1
|
Yadava S, Reddy DH, Nakka VP, Anusha VL, Dumala N, Viswanadh MK, Chakravarthi G, Nalluri BN, Ramakrishna K. Unravelling neuroregenerative and neuroprotective roles of Wnt/β-catenin pathway in ischemic stroke: Insights into molecular mechanisms. Neuroscience 2025; 565:527-547. [PMID: 39681254 DOI: 10.1016/j.neuroscience.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
Stroke is a serious condition often resulting in mortality or long-term disability, causing cognitive, memory, and motor impairments. A reduction in cerebral blood flow below critical levels defines the ischemic core and penumbra: the core undergoes irreversible damage, while the penumbra remains viable but functionally impaired. This functional impairment activates complex cell signaling pathways that determine cell survival or death, making the penumbra a key target for therapeutic interventions to prevent further damage. The Wnt/β-catenin (WβC) signaling pathway has emerged as a potential neuroprotective mechanism, promoting neurogenesis, angiogenesis, neuronal connectivity, and maintaining blood-brain barrier integrity after stroke. Activation of the WβC pathway also mitigates oxidative stress, inflammation, and apoptosis in ischemic regions, enhancing its neuroprotective effects. However, the overexpression of GSK3β and DKK1, or the presence of their agonists, can counteract these benefits. This review explores the therapeutic potential of WβC signaling, highlighting the effects of pharmacological modulation through antagonists, agonists, synthetic chemicals, natural products, stem cells, and macromolecules in preclinical models of ischemic stroke. While preclinical evidence supports the benefits of WβC activation, its role in human stroke requires further investigation. Additionally, the review discusses the potential adverse effects of prolonged WβC activation and suggests strategies to mitigate them. Overall, WβC signaling holds promise as a therapeutic target, offering insights into stroke pathophysiology and informing the development of novel treatment strategies.
Collapse
Affiliation(s)
- Srikanth Yadava
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| | | | - Venkata Prasuja Nakka
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, 500046, India.
| | | | - Naresh Dumala
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| | | | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India
| | - Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India.
| |
Collapse
|
2
|
Tamtaji OR, Ostadian A, Homayoonfal M, Nejati M, Mahjoubin-Tehran M, Nabavizadeh F, Ghelichi E, Mohammadzadeh B, Karimi M, Rahimian N, Mirzaei H. Cerium(IV) oxide:silver/graphene oxide (CeO2:Ag/GO) nanoparticles modulate gene expression and inhibit colorectal cancer cell growth: a pathway-centric therapeutic approach. Cancer Nanotechnol 2024; 15:62. [DOI: 10.1186/s12645-024-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
|
3
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
4
|
Yu D, Xu H, Zhou J, Fang K, Zhao Z, Xu K. PDPN/CCL2/STAT3 feedback loop alter CAF heterogeneity to promote angiogenesis in colorectal cancer. Angiogenesis 2024; 27:809-825. [PMID: 39115624 DOI: 10.1007/s10456-024-09941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/31/2024] [Indexed: 11/15/2024]
Abstract
Colorectal cancer (CRC) is one of the common clinical malignancies and the fourth leading cause of cancer-related death in the world. The tumor microenvironment (TME) plays a crucial role in promoting tumor angiogenesis, and cancer-associated fibroblasts (CAFs) are one of the key components of the tumor microenvironment. However, due to the high heterogeneity of CAFs, elucidating the molecular mechanism of CAF-mediated tumor angiogenesis remained elusive. In our study, we found that there is pro-angiogenic functional heterogeneity of CAFs in colorectal cancer and we clarified that Podoplanin (PDPN) can specifically label CAF subpopulations with pro-angiogenic functions. We also revealed that PDPN + CAF could maintain CAF heterogeneity by forming a PDPN/CCL2/STAT3 feedback loop through autocrine CCL2, while activate STAT3 signaling pathway in endothelial cells to promote angiogenesis through paracrine CCL2. We demonstrated WP1066 could inhibit colorectal cancer angiogenesis by blocking both the PDPN/CCL2/STAT3 feedback loop in CAFs and the STAT3 signaling pathway in endothelial cells. Altogether, our study suggests that STAT3 could be a potential therapeutic target for blocking angiogenesis in colorectal cancer. We provide theoretical basis and new therapeutic strategies for the clinical treatment of colorectal cancer.
Collapse
Affiliation(s)
- Die Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hanzheng Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jinzhe Zhou
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kai Fang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Zekun Zhao
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, China.
| |
Collapse
|
5
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Fischer J, Shutta KH, Chen C, Fanfani V, Saha E, Mandros P, Ben Guebila M, Xiu J, Nieva J, Liu S, Uprety D, Spetzler D, Lopes-Ramos CM, DeMeo D, Quackenbush J. Selective loss of Y chromosomes in lung adenocarcinoma modulates the tumor immune environment through cancer/testis antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613876. [PMID: 39345481 PMCID: PMC11430018 DOI: 10.1101/2024.09.19.613876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
There is increasing recognition that the sex chromosomes, X and Y, play an important role in health and disease that goes beyond the determination of biological sex. Loss of the Y chromosome (LOY) in blood, which occurs naturally in aging men, has been found to be a driver of cardiac fibrosis and heart failure mortality. LOY also occurs in most solid tumors in males and is often associated with worse survival, suggesting that LOY may give tumor cells a growth or survival advantage. We analyzed LOY in lung adenocarcinoma (LUAD) using both bulk and single-cell expression data and found evidence suggesting that LOY affects the tumor immune environment by altering cancer/testis antigen expression and consequently facilitating tumor immune evasion. Analyzing immunotherapy data, we show that LOY and changes in expression of particular cancer/testis antigens are associated with response to pembrolizumab treatment and outcome, providing a new and powerful biomarker for predicting immunotherapy response in LUAD tumors in males.
