persistence and cytotoxicity, with early clinical trials demonstrating safety and promising efficacy. Recent trials using CAR-NK cells have also demonstrated a lack of any major toxicity, including cytokine release syndrome, and, yet, promising clinical activity. Recent data support that the presence of TIL-NK cells is associated with improved overall patient survival in different types of solid tumors such as head and neck, colorectal, breast, and gastric carcinomas, among the most significant. In conclusion, this review presents insights into the diverse strategies available for NK cell expansion, including the roles played by various cytokines, feeder cells, and culture material in influencing the activation phenotype, telomere length, and cytotoxic potential of expanded NK cells. Notably, genetically modified K562 cells have demonstrated significant efficacy in promoting NK cell expansion. Furthermore, culturing NK cells with IL-2 and IL-15 has been shown to improve expansion rates, while the presence of IL-12 and IL-21 has been linked to enhanced cytotoxic function. Overall, this review provides an overview of NK cell expansion methodologies, highlighting the current landscape of clinical trials and the key advancements to enhance NK-cell-based adoptive cell therapy.
Collapse
Affiliation(s)
- Andreia Maia
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- NOVA Medical School, NOVA University of Lisbon, 1099-085 Lisbon, Portugal
| | - Mubin Tarannum
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joana R Lérias
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Sara Piccinelli
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Luis Miguel Borrego
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas (FCM), NOVA University of Lisbon, 1099-085 Lisbon, Portugal
- Immunoallergy Department, Hospital da Luz, 1600-209 Lisbon, Portugal
| | - Markus Maeurer
- ImmunoTherapy/ImmunoSurgery, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- I Medical Clinic, University of Mainz, 55131 Mainz, Germany
| | - Rizwan Romee
- NK Cell Gene Manipulation and Therapy Laboratory, Division of Cellular Therapy and Stem Cell Transplant, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mireia Castillo-Martin
- Molecular and Experimental Pathology Laboratory, Champalimaud Centre for the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Pathology Service, Champalimaud Clinical Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
20
|
Karami Fath M, Bagherzadeh Torbati SM, Saqagandomabadi V, Yousefi Afshar O, Khalilzad M, Abedi S, Moliani A, Daneshdoust D, Barati G. The therapeutic effect of MSCs and their extracellular vesicles on neuroblastoma. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:51-60. [PMID: 38373516 DOI: 10.1016/j.pbiomolbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Neuroblastoma is a common inflammatory-related cancer during infancy. Standard treatment modalities including surgical interventions, high-dose chemotherapy, radiotherapy, and immunotherapy are not able to increase survival rate and reduce tumor relapse in high-risk patients. Mesenchymal stem cells (MSCs) are known for their tumor-targeting and immunomodulating properties. MSCs could be engineered to express anticancer agents (i.e., growth factors, cytokines, pro-apoptotic agents) or deliver oncolytic viruses in the tumor microenvironment. As many functions of MSCs are mediated through their secretome, researchers have tried to use extracellular vesicles (EVs) from MSCs for targeted therapy of neuroblastoma. Here, we reviewed the studies to figure out whether the use of MSCs could be worthwhile in neuroblastoma therapy or not. Native MSCs have shown a promoting or inhibiting role in cancers including neuroblastoma. Therefore, MSCs are proposed as a vehicle to deliver anticancer agents such as oncolytic viruses to the neuroblastoma tumor microenvironment. Although modified MSCs or their EVs have been shown to suppress the tumorigenesis of neuroblastoma, further pre-clinical and clinical studies are required to come to a conclusion.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Vahid Saqagandomabadi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | | | - Mohammad Khalilzad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Abedi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Afshin Moliani
- Isfahan Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danyal Daneshdoust
- Faculty of Medicine, Babol University of Medical Sciences, Mazandaran, Iran
| | | |
Collapse
|
21
|
Kaur S, Saini AK, Tuli HS, Garg N, Joshi H, Varol M, Kaur J, Chhillar AK, Saini RV. Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1311-1326. [PMID: 37695334 DOI: 10.1007/s00210-023-02699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hardeep Singh Tuli
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Nancy Garg
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Anil K Chhillar
- Centre for Biotechnology, M.D. University, Rohtak, Haryana, 124 001, India
| | - Reena V Saini
- Department of Bioscience and Technology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
- Central Research Cell, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| |
Collapse
|
22
|
Liu Z, Lei W, Wang H, Liu X, Fu R. Challenges and strategies associated with CAR-T cell therapy in blood malignancies. Exp Hematol Oncol 2024; 13:22. [PMID: 38402232 PMCID: PMC10893672 DOI: 10.1186/s40164-024-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Cellular immunotherapy, particularly CAR-T cells, has shown potential in the improvement of outcomes in patients with refractory and recurrent malignancies of the blood. However, achieving sustainable long-term complete remission for blood cancer remains a challenge, with resistance and relapse being expected outcomes for many patients. Although many studies have attempted to clarify the mechanisms of CAR-T cell therapy failure, the mechanism remains unclear. In this article, we discuss and describe the current state of knowledge regarding these factors, which include elements that influence the CAR-T cell, cancer cells as a whole, and the microenvironment surrounding the tumor. In addition, we propose prospective approaches to overcome these obstacles in an effort to decrease recurrence rates and extend patient survival subsequent to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| | - Wenhui Lei
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
- Department of Nephrology, Lishui Municipal Central Hospital, Lishui, Zhejiang, 323000, People's Republic of China
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin, 300052, PR China.