Collapse
Affiliation(s)
- Jonas Fischer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Department for Computer Vision and Machine Learning, Max Planck Institute for Informatics, Stuhlsatzenhausweg E1 4, Saarbrücken, 66123, Germany
| | - Katherine H. Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
| | - Chen Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Viola Fanfani
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Enakshi Saha
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Panagiotis Mandros
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
| | - Joanne Xiu
- Caris Life Sciences, 4610 South 44th Place, Phoenix, 85040, AZ, United States
| | - Jorge Nieva
- Department of Medicine, Keck School of Medicine of USC, 1975 Zonal Avenue, Los Angeles, 90033, CA, United States
| | - Stephen Liu
- Department of Medicine, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, 20007, DC, United States
| | - Dipesh Uprety
- Karmanos Cancer Center, 4100 John R , Detroit, 48201, MI, United States
| | - David Spetzler
- Caris Life Sciences, 4610 South 44th Place, Phoenix, 85040, AZ, United States
| | - Camila M. Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
- Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, United States
| | - Dawn DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
- Department of Medicine, Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, 02115, MA, United States
| |
Collapse
|
7
|
Su Z, Lu C, Zhang F, Liu H, Li M, Qiao M, Zou X, Luo D, Li H, He M, Se H, Jing J, Wang X, Yang H, Yang H. Cancer-associated fibroblasts-secreted exosomal miR-92a-3p promotes tumor growth and stemness in hepatocellular carcinoma through activation of Wnt/β-catenin signaling pathway by suppressing AXIN1. J Cell Physiol 2024; 239:e31344. [PMID: 38949237 DOI: 10.1002/jcp.31344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are a major cellular component in the tumor microenvironment and have been shown to exhibit protumorigenic effects in hepatocellular carcinoma (HCC). This study aimed to delve into the mechanisms underlying the tumor-promoting effects of CAFs in HCC. Small RNA sequencing was conducted to screen differential expressed microRNAs in exosomes derived from CAFs and normal fibroblasts (NFs). The miR-92a-3p expression was then measured using reverse transcriptase quantitative real-time PCR in CAFs, NFs, CAFs-derived exosomes (CAFs-Exo), and NF-derived exosomes (NFs-Exo). Compared to NFs or NF-Exo, CAFs and CAFs-Exo significantly promoted HCC cell proliferation, migration, and stemness. Additionally, compared to NFs or NF-Exo, miR-92a-3p level was notably higher in CAFs and CAFs-Exo, respectively. Exosomal miR-92a-3p was found to enhance HCC cell proliferation, migration, and stemness. Meanwhile, AXIN1 was targeted by miR-92a-3p. Exosomal miR-92a-3p could activate β-catenin/CD44 signaling in HCC cells by inhibiting AXIN1 messenger RNA. Furthermore, in vivo studies verified that exosomal miR-92a-3p notably promoted tumor growth and stemness through targeting AXIN1/β-catenin axis. Collectively, CAFs secreted exosomal miR-92a-3p was capable of promoting growth and stemness in HCC through activation of Wnt/β-catenin signaling pathway by suppressing AXIN1. Therefore, targeting CAFs-derived miR-92a-3p may be a potential strategy for treating HCC.
Collapse
Affiliation(s)
- Zenong Su
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Graduate School, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Chao Lu
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Feifei Zhang
- Department of Nuclear Medicine, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Huan Liu
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Meiqing Li
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Meng Qiao
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiaohong Zou
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Danyang Luo
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Haojing Li
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Min He
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Han Se
- Department of Graduate School, Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Jing Jing
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiangcheng Wang
- Department of Nuclear Medicine, Shenzhen People's Hospital, Shenzhen, Guangzhou, China
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Hong Yang
- Department of Oncology, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Institute of Cancer, Inner Mongolia People's Hospital, People's Hospital of Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
8
|
Wei HT, Xie LY, Liu YG, Deng Y, Chen F, Lv F, Tang LP, Hu BL. Elucidating the role of angiogenesis-related genes in colorectal cancer: a multi-omics analysis. Front Oncol 2024; 14:1413273. [PMID: 38962272 PMCID: PMC11220232 DOI: 10.3389/fonc.2024.1413273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Background Angiogenesis plays a pivotal role in colorectal cancer (CRC), yet its underlying mechanisms demand further exploration. This study aimed to elucidate the significance of angiogenesis-related genes (ARGs) in CRC through comprehensive multi-omics analysis. Methods CRC patients were categorized according to ARGs expression to form angiogenesis-related clusters (ARCs). We investigated the correlation between ARCs and patient survival, clinical features, consensus molecular subtypes (CMS), cancer stem cell (CSC) index, tumor microenvironment (TME), gene mutations, and response to immunotherapy. Utilizing three machine learning algorithms (LASSO, Xgboost, and Decision Tree), we screen key ARGs associated with ARCs, further validated in independent cohorts. A prognostic signature based on key ARGs was developed and analyzed at the scRNA-seq level. Validation of gene expression in external cohorts, clinical tissues, and blood samples was conducted via RT-PCR assay. Results Two distinct ARC subtypes were identified and were significantly associated with patient survival, clinical features, CMS, CSC index, and TME, but not with gene mutations. Four genes (S100A4, COL3A1, TIMP1, and APP) were identified as key ARCs, capable of distinguishing ARC subtypes. The prognostic signature based on these genes effectively stratified patients into high- or low-risk categories. scRNA-seq analysis showed that these genes were predominantly expressed in immune cells rather than in cancer cells. Validation in two external cohorts and through clinical samples confirmed significant expression differences between CRC and controls. Conclusion This study identified two ARG subtypes in CRC and highlighted four key genes associated with these subtypes, offering new insights into personalized CRC treatment strategies.