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone46Control, Tianjin, 300052, P. R. China.
| |
Collapse
|
23
|
Zhou Y, Liu X, Gao W, Luo X, Lv J, Wang Y, Liu D. The role of intestinal flora on tumor immunotherapy: recent progress and treatment implications. Heliyon 2024; 10:e23919. [PMID: 38223735 PMCID: PMC10784319 DOI: 10.1016/j.heliyon.2023.e23919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint inhibitors, has emerged as a promising approach for treating malignant tumors. The gut, housing approximately 70 % of the body's immune cells, is abundantly populated with gut bacteria that actively interact with the host's immune system. Different bacterial species within the intestinal flora are in a delicate equilibrium and mutually regulate each other. However, when this balance is disrupted, pathogenic microorganisms can dominate, adversely affecting the host's metabolism and immunity, ultimately promoting the development of disease. Emerging researches highlight the potential of interventions such as fecal microflora transplantation (FMT) to improve antitumor immune response and reduce the toxicity of immunotherapy. These remarkable findings suggest the major role of intestinal flora in the development of cancer immunotherapy and led us to the hypothesis that intestinal flora transplantation may be a new breakthrough in modifying immunotherapy side effects.
Collapse
Affiliation(s)
- Yimin Zhou
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xiangdong Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Gao
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Xin Luo
- School of Basic Medical Sciences, Shandong University, Jinan 250011, China
| | - Junying Lv
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
24
|
Raghani NR, Chorawala MR, Mahadik M, Patel RB, Prajapati BG, Parekh PS. Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. Med Oncol 2024; 41:51. [PMID: 38195781 DOI: 10.1007/s12032-023-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/02/2023] [Indexed: 01/11/2024]
Abstract
Cancer, characterized by the uncontrolled proliferation of aberrant cells, underscores the imperative for innovative therapeutic approaches. Immunotherapy has emerged as a pivotal constituent in cancer treatment, offering improved prognostic outcomes for a substantial patient cohort. Noteworthy for its precision, immunotherapy encompasses strategies such as adoptive cell therapy and checkpoint inhibitors, orchestrating the immune system to recognize and selectively target malignant cells. Exploiting the specificity of the immune response renders immunotherapy efficacious, as it selectively targets the body's immune milieu. Diverse mechanisms underlie cancer immunotherapies, leading to distinct toxicity profiles compared to conventional treatments. A remarkable clinical stride in the anticancer resources is immunotherapy. Remarkably, certain recalcitrant cancers like skin malignancies exhibit resistance to radiation or chemotherapy, yet respond favorably to immunotherapeutic interventions. Notably, combination therapies involving chemotherapy and immunotherapy have exhibited synergistic effects, enhancing overall therapeutic efficacy. Understanding the pivotal role of immunotherapy elucidates its complementary value, bolstering the therapeutic landscape. In this review, we elucidate the taxonomy of cancer immunotherapy, encompassing adoptive cell therapy and checkpoint inhibitors, while scrutinizing their distinct adverse event profiles. Furthermore, we expound on the unprecedented potential of immunogenic vaccines to bolster the anticancer immune response. This comprehensive analysis underscores the significance of immunotherapy in modern oncology, unveiling novel prospects for tailored therapeutic regimens.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mayuresh Mahadik
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA, 52242, USA
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
| | - Priyajeet S Parekh
- A V Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
25
|
Crimini E, Boscolo Bielo L, Berton Giachetti PPM, Pellizzari G, Antonarelli G, Taurelli Salimbeni B, Repetto M, Belli C, Curigliano G. Beyond PD(L)-1 Blockade in Microsatellite-Instable Cancers: Current Landscape of Immune Co-Inhibitory Receptor Targeting. Cancers (Basel) 2024; 16:281. [PMID: 38254772 PMCID: PMC10813411 DOI: 10.3390/cancers16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
High microsatellite instability (MSI-H) derives from genomic hypermutability due to deficient mismatch repair function. Colorectal (CRC) and endometrial cancers (EC) are the tumor types that more often present MSI-H. Anti-PD(L)-1 antibodies have been demonstrated to be agnostically effective in patients with MSI-H cancer, but 50-60% of them do not respond to single-agent treatment, highlighting the necessity of expanding their treatment opportunities. Ipilimumab (anti-CTLA4) is the only immune checkpoint inhibitor (ICI) non-targeting PD(L)-1 that has been approved so far by the FDA for MSI-H cancer, namely, CRC in combination with nivolumab. Anti-TIM3 antibody LY3321367 showed interesting clinical activity in combination with anti-PDL-1 antibody in patients with MSI-H cancer not previously treated with anti-PD(L)-1. In contrast, no clinical evidence is available for anti-LAG3, anti-TIGIT, anti-BTLA, anti-ICOS and anti-IDO1 antibodies in MSI-H cancers, but clinical trials are ongoing. Other immunotherapeutic strategies under study for MSI-H cancers include vaccines, systemic immunomodulators, STING agonists, PKM2 activators, T-cell immunotherapy, LAIR-1 immunosuppression reversal, IL5 superagonists, oncolytic viruses and IL12 partial agonists. In conclusion, several combination therapies of ICIs and novel strategies are emerging and may revolutionize the treatment paradigm of MSI-H patients in the future. A huge effort will be necessary to find reliable immune biomarkers to personalize therapeutical decisions.
Collapse
Affiliation(s)
- Edoardo Crimini
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luca Boscolo Bielo
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Pier Paolo Maria Berton Giachetti
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gloria Pellizzari
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gabriele Antonarelli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carmen Belli
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy (G.P.); (G.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
26
|
Rogovskii V. Cancer and Autoimmune Diseases as Two Sides of Chronic Inflammation and the Method of Therapy. Curr Cancer Drug Targets 2024; 24:1089-1103. [PMID: 38288812 DOI: 10.2174/0115680096282480240105071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 09/20/2024]
Abstract
Chronic inflammation is associated with a prolonged increase in various inflammatory factors. According to clinical data, it can be linked with both cancer and autoimmune diseases in the same patients. This raises the critical question of how chronic inflammation relates to seemingly opposing diseases - tumors, in which there is immunosuppression, and autoimmune diseases, in which there is over-activation of the immune system. In this review, we consider chronic inflammation as a prerequisite for both immune suppression and an increased likelihood of autoimmune damage. We also discuss potential disease-modifying therapies targeting chronic inflammation, which can be helpful for both cancer and autoimmunity. On the one hand, pro-inflammatory factors persisting in the areas of chronic inflammation stimulate the production of anti-inflammatory factors due to a negative feedback loop, eliciting immune suppression. On the other hand, chronic inflammation can bring the baseline immunity closer to the threshold level required for triggering an autoimmune response using the bystander activation of immune cells. Focusing on the role of chronic inflammation in cancer and autoimmune diseases may open prospects for more intensive drug discovery for chronic inflammation.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
27
|
Wang J, Zhang J, Zhang Q, Zhang W, Zhang Q, Jin G, Liu F. TS-2021, a third-generation oncolytic adenovirus that carried Ki67 promoter, TGF-β2 5'UTR, and IL-15 against experimental glioblastoma. J Med Virol 2024; 96:e29335. [PMID: 38149454 DOI: 10.1002/jmv.29335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Oncolytic virotherapy is a promising therapeutic approach for glioblastoma (GBM) treatment, although the outcomes are partially satisfactory. Hence, more effective strategies are needed urgently to modify therapeutic viruses to enhance their efficiency and safety in killing tumor cells and improve the survival rate of GBM patients. This study generated a new-generation oncolytic adenovirus Ad5 KT-E1A-IL-15 (TS-2021) and evaluated its antitumor efficacy. Ex vivo analyses revealed Ki67 and TGF-β2 co-localized in GBM cells. In addition, TS-2021 selectively replicated in GBM cells, which was dependent on the expression of Ki67 and TGF-β2. The immunocompetent mice model of GBM demonstrated the in vivo efficacy of TS-2021 by inhibiting tumor growth and improving survival proficiently. Notably, TS-2021 effectively reduced MMP3 expression by inactivating the MKK4/JNK pathway, thereby reducing tumor invasiveness. Altogether, the findings of the present study highlight that TS-2021 can effectively target GBM cells expressing high levels of Ki67 and TGF-β2, exerting potent antitumor effects. Additionally, it can improve efficacy and suppress tumor invasiveness by inhibiting the MKK4/JNK/MMP3 pathway. Thus our study demonstrates the efficiency of the novel TS-2021 in the mouse model and provides a potential therapeutic option for patients with GBM.
Collapse
Affiliation(s)
- Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Wenxin Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qi Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | - Guishan Jin
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
- Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
28
|
Wu WC, Shiu C, Tong TK, Leung SO, Hui CW. Suppression of NK Cell Activation by JAK3 Inhibition: Implication in the Treatment of Autoimmune Diseases. J Immunol Res 2023; 2023:8924603. [PMID: 38106519 PMCID: PMC10723930 DOI: 10.1155/2023/8924603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation, leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.
Collapse
Affiliation(s)
- Wai Chung Wu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Carol Shiu
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Tak Keung Tong
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Shui On Leung
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| | - Chin Wai Hui
- SinoMab BioScience Limited, Units 303 and 305 to 307, No. 15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
29
|
Snyder KM, Dixon KJ, Davis Z, Hosking M, Hart G, Khaw M, Matson A, Bjordahl R, Hancock B, Shirinbak S, Miller JS, Valamehr B, Wu J, Walcheck B. iPSC-derived natural killer cells expressing the FcγR fusion CD64/16A can be armed with antibodies for multitumor antigen targeting. J Immunother Cancer 2023; 11:e007280. [PMID: 38056893 PMCID: PMC10711901 DOI: 10.1136/jitc-2023-007280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Antibody therapies can direct natural killer (NK) cells to tumor cells, tumor-associated cells, and suppressive immune cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This antigen-specific effector function of human NK cells is mediated by the IgG Fc receptor CD16A (FcγRIIIA). Preclinical and clinical studies indicate that increasing the binding affinity and avidity of CD16A for antibodies improves the therapeutic potential of ADCC. CD64 (FcγRI), expressed by myeloid cells but not NK cells, is the only high affinity IgG Fc receptor and is uniquely capable of stably binding to free monomeric IgG as a physiological function. We have reported on the generation of the FcγR fusion CD64/16A, consisting of the extracellular region of CD64 and the transmembrane and cytoplasmic regions from CD16A, retaining its signaling and cellular activity. Here, we generated induced pluripotent stem cell (iPSC)-derived NK (iNK) cells expressing CD64/16A as a potential adoptive NK cell therapy for increased ADCC potency. METHODS iPSCs were engineered to express CD64/16A as well as an interleukin (IL)-15/IL-15Rα fusion (IL-15RF) protein and differentiated into iNK cells. iNK cells and peripheral blood NK cells were expanded using irradiated K562-mbIL21-41BBL feeder cells and examined. NK cells, ovarian tumor cell lines, and therapeutic monoclonal antibodies were used to assess ADCC in vitro, performed by a DELFIA EuTDA assay or in real-time by IncuCyte assays, and in vivo. For the latter, we developed a xenograft mouse model with high circulating levels of human IgG for more physiological relevance. RESULTS We demonstrate that (1) iNK-CD64/16A cells after expansion or thaw from cryopreservation can be coupled to therapeutic antibodies, creating armed iNK cells; (2) antibody-armed iNK-CD64/16A cells can be redirected by added antibodies to target new tumor antigens, highlighting additional potential of these cells; (3) cytokine-autonomous activity by iNK-CD64/16A cells engineered to express IL-15RF; and that (4) antibody-armed iNK-CD64/16A cells thawed from cryopreservation are capable of sustained and robust ADCC in vitro and in vivo, as determined by using a modified tumor xenograft model with high levels of competing human IgG. CONCLUSIONS iNK cells expressing CD64/16A provide an off-the-shelf multiantigen targeting platform to address tumor heterogeneity and mitigate antigen escape.