Collapse
Affiliation(s)
- Hao-tang Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-ye Xie
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yong-gang Liu
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ya Deng
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Chen
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Lv
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Li-ping Tang
- Department of Information, Library of Guangxi Medical University, Nanning, China
| | - Bang-li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
9
|
Li ZM, Zhou W, Feng L, Zhang HY, Chen WB. Predictive value of preoperative CT enhancement rate and CT perfusion parameters in colorectal cancer. BMC Gastroenterol 2024; 24:176. [PMID: 38773485 PMCID: PMC11106990 DOI: 10.1186/s12876-024-03257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Angiogenesis is a critical step in colorectal cancer growth, progression and metastasization. CT are routine imaging examinations for preoperative clinical evaluation in colorectal cancer patients. This study aimed to investigate the predictive value of preoperative CT enhancement rate (CER) and CT perfusion parameters on angiogenesis in colorectal cancer, as well as the association of preoperative CER and CT perfusion parameters with serum markers. METHODS This retrospective analysis included 42 patients with colorectal adenocarcinoma. Median of microvessel density (MVD) as the cut-off value, it divided 42 patients into high-density group (MVD ≥ 35/field, n = 24) and low-density group (MVD < 35/field, n = 18), and 25 patients with benign colorectal lesions were collected as the control group. Statistical analysis of CER, CT perfusion parameters, serum markers were performed in all groups. Receiver operating curves (ROC) were plotted to evaluate the diagnostic efficacy of relevant CT perfusion parameters for tumor angiogenesis; Pearson correlation analysis explored potential association between CER, CT perfusion parameters and serum markers. RESULTS CER, blood volume (BV), blood flow (BF), permeability surface (PS) and carbohydrate antigen 19 - 9 (CA19-9), carbohydrate antigen 125 (CA125), carcinoembryonic antigen (CEA), trefoil factor 3 (TFF3), vascular endothelial growth factor (VEGF) in colorectal adenocarcinoma were significantly higher than those in the control group, the parameters in high-density group were significantly higher than those in the low-density group (P < 0.05); however, the time to peak (TTP) of patients in colorectal adenocarcinoma were significantly lower than those in the control group, and the high-density group showed a significantly lower level compared to the low-density group (P < 0.05). The combined parameters BF + TTP + PS and BV + BF + TTP + PS demonstrated the highest area under the curve (AUC), both at 0.991. Pearson correlation analysis showed that the serum levels of CA19-9, CA125, CEA, TFF3, and VEGF in patients showed positive correlations with CER, BV, BF, and PS (P < 0.05), while these indicators exhibited negative correlations with TTP (P < 0.05). CONCLUSIONS Some single and joint preoperative CT perfusion parameters can accurately predict tumor angiogenesis in colorectal adenocarcinoma. Preoperative CER and CT perfusion parameters have certain association with serum markers.
Collapse
Affiliation(s)
- Ze-Mao Li
- North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, 063000, China
- North China University of Science and Technology, Tangshan, Hebei, 063000, China
| | - Wei Zhou
- North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, 063000, China
| | - Li Feng
- North China University of Science and Technology, Tangshan, Hebei, 063000, China
| | - Hui-Ying Zhang
- North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, 063000, China
| | - Wei-Bin Chen
- North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, 063000, China.
| |
Collapse
|
10
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
11
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. Biol Open 2024; 13:bio060323. [PMID: 38451093 PMCID: PMC10979512 DOI: 10.1242/bio.060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. Here, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. By engineering human induced pluripotent stem cells (hiPSCs) consisting of wild-type (WT), heterozygous (CDX2-Het), and homozygous null CDX2 (CDX2-KO) genotypes, differentiating these cells in a 2D gastruloid model, and subjecting these cells to single-nucleus RNA and ATAC sequencing, we identify several pathways that are dose-dependently regulated by CDX2 including VEGF and non-canonical WNT. snATAC-seq reveals that CDX2-Het cells retain a WT-like chromatin accessibility profile, suggesting accessibility alone is not sufficient to drive this variability in gene expression. Because the loss of CDX2 or TBXT phenocopy one another in vivo, we compared differentially expressed genes in our CDX2-KO to those from TBXT-KO hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and reveal pathways that may underlie the defects in vascular development and allantoic elongation seen in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
12
|
Karimifard SA, Salehzadeh-Yazdi A, Taghizadeh-Tabarsi R, Akbari-Birgani S. Mechanical effects modulate drug resistance in MCF-7-derived organoids: Insights into the wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 695:149420. [PMID: 38154263 DOI: 10.1016/j.bbrc.2023.149420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Addressing drug resistance poses a significant challenge in cancer treatment, as cancer cells develop diverse mechanisms to evade chemotherapy drugs, leading to treatment failure and disease relapse. Three-dimensional (3D) cell culture has emerged as a valuable model for studying drug resistance, although the underlying mechanisms remain elusive. By obtaining a better understanding of drug resistance within the 3D culture environment, we can develop more effective strategies to overcome it and improve the success of cancer treatments. Notably, the physical structure undergoes notable changes in 3D culture, with mechanical effects believed to play a pivotal role in drug resistance. Hence, our study aimed to explore the influence of mechanical effects on drug resistance by analyzing data related to "drug resistance" and "mechanobiology". Through this analysis, we identified β-catenin and JNK1 as potential factors, which were further examined in MCF-7 cells cultivated under both 2D and 3D culture conditions. Our findings demonstrate that β-catenin is activated through canonical and non-canonical pathways and associated with the drug resistance, particularly in organoids obtained under 3D culture.
Collapse
Affiliation(s)
- Seyed Ali Karimifard
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | | | - Reza Taghizadeh-Tabarsi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Shiva Akbari-Birgani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
13
|
Padathpeedika Khalid J, Mary Martin T, Prathap L, Abhimanyu Nisargandha M, Boopathy N, Kishore Kumar MS. Exploring Tumor-Promoting Qualities of Cancer-Associated Fibroblasts and Innovative Drug Discovery Strategies With Emphasis on Thymoquinone. Cureus 2024; 16:e53949. [PMID: 38468988 PMCID: PMC10925941 DOI: 10.7759/cureus.53949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Tumor epithelial development and chemoresistance are highly promoted by the tumor microenvironment (TME), which is mostly made up of the cancer stroma. This is due to several causes. Cancer-associated fibroblasts (CAFs) stand out among them as being essential for the promotion of tumors. Understanding the fibroblastic population within a single tumor is made more challenging by the undeniable heterogeneity within it, even though particular stromal alterations are still up for debate. Numerous chemical signals released by tumors improve the connections between heterotypic fibroblasts and CAFs, promoting the spread of cancer. It becomes essential to have a thorough understanding of this complex microenvironment to effectively prevent solid tumor growth. Important new insights into the role of CAFs in the TME have been revealed by recent studies. The objective of this review is to carefully investigate the relationship between CAFs in tumors and plant secondary metabolites, with a focus on thymoquinone (TQ). The literature published between 2010 and 2023 was searched in PubMed and Google Scholar with keywords such as TQ, TME, cancer-associated fibroblasts, mechanism of action, and flavonoids. The results showed a wealth of data substantiating the activity of plant secondary metabolites, particularly TQ's involvement in blocking CAF operations. Scrutinized research also clarified the wider effect of flavonoids on pathways related to cancer. The present study highlights the complex dynamics of the TME and emphasizes the critical role of CAFs. It also examines the possible interventions provided by secondary metabolites found in plants, with TQ playing a vital role in regulating CAF function based on recent literature.