Collapse
Affiliation(s)
- Kristin M Snyder
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Zachary Davis
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Geoffrey Hart
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Khaw
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anders Matson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | | | | | | | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
30
|
Bun A, Nagahashi M, Kuroiwa M, Komatsu M, Miyoshi Y. Baseline interleukin-6 is a prognostic factor for patients with metastatic breast cancer treated with eribulin. Breast Cancer Res Treat 2023; 202:575-583. [PMID: 37733188 PMCID: PMC10564839 DOI: 10.1007/s10549-023-07086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE Eribulin is a unique anti-cancer drug which can improve overall survival (OS) of patients with metastatic breast cancer (MBC), probably by modulating the tumor immune microenvironment. The aim of this study was to investigate the clinical significance of serum levels of immune-related and inflammatory cytokines in patients treated with eribulin. Furthermore, we investigated the association between cytokines and immune cells, such as myeloid-derived suppressor cells (MDSCs) and cytotoxic and regulatory T cells, to explore how these cytokines might affect the immune microenvironment. METHODS Sixty-eight patients with MBC treated with eribulin were recruited for this retrospective study. The relationship of cytokines, including interleukin (IL)-6, to progression-free survival and OS was examined. CD4+ and CD8+ lymphocyte, MDSCs and regulatory T cell levels were determined in the blood by flow cytometry analysis. RESULTS In our cohort, patients with high IL-6 at baseline had shorter progression-free survival and OS compared with those with low IL-6 (p = 0.0017 and p = 0.0012, respectively). Univariable and multivariable analyses revealed that baseline IL-6 was an independent prognostic factor for OS (p = 0.0058). Importantly, CD8+ lymphocytes were significantly lower and MDSCs were significantly higher in patients with high IL-6, compared to those with low IL-6. CONCLUSION Baseline IL-6 is an important prognostic factor in patients with MBC treated with eribulin. Our results show that high IL-6 is associated with higher levels of MDSCs which suppress anti-tumor immunity, such as CD8+ cells. It appears that eribulin is not particularly effective in patients with high IL-6 due to a poor tumor immune microenvironment.
Collapse
Affiliation(s)
- Ayako Bun
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Mamiko Kuroiwa
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Miki Komatsu
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
31
|
Fantini M, Arlen PM, Tsang KY. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy. Front Immunol 2023; 14:1275904. [PMID: 38077389 PMCID: PMC10704476 DOI: 10.3389/fimmu.2023.1275904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells are cellular components of the innate immune system that can recognize and suppress the proliferation of cancer cells. NK cells can eliminate cancer cells through direct lysis, by secreting perforin and granzymes, or through antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves the binding of the Fc gamma receptor IIIa (CD16), present on NK cells, to the constant region of an antibody already bound to cancer cells. Cancer cells use several mechanisms to evade antitumor activity of NK cells, including the accumulation of inhibitory cytokines, recruitment and expansion of immune suppressor cells such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), modulation of ligands for NK cells receptors. Several strategies have been developed to enhance the antitumor activity of NK cells with the goal of overcoming cancer cells resistance to NK cells. The three main strategies to engineer and boost NK cells cytotoxicity include boosting NK cells with modulatory cytokines, adoptive NK cell therapy, and the employment of engineered NK cells to enhance antibody-based immunotherapy. Although the first two strategies improved the efficacy of NK cell-based therapy, there are still some limitations, including immune-related adverse events, induction of immune-suppressive cells and further cancer resistance to NK cell killing. One strategy to overcome these issues is the combination of monoclonal antibodies (mAbs) that mediate ADCC and engineered NK cells with potentiated anti-cancer activity. The advantage of using mAbs with ADCC activity is that they can activate NK cells, but also favor the accumulation of immune effector cells to the tumor microenvironment (TME). Several clinical trials reported that combining engineered NK cells with mAbs with ADCC activity can result in a superior clinical response compared to mAbs alone. Next generation of clinical trials, employing engineered NK cells with mAbs with higher affinity for CD16 expressed on NK cells, will provide more effective and higher-quality treatments to cancer patients.
Collapse
|
32
|
Kleef R, Dank M, Herold M, Agoston EI, Lohinszky J, Martinek E, Herold Z, Szasz AM. Comparison of the effectiveness of integrative immunomodulatory treatments and conventional therapies on the survival of selected gastrointestinal cancer patients. Sci Rep 2023; 13:20360. [PMID: 37990076 PMCID: PMC10663566 DOI: 10.1038/s41598-023-47802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
In the last decade, the use of immunomodulating treatments (IMT) at integrative oncology providers (IOP) increased. IMTs are used to modulate the tumor microenvironment, which might lead to increased response-to-treatment, and the indication of immune checkpoint inhibitors might also be widened. The efficacy and safety of IMTs in advanced/metastatic gastrointestinal cancers were compared with conventional chemo(radio)therapy (CT). 21 colorectal- (CRC), 14 pancreatic- (PC), 5 cholangiocellular- (CCC), 5 gastric- (GC) and 4 esophageal cancer (EC) patients received IMT. IMT and CT were compared in CRC and PC. CT was administered at an academic oncology center. After the initiation of IMT, a median survival of ~ 20 (CRC, PC and EC) and ~ 10 months (CCC and GC) was observed. Of the IMTs, locoregional modulated electro-hyperthermia had the most positive effect on overall survival (HR: 0.3055; P = 0.0260), while fever-inducing interleukin-2, and low-dose ipilimumab showed a positive tendency. IMT was superior to CT in PC (HR: 0.1974; P = 0.0013), while modest effect was detected in CRC (HR: 0.7797; P = 0.4710). When the whole study population was analyzed, IMTs showed minimal effect on patient survival, still CT had the greatest effect if introduced as early as possible (HR: 0.0624; P < 0.0001). The integrative IMTs in the presented form have mild impact on gastrointestinal cancer patients' survival, however, we observed its benefit in PC, which warrants further investigations.
Collapse
Affiliation(s)
- Ralf Kleef
- Dr. Kleef Medical Center, 1030, Vienna, Austria
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emese Irma Agoston
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, 1082, Hungary
| | - Julia Lohinszky
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emoke Martinek
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary.
| |
Collapse
|
33
|
Tang L, Pan S, Wei X, Xu X, Wei Q. Arming CAR-T cells with cytokines and more: Innovations in the fourth-generation CAR-T development. Mol Ther 2023; 31:3146-3162. [PMID: 37803832 PMCID: PMC10638038 DOI: 10.1016/j.ymthe.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) therapy has shown great potential in tumor treatment. However, many factors impair the efficacy of CAR-T therapy, such as antigenic heterogeneity and loss, limited potency and persistence, poor infiltration capacity, and a suppressive tumor microenvironment. To overcome these obstacles, recent studies have reported a new generation of CAR-T cells expressing cytokines called armored CAR-T, TRUCK-T, or the fourth-generation CAR-T. Here we summarize the strategies of arming CAR-T cells with natural or synthetic cytokine signals to enhance their anti-tumor capacity. Moreover, we summarize the advances in CAR-T cells expressing non-cytokine proteins, such as membrane receptors, antibodies, enzymes, co-stimulatory molecules, and transcriptional factors. Furthermore, we discuss several prospective strategies for armored CAR-T therapy development. Altogether, these ideas may provide new insights for the innovations of the next-generation CAR-T therapy.
Collapse
Affiliation(s)
- Lin Tang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sheng Pan
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Qiang Wei
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
34
|
Mansour AG, Teng KY, Li Z, Zhu Z, Chen H, Tian L, Ali A, Zhang J, Lu T, Ma S, Lin CM, Caligiuri MA, Yu J. Off-the-shelf CAR-engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia. Blood Adv 2023; 7:6225-6239. [PMID: 37379267 PMCID: PMC10582841 DOI: 10.1182/bloodadvances.2022007405] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
The majority of patients with acute myeloid leukemia (AML) succumb to the disease or its complications, especially among older patients. Natural killer (NK) cells have been shown to have antileukemic activity in patients with AML; however, to our knowledge, primary NK cells armed with a chimeric antigen receptor (CAR) targeting antigens associated with AML as an "off-the-shelf" product for disease control have not been explored. We developed frozen, off-the-shelf allogeneic human NK cells engineered with a CAR recognizing FLT3 and secreting soluble interleukin-15 (IL-15) (FLT3 CAR_sIL-15 NK) to improve in vivo NK cell persistence and T-cell activation. FLT3 CAR_sIL-15 NK cells had higher cytotoxicity and interferon gamma secretion against FLT3+ AML cell lines when compared with activated NK cells lacking an FLT3 CAR or soluble IL-15. Frozen and thawed allogeneic FLT3 CAR_sIL-15 NK cells prolonged survival of both the MOLM-13 AML model as well as an orthotopic patient-derived xenograft AML model when compared with control NK cells. FLT3 CAR_sIL-15 NK cells showed no cytotoxicity against healthy blood mononuclear cells or hematopoietic stem cells. Collectively, our data suggest that FLT3 is an AML-associated antigen that can be targeted by frozen, allogeneic, off-the-shelf FLT3 CAR_sIL-15 NK cells that may provide a novel approach for the treatment of AML.
Collapse
Affiliation(s)
- Anthony G. Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Zhiyao Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Zheng Zhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Hanyu Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Aliya Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA
| | - Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Chih-Min Lin
- Department of Cellular Immunotherapy GMP Manufacturing, City of Hope National Medical Center, Los Angeles, CA
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- President, City of Hope National Medical Center, Los Angeles, CA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
35
|
Zhao N, Jiang A, Shang X, Zhao F, Wang R, Fu X, Ruan Z, Liang X, Tian T, Yao Y, Li C. Construction and Evaluation of Clinical Prediction Model for Immunotherapy-related Adverse Events and Clinical Benefit in Cancer Patients Receiving Immune Checkpoint Inhibitors Based on Serum Cytokine Levels. J Immunother 2023; 46:310-322. [PMID: 37335173 PMCID: PMC10473032 DOI: 10.1097/cji.0000000000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 06/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of cancer therapy. This study aimed to develop novel risk classifiers to predict the risk of immune-related adverse events (irAEs) and the probability of clinical benefits. Patients with cancer who received ICIs from the First Affiliated Hospital of Xi 'an Jiaotong University from November 2020 to October 2022 were recruited and followed up. Logistic regression analyses were performed to identify independent predictive factors for irAEs and clinical response. Two nomograms were developed to predict the irAEs and clinical responses of these individuals, with a receiver operating characteristic curve to assess their predictive ability. Decision curve analysis was performed to estimate the clinical utility of the nomogram. This study included 583 patients with cancer. Among them, 111 (19.0%) developed irAEs. Duration of treatment (DOT)>3 cycles, hepatic-metastases, IL2>2.225 pg/mL, and IL8>7.39 pg/mL were correlated with higher irAEs risk. A total of 347 patients were included in the final efficacy analysis, with an overall clinical benefit rate of 39.7%. DOT>3 cycles, nonhepatic-metastases, and irAEs and IL8>7.39 pg/mL were independent predictive factors of clinical benefit. Ultimately, 2 nomograms were successfully established to predict the probability of irAEs and their clinical benefits. Ultimately, 2 nomograms were successfully established to predict the probability of irAEs and clinical benefits. The receiver operating characteristic curves yielded acceptable nomogram performance. Calibration curves and decision curve analysis supported the hypothesis that nomograms could provide more significant net clinical benefits to these patients. Specific baseline plasma cytokines were closely correlated with irAEs and clinical responses in these individuals.