Collapse
Affiliation(s)
- Jabir Padathpeedika Khalid
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Milind Abhimanyu Nisargandha
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Nisha Boopathy
- Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meenakshi Sundaram Kishore Kumar
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
14
|
Zhu S, Meng L, Wei P, Gu G, Duan K. Sinensetin suppresses breast cancer cell progression via Wnt/β-catenin pathway inhibition. Transl Cancer Res 2024; 13:348-362. [PMID: 38410229 PMCID: PMC10894327 DOI: 10.21037/tcr-23-1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/17/2023] [Indexed: 02/28/2024]
Abstract
Background Although there are many treatments for breast cancer, such as surgery, radiotherapy, chemotherapy, estrogen receptor antagonists, immune checkpoint inhibitors and so on. However, safer and more effective therapeutic drugs for breast cancer are needed. Sinensetin, a safer therapeutic drugs, come from citrus species and medicinal plants used in traditional medicine, while its role and underlying mechanism in breast cancer remain unclear. Our study aimed to investigate the role and mechanism of sinensetin in breast cancer. Methods Cell Counting Kit-8 (CCK-8) was used to determine the safe concentration of sinensetin in MCF-10A, MCF7 and MDA-MB-231 cells; 120 μM sinensetin was used in subsequent experiments. Real time polymerase chain reaction (RT-PCR), Western blotting, Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling (TUNEL) apoptosis assay, Transwell invasion assay and Clone formation assay were used in this study to determine cell viability, mRNA expression, protein levels, apoptosis, proliferation, invasion and so on. Results Herein, our results showed that 120 μM sinensetin suppressed the cell viability and promoted apoptosis of MCF7 and MDA-MB-231 cells. Treatment with 120 µM sinensetin for 24 h showed no significant toxicity to normal mammary cells; 120 μM sinensetin decreased cell proliferation, invasion, and epithelial-mesenchymal transition (EMT), and downregulated β-catenin, lymphatic enhancing factor 1 (LEF1), T-cell factor (TCF) 1/TCF7, and TCF3/TCF7L1 expression in MCF7 and MDA-MB-231 cells. The Wnt agonist SKL2001 reversed the inhibitory effect of sinensetin on cell survival, metastasis, and EMT. Sinensetin-induced downregulation of β-catenin, LEF1, and TCF1/TCF7 expression were upregulated by SKL2001 in MCF7 and MDA-MB-231 cells. Conclusions In summary, sinensetin suppressed the metastasis of breast cancer cell via inhibition of Wnt/β-catenin pathway and there were no adverse effects on normal breast cells. Our study confirmed the role of sinensetin in breast cancer cells and provided a better understanding of the underlying mechanism.
Collapse
Affiliation(s)
- Shengqian Zhu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lifei Meng
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guowen Gu
- Department of Hepatobiliary Surgery, Ningbo First Hospital, Ningbo, China
| | - Keli Duan
- Department of Plastic and Reconstructive Surgery, The Third Hospital of Ninghai County, Ningbo, China
| |
Collapse
|
15
|
Bulger EA, McDevitt TC, Bruneau BG. CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577277. [PMID: 38328098 PMCID: PMC10849648 DOI: 10.1101/2024.01.25.577277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Proper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series for CDX2 in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous null CDX2 genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one another in vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, including ANK3 and ANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2 in vivo.
Collapse
Affiliation(s)
- Emily A. Bulger
- Gladstone Institutes, San Francisco, CA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA
| | - Benoit G. Bruneau
- Gladstone Institutes, San Francisco, CA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco
| |
Collapse
|
16
|
Peri SS, Narayanaa Y K, Hubert TD, Rajaraman R, Arfuso F, Sundaram S, Archana B, Warrier S, Dharmarajan A, Perumalsamy LR. Navigating Tumour Microenvironment and Wnt Signalling Crosstalk: Implications for Advanced Cancer Therapeutics. Cancers (Basel) 2023; 15:5847. [PMID: 38136392 PMCID: PMC10741643 DOI: 10.3390/cancers15245847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer therapeutics face significant challenges due to drug resistance and tumour recurrence. The tumour microenvironment (TME) is a crucial contributor and essential hallmark of cancer. It encompasses various components surrounding the tumour, including intercellular elements, immune system cells, the vascular system, stem cells, and extracellular matrices, all of which play critical roles in tumour progression, epithelial-mesenchymal transition, metastasis, drug resistance, and relapse. These components interact with multiple signalling pathways, positively or negatively influencing cell growth. Abnormal regulation of the Wnt signalling pathway has been observed in tumorigenesis and contributes to tumour growth. A comprehensive understanding and characterisation of how different cells within the TME communicate through signalling pathways is vital. This review aims to explore the intricate and dynamic interactions, expressions, and alterations of TME components and the Wnt signalling pathway, offering valuable insights into the development of therapeutic applications.
Collapse
Affiliation(s)
- Shraddha Shravani Peri
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Therese Deebiga Hubert
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Roshini Rajaraman
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - B. Archana
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.); (B.A.)
| | - Sudha Warrier
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India;
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
- School of Human Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Lakshmi R. Perumalsamy
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; (S.S.P.); (K.N.Y.); (T.D.H.); (R.R.)