Collapse
|
36
|
Sivonen M, Sirviö KA, Wojciechowski S, Kailaanmäki A, Kaipainen S, Bailey A, Villalba M, Kekarainen T. Cytokines impact natural killer cell phenotype and functionality against glioblastoma in vitro. Front Immunol 2023; 14:1227064. [PMID: 37841273 PMCID: PMC10569479 DOI: 10.3389/fimmu.2023.1227064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Natural killer (NK) cells are a part of the innate immune system and first-line defense against cancer. Since they possess natural mechanisms to recognize and kill tumor cells, NK cells are considered as a potential option for an off-the-shelf allogeneic cell-based immunotherapy. Here, our objective was to identify the optimal cytokine-based, feeder-free, activation and expansion protocol for cytotoxic NK cells against glioblastoma in vitro. Methods NK cells were enriched from human peripheral blood and expanded for 16 days with different activation and cytokine combinations. The expansion conditions were evaluated based on NK cell viability, functionality, expansion rate and purity. The cytotoxicity and degranulation of the expanded NK cells were measured in vitro from co‑cultures with the glioma cell lines U‑87 MG, U‑87 MG EGFR vIII, LN-229, U-118 and DK-MG. The best expansion protocols were selected from ultimately 39 different conditions: three magnetic cell‑selection steps (Depletion of CD3+ cells, enrichment of CD56+ cells, and depletion of CD3+ cells followed by enrichment of CD56+ cells); four activation protocols (continuous, pre-activation, re-activation, and boost); and four cytokine combinations (IL-2/15, IL‑21/15, IL‑27/18/15 and IL-12/18/15). Results The expansion rates varied between 2-50-fold, depending on the donor and the expansion conditions. The best expansion rate and purity were gained with sequential selection (Depletion of CD3+ cells and enrichment of CD56+ cells) from the starting material and pre-activation with IL‑12/18/15 cytokines, which are known to produce cytokine-induced memory-like NK cells. The cytotoxicity of these memory-like NK cells was enhanced with re-activation, diminishing the donor variation. The most cytotoxic NK cells were produced when cells were boosted at the end of the expansion with IL-12/18/15 or IL-21/15. Conclusion According to our findings the ex vivo proliferation capacity and functionality of NK cells is affected by multiple factors, such as the donor, composition of starting material, cytokine combination and the activation protocol. The cytokines modified the NK cells' phenotype and functionality, which was evident in their reactivity against the glioma cell lines. To our knowledge, this is the first comprehensive comparative study performed to this extent, and these findings could be used for upscaling clinical NK cell manufacturing.
Collapse
Affiliation(s)
- Minna Sivonen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
- A.I. Virtanen Institute, Biotechnology and Molecular Medicine Unit, University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Satu Kaipainen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Aubrey Bailey
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Martin Villalba
- IRMB, University of Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
37
|
Samadi M, Kamrani A, Nasiri H, Shomali N, Heris JA, Shahabi P, Ghahremanzadeh K, Mohammadinasab R, Sadeghi M, Sadeghvand S, Shotorbani SS, Akbari M. Cancer immunotherapy focusing on the role of interleukins: A comprehensive and updated study. Pathol Res Pract 2023; 249:154732. [PMID: 37567033 DOI: 10.1016/j.prp.2023.154732] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
Cytokines bind to specific receptors on target cells to activate intracellular signaling pathways that control diverse cellular functions, such as proliferation, differentiation, migration, and death. They are essential for the growth, activation, and operation of immune cells and the control of immunological reactions to pathogens, cancer cells, and other dangers. Based on their structural and functional properties, cytokines can be roughly categorized into different families, such as the tumor necrosis factor (TNF) family, interleukins, interferons, and chemokines. Leukocytes produce interleukins, a class of cytokines that have essential functions in coordinating and communicating with immune cells. Cancer, inflammation, and autoimmunity are immune-related disorders brought on by dysregulation of cytokine production or signaling. Understanding cytokines' biology to create novel diagnostic, prognostic, and therapeutic methods for various immune-related illnesses is crucial. Different immune cells, including T cells, B cells, macrophages, and dendritic cells, and other cells in the body, including epithelial cells and fibroblasts, generate and secrete interleukins. The present study's main aim is to fully understand interleukins' roles in cancer development and identify new therapeutic targets and strategies for cancer treatment.
Collapse
Affiliation(s)
- Mahmoud Samadi
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Stem Cell and Regenerative Medicine Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Lu Q, Liu T, Han Z, Zhao J, Fan X, Wang H, Song J, Ye H, Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J Control Release 2023; 361:604-620. [PMID: 37579974 DOI: 10.1016/j.jconrel.2023.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zeyu Han
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich 8092, Switzerland.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
39
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Franceschi C, Vedunova M, Ivanchenko M. Small immunological clocks identified by deep learning and gradient boosting. Front Immunol 2023; 14:1177611. [PMID: 37691946 PMCID: PMC10485620 DOI: 10.3389/fimmu.2023.1177611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Background The aging process affects all systems of the human body, and the observed increase in inflammatory components affecting the immune system in old age can lead to the development of age-associated diseases and systemic inflammation. Results We propose a small clock model SImAge based on a limited number of immunological biomarkers. To regress the chronological age from cytokine data, we first use a baseline Elastic Net model, gradient-boosted decision trees models, and several deep neural network architectures. For the full dataset of 46 immunological parameters, DANet, SAINT, FT-Transformer and TabNet models showed the best results for the test dataset. Dimensionality reduction of these models with SHAP values revealed the 10 most age-associated immunological parameters, taken to construct the SImAge small immunological clock. The best result of the SImAge model shown by the FT-Transformer deep neural network model has mean absolute error of 6.94 years and Pearson ρ = 0.939 on the independent test dataset. Explainable artificial intelligence methods allow for explaining the model solution for each individual participant. Conclusions We developed an approach to construct a model of immunological age based on just 10 immunological parameters, coined SImAge, for which the FT-Transformer deep neural network model had proved to be the best choice. The model shows competitive results compared to the published studies on immunological profiles, and takes a smaller number of features as an input. Neural network architectures outperformed gradient-boosted decision trees, and can be recommended in the further analysis of immunological profiles.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Research Center for Trusted Artificial Intelligence, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Igor Yusipov
- Research Center for Trusted Artificial Intelligence, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Neuroscience, Lobachevsky State University, Nizhny Novgorod, Russia
| | | | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| |
Collapse
|
40
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