| |
Collapse
|
17
|
Wei D, Ma Z, Zhu T, Wang H, Wang B, Fu L, Yu G. miR-29c-3p represses the angiogenesis of esophageal squamous cell carcinoma by targeting SERPINH1 to regulate the Wnt signaling pathway. Acta Cir Bras 2023; 38:e385223. [PMID: 38055382 DOI: 10.1590/acb385223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/22/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is characterized by early metastasis and late diagnosis. miR-29c-3p is confirmed to repress angiogenesis in multiple tumor types. Yet, the functions of miR-29c-3p in the mechanism of ESCC angiogenesis, which were not sufficiently explored previously, were exactly what we investigated here at the molecular level. METHODS The mRNA level of miR-29c-3p and Serpin peptidase inhibitor clade H member 1 (SERPINH1) in ESCC tissues were assessed via bioinformatics analysis. Thereafter, miR-29c-3p and SERPINH1 (HSP47) mRNA level in ESCC cell lines was evaluated via quantitative real-time polymerase chain reaction. The effects of abnormal miR-29c-3p and SERPINH1 expression on ESCC cell viability, proliferation, migration, invasion, and HUVEC angiogenesis were examined via CCK8, colony formation, transwell, and angiogenesis assays, respectively. The protein levels of SERPINH1, vascular endothelial growth factor-A (VEGFA), Wnt-1, ?-catenin, and p-?-catenin were evaluated via Western blot. Expression of VEGFA secreted by ESCC cells was measured via enzyme-linked immunosorbent assay. Treatment with the Wnt activator BML-284 further revealed the way miR-29c-3p mediated the Wnt signaling pathway and its effects on angiogenesis. RESULTS Herein, we revealed a decrease of miR-29c-3p expression in ESCC tissues and cells, while the overexpressed miR-29c-3p could remarkably suppress ESCC cell progression, as well as HUVEC angiogenesis. Meanwhile, overexpressed miR-29c-3p notably downregulated VEGFA and repressed the Wnt signaling pathway. Treatment with the Wnt activator BML-284 could reverse the inhibition of HUVEC angiogenesis caused by miR-29c-3p. SERPINH1 was a downstream target of miR-29c-3p. SERPINH1 knockdown suppressed the malignant phenotypes of ESCC cells and impeded the Wnt signaling activation, while such suppression was reversed through miR-29c-3p inhibitor. CONCLUSIONS We confirmed the mechanism that miR-29c-3p targeted SERPINH1, thus regulating angiogenesis in ESCC through the Wnt signaling pathway. It improves the understanding of angiogenesis in ESCC and offers new ideas for the research of ESCC treatment strategies in the future.
Collapse
Affiliation(s)
- Desheng Wei
- Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China
- Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China
| | - Zhifeng Ma
- Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China
- Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China
| | - Ting Zhu
- Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China
- Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China
| | - Haiyong Wang
- Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China
- Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China
| | - Bin Wang
- Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China
- Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China
| | - Linhai Fu
- Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China
- Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China
| | - Guangmao Yu
- Shaoxing People's Hospital - Department of Thoracic Surgery - Shaoxing - Zhejiang Province, China
- Zhejiang University - School of Medicine - Shaoxing - Zhejiang Province, China
| |
Collapse
|
18
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
19
|
Ansardamavandi A, Nikfarjam M, He H. PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells 2023; 12:2692. [PMID: 38067120 PMCID: PMC10705971 DOI: 10.3390/cells12232692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Angiogenesis has been associated with numbers of solid tumours. Anti-angiogenesis drugs starve tumours of nutrients and oxygen but also make it difficult for a chemo reagent to distribute into a tumour, leading to aggressive tumour growth. Anti-angiogenesis drugs do not appear to improve the overall survival rate of pancreatic cancer. Vessel normalisation is merging as one of the new approaches for halting tumour progression by facilitating the tumour infiltration of immune cells and the delivery of chemo reagents. Targeting p21-activated kinases (PAKs) in cancer has been shown to inhibit cancer cell growth and improve the efficacy of chemotherapy. Inhibition of PAK enhances anti-tumour immunity and stimulates the efficacy of immune checkpoint blockades. Inhibition of PAK also improves Car-T immunotherapy by reprogramming the vascular microenvironment. This review summarizes current research on PAK's role in tumour vasculature and therapeutical response, with a focus on pancreatic cancer.
Collapse
Affiliation(s)
- Arian Ansardamavandi
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
- Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (A.A.); (M.N.)
| |
Collapse
|
20
|
Li Z, Liu Y, Guo P, Wei Y. Construction and validation of a novel angiogenesis pattern to predict prognosis and immunotherapy efficacy in colorectal cancer. Aging (Albany NY) 2023; 15:12413-12450. [PMID: 37938164 PMCID: PMC10683615 DOI: 10.18632/aging.205189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Evidence suggests that the tumor microenvironment (TME) affects the tumor active response to immunotherapy. Tumor angiogenesis is closely related to the TME. Nonetheless, the effects of angiogenesis on the TME of colorectal cancer (CRC) remain unknown. METHODS We comprehensively assessed the angiogenesis patterns in CRC based on 36 angiogenesis-related genes (ARGs). Subsequently, we evaluated the prognostic values and therapeutic sensitivities of angiogenesis patterns using multiple methods. We then performed the machine learning algorithm and functional experiments to identify the prognostic key ARGs. Ultimately, the regulation of gut microbiota on the expression of ARGs was further investigated by using whole genome sequencing. RESULTS Two angiogenesis clusters were identified and angiogenesis cluster B was characterized by increased stromal and immunity activation with unfavorable odds of survival. Further, an ARG_score including 9 ARGs to predict recurrence-free survival (RFS) was established and its predominant predictive ability was confirmed. The low ARG_score patients were characterized by a high mutation burden, high microsatellite instability, and immune activation with better prognosis. Moreover, patients with high KLK10 expression were associated with a hot tumor immune microenvironment, poorer immune checkpoint blocking treatment, and shorter survival. The in vitro experiments also indicated that Fusobacterium nucleatum (F.n) infection significantly induced KLK10 expression in CRC. CONCLUSIONS The quantification of angiogenesis patterns could contribute to predict TME characteristics, prognosis, and individualized immunotherapy strategies. Furthermore, our findings suggest that F.n may influence CRC progression through ARGs, which could serve as a clinical biomarker and therapeutic target for F.n-infected CRC patients.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Emergency Surgery, Peking University People’s Hospital, Xicheng, Beijing 100044, China
| | - Yang Liu
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo Second Hospital, Ningbo, Zhejiang 315010, China
| | - Peng Guo
- Department of Emergency Surgery, Peking University People’s Hospital, Xicheng, Beijing 100044, China
- Department of Emergency Medicine, Peking University People’s Hospital, Xicheng, Beijing 100044, China
- Laboratory of Surgery Oncology, Peking University People’s Hospital, Xicheng, Beijing 100044, China
| | - Yunwei Wei
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo Second Hospital, Ningbo, Zhejiang 315010, China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, Zhejiang 315010, China
| |
Collapse
|
21
|
Shen X, Gao C, Li H, Liu C, Wang L, Li Y, Liu R, Sun C, Zhuang J. Natural compounds: Wnt pathway inhibitors with therapeutic potential in lung cancer. Front Pharmacol 2023; 14:1250893. [PMID: 37841927 PMCID: PMC10568034 DOI: 10.3389/fphar.2023.1250893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The Wnt/β-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/β-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/β-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/β-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.