41
|
Pouleau B, Estoppey C, Suere P, Nallet E, Laurendon A, Monney T, Pais Ferreira D, Drake A, Carretero-Iglesia L, Macoin J, Berret J, Pihlgren M, Doucey MA, Gudi GS, Menon V, Udupa V, Maiti A, Borthakur G, Srivastava A, Blein S, Mbow ML, Matthes T, Kaya Z, Edwards CM, Edwards JR, Menoret E, Kervoëlen C, Pellat-Deceunynck C, Moreau P, Zhukovsky E, Perro M, Chimen M. Preclinical characterization of ISB 1342, a CD38 × CD3 T-cell engager for relapsed/refractory multiple myeloma. Blood 2023; 142:260-273. [PMID: 37192303 PMCID: PMC10644056 DOI: 10.1182/blood.2022019451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Although treatment of multiple myeloma (MM) with daratumumab significantly extends the patient's lifespan, resistance to therapy is inevitable. ISB 1342 was designed to target MM cells from patients with relapsed/refractory MM (r/r MM) displaying lower sensitivity to daratumumab. ISB 1342 is a bispecific antibody with a high-affinity Fab binding to CD38 on tumor cells on a different epitope than daratumumab and a detuned scFv domain affinity binding to CD3ε on T cells, to mitigate the risk of life-threatening cytokine release syndrome, using the Bispecific Engagement by Antibodies based on the TCR (BEAT) platform. In vitro, ISB 1342 efficiently killed cell lines with different levels of CD38, including those with a lower sensitivity to daratumumab. In a killing assay where multiple modes of action were enabled, ISB 1342 showed higher cytotoxicity toward MM cells compared with daratumumab. This activity was retained when used in sequential or concomitant combinations with daratumumab. The efficacy of ISB 1342 was maintained in daratumumab-treated bone marrow patient samples showing lower sensitivity to daratumumab. ISB 1342 induced complete tumor control in 2 therapeutic mouse models, unlike daratumumab. Finally, in cynomolgus monkeys, ISB 1342 displayed an acceptable toxicology profile. These data suggest that ISB 1342 may be an option in patients with r/r MM refractory to prior anti-CD38 bivalent monoclonal antibody therapies. It is currently being developed in a phase 1 clinical study.
Collapse
Affiliation(s)
- Blandine Pouleau
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Carole Estoppey
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - Perrine Suere
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Emilie Nallet
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Amélie Laurendon
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - Thierry Monney
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | | | - Adam Drake
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | | | - Julie Macoin
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Jérémy Berret
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Maria Pihlgren
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | | | - Girish S. Gudi
- Department of Pharmacokinetics and Translational Sciences, Ichnos Sciences Inc, New York, NY
| | - Vinu Menon
- Department of Pharmacokinetics and Translational Sciences, Ichnos Sciences Inc, New York, NY
| | - Venkatesha Udupa
- Department of Toxicology, Glenmark Pharmaceuticals Limited, Mumbai, India
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ankita Srivastava
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - Stanislas Blein
- Department of Antibody Engineering, Ichnos Sciences SA, Epalinges, Switzerland
| | - M. Lamine Mbow
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Thomas Matthes
- Hematology Service, Department of Oncology and Clinical Pathology Service, Department of Diagnostics, University Hospital Geneva, Geneva, Switzerland
| | - Zeynep Kaya
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Claire M. Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - James R. Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Menoret
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- Therassay Core Facility, Department of Onco-Hematology, Capacités, Nantes Université, Nantes, France
| | - Charlotte Kervoëlen
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- Therassay Core Facility, Department of Onco-Hematology, Capacités, Nantes Université, Nantes, France
| | - Catherine Pellat-Deceunynck
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
| | - Philippe Moreau
- Nantes Université, INSERM, Centre national de la recherche scientifique, Université d'Angers, Nantes, France
- SIRIC ILIAD, Angers, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, CHU Nantes, Nantes, France
| | - Eugene Zhukovsky
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Mario Perro
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| | - Myriam Chimen
- Department of Oncology, Ichnos Sciences SA, Epalinges, Switzerland
| |
Collapse
|
42
|
Fu Y, Tang R, Zhao X. Engineering cytokines for cancer immunotherapy: a systematic review. Front Immunol 2023; 14:1218082. [PMID: 37483629 PMCID: PMC10357296 DOI: 10.3389/fimmu.2023.1218082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cytokines are pivotal mediators of cell communication in the tumor microenvironment. Multiple cytokines are involved in the host antitumor response, but the production and function of these cytokines are usually dysregulated during malignant tumor progression. Considering their clinical potential and the early successful use of cytokines in cancer immunotherapy, such as interferon alpha-2b (IFNα-2b; IntronA®) and IL-2 (Proleukin®), cytokine-based therapeutics have been extensively evaluated in many follow-up clinical trials. Following these initial breakthroughs, however, clinical translation of these natural messenger molecules has been greatly limited owing to their high-degree pleiotropic features and complex biological properties in many cell types. These characteristics, coupled with poor pharmacokinetics (a short half-life), have hampered the delivery of cytokines via systemic administration, particularly because of severe dose-limiting toxicities. New engineering approaches have been developed to widen the therapeutic window, prolong pharmacokinetic effects, enhance tumor targeting and reduce adverse effects, thereby improving therapeutic efficacy. In this review, we focus on the recent progress and competitive landscape in cytokine engineering strategies and preclinical/clinical therapeutics for cancer. In addition, aiming to promote engineered cytokine-based cancer immunotherapy, we present a profound discussion about the feasibility of recently developed methods in clinical medicine translation.
Collapse
Affiliation(s)
- Yong Fu
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China
| | - Xiaofeng Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
- Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing, China
| |
Collapse
|
43
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Xue D, Lu S, Zhang H, Zhang L, Dai Z, Kaufman DS, Zhang J. Induced pluripotent stem cell-derived engineered T cells, natural killer cells, macrophages, and dendritic cells in immunotherapy. Trends Biotechnol 2023; 41:907-922. [PMID: 36858941 DOI: 10.1016/j.tibtech.2023.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
T cells, natural killer (NK) cells, macrophages (Macs), and dendritic cells (DCs) are among the most common sources for immune-cell-based therapies for cancer. Antitumor activity can be enhanced in induced pluripotent stem cell (iPSC)-derived immune cells by using iPSCs as a platform for stable genetic modifications that impact immuno-activating or -suppressive signaling pathways, such as transducing a chimeric antigen receptor (CAR) or deletion of immunosuppressive checkpoint molecules. This review outlines the utility of four iPSC-derived immune-cell-based therapies, highlight the latest progress and future trends in the genome-editing strategies designed to improve efficacy, safety, and universality, and provides perspectives that compare different contexts in which each of these iPSC-derived immune cell types can be most effectively used.