Collapse
Affiliation(s)
- Xuetong Shen
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Longyun Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Ruijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
22
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
23
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
24
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
25
|
Mokgautsi N, Kuo YC, Huang YJ, Chen CH, Mukhopadhyay D, Wu ATH, Huang HS. Preclinical Evaluation of a Novel Small Molecule LCC-21 to Suppress Colorectal Cancer Malignancy by Inhibiting Angiogenic and Metastatic Signatures. Cells 2023; 12:cells12020266. [PMID: 36672201 PMCID: PMC9856425 DOI: 10.3390/cells12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, and it frequently metastasizes to the liver and lymph nodes. Despite major advances in treatment modalities, CRC remains a poorly characterized biological malignancy, with high reported cases of deaths globally. Moreover, cancer stem cells (CSCs) and their microenvironment have been widely shown to promote colon cancer development, progression, and metastasis. Therefore, an understanding of the underlying mechanisms that contribute to the maintenance of CSCs and their markers in CRC is crucial in efforts to treat cancer metastasis and develop specific therapeutic targets for augmenting current standard treatments. Herein, we applied computational simulations using bioinformatics to identify potential theranostic markers for CRC. We identified the overexpression of vascular endothelial growth factor-α (VEGFA)/β-catenin/matrix metalloproteinase (MMP)-7/Cluster of Differentiation 44 (CD44) in CRC to be associated with cancer progression, stemness, resistance to therapy, metastasis, and poor clinical outcomes. To further investigate, we explored in silico molecular docking, which revealed potential inhibitory activities of LCC-21 as a potential multitarget small molecule for VEGF-A/CTNNB1/MMP7/CD44 oncogenic signatures, with the highest binding affinities displayed. We validated these finding in vitro and demonstrated that LCC-21 inhibited colony and sphere formation, migration, and invasion, and these results were further confirmed by a Western blot analysis in HCT116 and DLD-1 cells. Thus, the inhibitory effects of LCC-21 on these angiogenic and onco-immunogenic signatures could be of translational relevance as potential CRC biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Hsin Chen
- Division of Colorectal Surgery, Department of Surgery, WanFang Hospital, Taipei Medical University, No. 111 Sec. 3 Xinglong Rd., Wenshan Dist., Taipei 11031, Taiwan
| | | | - Alexander T. H. Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11031, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| |
Collapse
|
26
|
Zhang XP, Pei JP, Zhang CD, Yusupu M, Han MH, Dai DQ. Exosomal circRNAs: A key factor of tumor angiogenesis and therapeutic intervention. Biomed Pharmacother 2022; 156:113921. [DOI: 10.1016/j.biopha.2022.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
27
|
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 2022; 20:186. [PMID: 36419156 PMCID: PMC9684800 DOI: 10.1186/s12964-022-00951-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
The Comparative Role of BAMLET and 5-Fluorouracil in Colorectal Cancer Cells by Targeting WNT/& Beta; -Catenin Pathway. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Aberrant activation of the WNT/β-catenin signaling pathway is involved in various types of cancers, particularly colorectal cancer (CRC), which is a prevalent malignancy. Targeting the Wnt signaling pathway has gained a reputation as an attractive therapeutic strategy, mainly because of its potential for regulating cell proliferation, migration, differentiation, angiogenesis, and apoptosis. Objectives: The aim of the current research was to investigate the effects of 5-Fluorouracil (5-FU) and bovine alpha-lactalbumin made lethal to tumor cells (BAMLET), a complex of oleic acid with bovine α-lactalbumin protein, on colon cancer cells focusing on the Wnt signaling pathway. Methods: For this purpose, HT-29 and HCT116 cells were treated with 5-FU and BAMLET, and the expression levels of Wnt signaling-related proteins (β-catenin and E-cadherin) and VEGF as angiogenesis regulators were evaluated by quantitative real-time polymerase chain reaction (RT-qPCR) and Western Blot analysis. Results: Bovine alpha-lactalbumin made lethal to tumor cells (BAMLET) treatment down-regulated the expression of β-catenin and up-regulated the expression of E-cadherin significantly compared to the 5-FU (P < 0.0001). The reduced mRNA levels of VEGF in treated cells revealed the effectiveness of 5-FU and BAMLET on angiogenesis. Conclusions: Bovine alpha-lactalbumin made lethal to tumor cells (BAMLET) can be considered for targeting the Wnt signaling pathway and angiogenesis. It is amenable to further investigation in the development of CRC treatment.
Collapse
|
29
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
30
|
Oryani MA, Tavasoli A, Ghalavand MA, Ashtiani RZ, Rezaee A, Mahmoudi R, Golvari H, Owrangi S, Soleymani-Goloujeh M. Epigenetics and its therapeutic potential in colorectal cancer. Epigenomics 2022; 14:683-697. [PMID: 35473313 DOI: 10.2217/epi-2022-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It is estimated that colorectal cancer (CRC) is the leading cause of cancer-related death around the globe. 'Epigenetics' refers to changes in the chromosome rather than the DNA sequence, which may be transmitted down to daughter cells. Epigenetics is an essential part of controlling the development and variation of a single cell. ncRNAs have a role in epigenetic regulation in CRC, which will be discussed in this review in the context of DNA methylation and histone modifications. A greater survival rate for CRC patients might be achieved by addressing epigenetic mediators, as the authors show. In this review, they aim to thoroughly examine the role of epigenetics in the prognosis, diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Ghalavand
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alisam Rezaee
- Faculty of Medical Sciences & Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hossein Golvari
- School of Nursing & Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soroor Owrangi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Youssef ASED, Abdel-Fattah MA, Lotfy MM, Nassar A, Abouelhoda M, Touny AO, Hassan ZK, Mohey Eldin M, Bahnassy AA, Khaled H, Zekri ARN. Multigene Panel Sequencing Reveals Cancer-Specific and Common Somatic Mutations in Colorectal Cancer Patients: An Egyptian Experience. Curr Issues Mol Biol 2022; 44:1332-1352. [PMID: 35723313 PMCID: PMC8947625 DOI: 10.3390/cimb44030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims at identifying common pathogenic somatic mutations at different stages of colorectal carcinogenesis in Egyptian patients. Our cohort included colonoscopic biopsies collected from 120 patients: 20 biopsies from patients with inflammatory bowel disease, 38 from colonic polyp patients, and 62 from patients with colorectal cancer. On top of this, the cohort included 20 biopsies from patients with non-specific mild to moderated colitis. Targeted DNA sequencing using a customized gene panel of 96 colorectal related genes running on the Ion Torrent NGS technology was used to process the samples. Our results revealed that 69% of all cases harbored at least one somatic mutation. Fifty-seven genes were found to carry 232 somatic non-synonymous variants. The most frequently pathogenic somatic mutations were localized in TP53, APC, KRAS, and PIK3CA. In total, 16 somatic mutations were detected in the CRC group and in either the IBD or CP group. In addition, our data showed that 51% of total somatic variants were CRC-specific variants. The average number of CRC-specific variants per sample is 2.4. The top genes carrying CRC-specific mutations are APC, TP53, PIK3CA, FBXW7, ATM, and SMAD4. It seems obvious that TP53 and APC genes were the most affected genes with somatic mutations in all groups. Of interest, 85% and 28% of the APC and TP53 deleterious somatic mutations were located in Exon 14 and Exon 3, respectively. Besides, 37% and 28% of the total somatic mutations identified in APC and TP53 were CRC-specific variants, respectively. Moreover, we identified that, in 29 somatic mutations in 21 genes, their association with CRC patients was unprecedented. Ten detected variants were likely to be novel: six in PIK3CA and four variants in FBXW7. The detected P53, Wnt/βcatenin, Angiogenesis, EGFR, TGF-β and Interleukin signaling pathways were the most altered pathways in 22%, 16%, 12%, 10%, 9% and 9% of the CRC patients, respectively. These results would contribute to a better understanding of the colorectal cancer and in introducing personalized therapies for Egyptian CRC patients.
Collapse
Affiliation(s)
- Amira Salah El-Din Youssef
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Mai M. Lotfy
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Auhood Nassar
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | | | - Ahmed O. Touny
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| | - Mohammed Mohey Eldin
- Tropical Medicine Department, El Kasr Al-Aini, Cairo University, Cairo 11562, Egypt;
| | - Abeer A. Bahnassy
- Molecular Pathology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Hussein Khaled
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Abdel Rahman N. Zekri
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt; (M.M.L.); (A.N.); (Z.K.H.)
| |
Collapse
|
32
|
Wang Y, Wang X, Wang YX, Ma Y, Di Y. The Long-Noncoding RNA TUG1 Regulates Oxygen-Induced Retinal Neovascularization in Mice via MiR-299. Invest Ophthalmol Vis Sci 2022; 63:37. [PMID: 35084431 PMCID: PMC8802012 DOI: 10.1167/iovs.63.1.37] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The oxygen-induced retinal neovascularization mouse model closely approximates pathological changes associated with human retinal neovascularization-associated diseases, including retinopathies. We used this model and human retinal endothelial cells (HRECs) under hypoxia to explore the relationship between taurine upregulated gene-1 (TUG1), vascular endothelial growth factor (VEGF), and miR-299-3p on retinopathy of prematurity (ROP). Methods An oxygen-induced retinopathy (OIR) mouse model was established; the mice were divided into a normal control group, OIR group, TUG1 control group (lentivirus control), and TUG1-knockdown group. The apoptosis of retinal cells was evaluated using a TUNEL assay. Angiogenic, apoptotic, and inflammatory factors were detected by Western blot, immunohistochemistry, and immunofluorescence analyses. HRECs were cultured under hypoxia and assessed for VEGF expression, apoptosis, tubule formation, and migration ability. The relationship between TUG1, VEGF, and miR-299-3p was detected via a dual luciferase reporter gene assay. Results Intravitreal injection of TUG1 lentivirus reduced the inflammatory response in the mouse retinal tissue and markedly reduced pathological changes in the retina. Overexpression of miR-299 in HRECs reduced the apoptosis rate, tube formation, and migration ability of hypoxia-treated cells, thereby inhibiting the formation of new blood vessels. The dual luciferase reporter gene assay suggested that miR-299 has binding sites for TUG1 and VEGF. Conclusions TUG1 reduces the expression of VEGFA by competitively adsorbing miR-299-3p and facilitates the regulation of retinal neovascularization, suggesting that it may serve as a new therapeutic target for retinal neovascular diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue-Xia Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Ma
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Altaf S, Saleem F, Sher AA, Ali A. Potential therapeutic strategies to combat HCC. Curr Mol Pharmacol 2022; 15:929-942. [PMID: 34979895 DOI: 10.2174/1874467215666220103111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a complex, life threatening and most common neoplasm in the world. HCC tumors are genetically and phenotypically heterogeneous and involve various molecular mechanisms and stimulation of several signaling pathways such as Vascular Endothelial Growth Factor, Epidermal Growth Factor Receptors (EGFR), Insulin growth factor, Ras/extracellular signal-stimulated kinase, mammalian goal of rapamycin (mTOR), c-mesenchymal-epithelial transition factor-1 (c-Met), Hedgehog, Wnt and apoptotic signaling. Lately, in patient's multi-kinase cascade blockers such as sorafenib, selumetinib and regorafenib have increased survival rate of progressive HCC. This development presents a step forward towards the therapy of liver cancer infection and attests that molecular systemic rehabilitations can be useful in HCC treatment. The development of these systemic therapeutic agents has further expanded the research area for surplus molecular mediators to auxiliary increase cure rate of patients. This article reviews the complete consideration of focus on cascades, current enduring clinical tests by means of HCC therapeutic mediators, and imminent prospects in the cure of HCC.