Collapse
Affiliation(s)
- Dixuan Xue
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Shan Lu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Hailing Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Li Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China
| | - Zhijun Dai
- Department of Breast Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Dan S Kaufman
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, 1369 West Wen Yi Road, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Center of Gene/Cell Engineering and Genome Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
45
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
46
|
Xue C, Gu X, Zheng Q, Shi Q, Yuan X, Chu Q, Jia J, Su Y, Bao Z, Lu J, Li L. Effects of 3-HAA on HCC by Regulating the Heterogeneous Macrophages-A scRNA-Seq Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207074. [PMID: 37013458 PMCID: PMC10238176 DOI: 10.1002/advs.202207074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Indexed: 06/04/2023]
Abstract
Kynurenine derivative 3-hydroxyanthranilic acid (3-HAA) is known to regulate the immune system and exhibit anti-inflammatory activity by inhibiting T-cell cytokine secretion and influencing macrophage activity. However, the definite role of 3-HAA in the immunomodulation of hepatocellular carcinoma (HCC) is largely unexplored. An orthotopic HCC model and treated with 3-HAA by intraperitoneal injection is developed. Furthermore, cytometry by time-of-flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) analyses are carried out to define the immune landscape of HCC. It is found that 3-HAA treatment can significantly suppress tumor growth in the HCC model and alter the level of various cytokines in plasma. CyTOF data shows that 3-HAA significantly increases the percentage of F4/80hi CX3CR1lo Ki67lo MHCIIhi macrophages and decreases the percentage of F4/80lo CD64+ PD-L1lo macrophages. scRNA-seq analyses demonstrate that 3-HAA treatment is proved to regulate the function of M1 macrophages, M2 macrophages, and proliferating macrophages. Notably, 3-HAA inhibits the proinflammatory factors TNF and IL-6 in multiple cell subsets, including resident macrophages, proliferating macrophages, and pDCs. This study reveals the landscape of immune cell subsets in HCC in response to 3-HAA, indicating that 3-HAA may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic SurgeryDepartment of SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| |
Collapse
|
47
|
Xue Y, Zhao G, Pu X, Jiao F. Construction of T cell exhaustion model for predicting survival and immunotherapy effect of bladder cancer based on WGCNA. Front Oncol 2023; 13:1196802. [PMID: 37324016 PMCID: PMC10266200 DOI: 10.3389/fonc.2023.1196802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction The prognosis of bladder cancer (BLCA) and response to immune checkpoint inhibitors (ICIs) are determined by multiple factors. Existed biomarkers for predicting the effect of immunotherapy cannot accurately predict the response of BLCA patients to ICIs. Methods To further accurately stratify patients' response to ICIs and identify potential novel predictive biomarkers, we used the known T cell exhaustion (TEX)-related specific pathways, including tumor necrosis factor (TNF), interleukin (IL)-2, interferon (IFN)-g, and T- cell cytotoxicpathways, combined with weighted correlation network analysis (WGCNA) to analyze the characteristics of TEX in BLCA in detail, constructed a TEX model. Results This model including 28 genes can robustly predict the survival of BLCA and immunotherapeutic efficacy. This model could divide BLCA into two groups, TEXhigh and TEXlow, with significantly different prognoses, clinical features, and reactivity to ICIs. The critical characteristic genes, such as potential biomarkers Charged Multivesicular Body Protein 4C (CHMP4C), SH2 Domain Containing 2A (SH2D2A), Prickle Planar Cell Polarity Protein 3 (PRICKLE3) and Zinc Finger Protein 165 (ZNF165) were verified in BLCA clinical samples by real-time quantitative chain reaction (qPCR) and immunohistochemistry (IHC). Discussion Our findings show that the TEX model can serve as biological markers for predicting the response to ICIs, and the involving molecules in the TEX model might provide new potential targets for immunotherapy in BLCA.
Collapse
Affiliation(s)
- Yuwen Xue
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guanghui Zhao
- Peking University People’s Hospital, Qingdao Women and Children’s Hospital, Qingdao, China
- Medical Laboratory Center, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xiaoxin Pu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Fangdong Jiao
- Department of Urology Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| |
Collapse
|
48
|
Cai M, Huang X, Huang X, Ju D, Zhu YZ, Ye L. Research progress of interleukin-15 in cancer immunotherapy. Front Pharmacol 2023; 14:1184703. [PMID: 37251333 PMCID: PMC10213988 DOI: 10.3389/fphar.2023.1184703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Interleukin-15 (IL-15) is a cytokine that belongs to the interleukin-2 (IL-2) family and is essential for the development, proliferation, and activation of immune cells, including natural killer (NK) cells, T cells and B cells. Recent studies have revealed that interleukin-15 also plays a critical role in cancer immunotherapy. Interleukin-15 agonist molecules have shown that interleukin-15 agonists are effective in inhibiting tumor growth and preventing metastasis, and some are undergoing clinical trials. In this review, we will summarize the recent progress in interleukin-15 research over the past 5 years, highlighting its potential applications in cancer immunotherapy and the progress of interleukin-15 agonist development.
Collapse
Affiliation(s)
- Menghan Cai
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Xuan Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiting Huang
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Li Ye
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- Minhang Hospital and Department of Biological Medicines at School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
49
|
Yu Y. The Function of NK Cells in Tumor Metastasis and NK Cell-Based Immunotherapy. Cancers (Basel) 2023; 15:cancers15082323. [PMID: 37190251 DOI: 10.3390/cancers15082323] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.
Collapse
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|