Collapse
Affiliation(s)
- Sidra Altaf
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Faiza Saleem
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Azam Ali Sher
- Department of Epidemiology, Michigan State University, Michigan, USA
| | - Ashiq Ali
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
34
|
Xiao Y, Zhang Y, Li Y, Peng N, Liu Q, Qiu D, Cho J, Borlongan CV, Yu G. Exosomes Derived From Mesenchymal Stem Cells Pretreated With Ischemic Rat Heart Extracts Promote Angiogenesis via the Delivery of DMBT1. Cell Transplant 2022; 31:9636897221102898. [PMID: 35726847 PMCID: PMC9218457 DOI: 10.1177/09636897221102898] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have been shown to promote angiogenesis. Treating MSCs with ischemic rat brain extracts was sufficient to augment their benefits in stroke. However, no similar analyses of ischemic heart extracts have been performed to date. We aim to determine whether MSC-Exos derived from MSCs pretreated with ischemic rat heart extract were able to promote angiogenesis and to clarify underlying mechanisms. ELISA (enzyme-linked immunosorbent assay) of heart extracts revealed a significant increase of vascular endothelial growth factor (VEGF) at 24 h post-MI (myocardial infarction) modeling, and time-dependent decreases in hypoxia inducible factor-1α (HIF-1α). MTT and wound healing assays revealed human umbilical vein endothelial cells (HUVECs) migration and proliferation increased following MSCE-Exo treatment (exosomes derived from MSC pretreated with ischemic heart extracts of 24 h post-MI) relative to MSCN-Exo treatment (exosomes derived from MSC pretreated with normal heart extracts). Proteomic analyses of MSCE-Exo and MSCN-Exo were conducted to screen for cargo proteins promoting angiogenesis. Result revealed several angiogenesis-related proteins were upregulated in MSCE-Exo, including DMBT1 (deleted in malignant brain tumors 1). When DMBT1 was silenced in MSCs, HUVECs with MSCDMBT1 RNAi-Exo treatment exhibited impaired proliferative and migratory activity and reductions of DMBT1, p-Akt, β-catenin, and VEGF. To explore how ischemic heart extracts took effects, ELISA was conducted showing a significant increase of IL-22 at 24 h post-MI modeling. P-STAT3, IL22RA1, DMBT1, and VEGF proteins were increased in MSCE relative to MSCN, and VEGF and DMBT1 were increased in MSCE-Exos. Together, these suggest that IL-22 upregulation in ischemic heart extracts can increase DMBT1 in MSCs. Exosomes derived from those MSCs deliver DMBT1 to HUVECs, thereby enhancing their migratory and proliferative activity.
Collapse
Affiliation(s)
- Yi Xiao
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhang Li
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Nanyin Peng
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Liu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Danyang Qiu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| | - Justin Cho
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Guolong Yu
- Division of Cardiovascular, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
36
|
Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, Chai Y, Xu J, Zheng X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:415. [PMID: 34294121 PMCID: PMC8296592 DOI: 10.1186/s13287-021-02487-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02487-3.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
37
|
Li S. Anlotinib: A Novel Targeted Drug for Bone and Soft Tissue Sarcoma. Front Oncol 2021; 11:664853. [PMID: 34094958 PMCID: PMC8173120 DOI: 10.3389/fonc.2021.664853] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Bone and soft tissue sarcomas account for approximately 15% of pediatric solid malignant tumors and 1% of adult solid malignant tumors. There are over 50 subtypes of sarcomas, each of which is notably heterogeneous and manifested by remarkable phenotypic and morphological variability. Anlotinib is a novel oral tyrosine kinase inhibitor (TKI) targeting c-kit, platelet-derived growth factor receptors, fibroblast growth factor receptor, and vascular endothelial growth factor receptor. In comparison with the placebo, anlotinib was associated with better overall survival and progression-free survival (PFS) in a phase III trial of patients with advanced non-small cell lung cancer (NSCLC), albeit with cancer progression after two previous lines of treatment. Recently, the National Medical Products Administration approved anlotinib monotherapy as a third-line treatment for patients with advanced NSCLC. Additionally, a phase IIB randomized trial substantiated that anlotinib is associated with a significant longer median PFS in patients with advanced soft tissue sarcoma. Moreover, anlotinib is also effective in patients with advanced medullary thyroid carcinoma and metastatic renal cell carcinoma. Anlotinib has similar tolerability to other TKIs targeting vascular endothelial growth factor receptors and other tyrosine kinase-mediated pathways. However, anlotinib has a notably lower rate of side effects ≥grade 3 relative to sunitinib. This review discussed the remarkable characteristics and major dilemmas of anlotinib as a targeted therapy for sarcomas.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.,Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), Shenyang, China
| |
Collapse
|
38
|
Picciolo G, Mannino F, Irrera N, Altavilla D, Minutoli L, Vaccaro M, Arcoraci V, Squadrito V, Picciolo G, Squadrito F, Pallio G. PDRN, a natural bioactive compound, blunts inflammation and positively reprograms healing genes in an "in vitro" model of oral mucositis. Biomed Pharmacother 2021; 138:111538. [PMID: 34311536 DOI: 10.1016/j.biopha.2021.111538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023] Open
Abstract
Oral mucositis is a side effect hard to treat following high dose chemotherapy or radiotherapy. Adenosine A2A receptor stimulation blocks NF-κB and boosts the Wnt/β-catenin signaling, thus blunting inflammation and triggering growth factor codifying genes. Polydeoxyribonucleotide (PDRN) is a registered drug that activates the A2A receptor. Therefore, the aim of this study was to evaluate PDRN effects in an "in vitro" model of oral mucositis induced by prompting an inflammatory phenotype in human gingival fibroblasts (GF) and human oral mucosal epithelial cells (EC). GF and EC were stimulated with LPS (2 μg/ml) alone or in combination with i) PDRN (100 μg/ml); ii) PDRN plus ZM241385 (1 μM) as an A2AR antagonist; iii) CGS21680 (1 μM) as an A2AR agonist. LPS boosted NF-κB, TNF-α and IL-6 expression, decreased IL-10 levels and downregulated both Wnt/β-catenin, VEGF and EGF expression. PDRN reverted the LPS-induced phenotype as well as CGS21680. Co-incubation with ZM241385 abolished PDRN effects, thus confirming A2A receptor involvement in PDRN mechanism of action. These results suggest that PDRN efficacy may be due to a "dual mode" of action: NF-κB inhibition and Wnt/β-catenin signaling activation. However, these interesting findings need to be confirmed by animal and clinical studies.
Collapse
Affiliation(s)
- Giacomo Picciolo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy; SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Violetta Squadrito
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Giuseppe Picciolo
- SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy; SunNutraPharma, Academic Spin-Off Company of the University of Messina, Via C. Valeria, 98125 Messina, Italy.
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|