1
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
2
|
Lu G, Li J, Gao T, Liu Q, Chen O, Zhang X, Xiao M, Guo Y, Wang J, Tang Y, Gu J. Integration of dietary nutrition and TRIB3 action into diabetes mellitus. Nutr Rev 2024; 82:361-373. [PMID: 37226405 PMCID: PMC10859691 DOI: 10.1093/nutrit/nuad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Song Y, Lee D, Choi J, Lee JW, Hong K. Genome-wide association and replication studies for handedness in a Korean community-based cohort. Brain Behav 2023; 13:e3121. [PMID: 37337823 PMCID: PMC10498080 DOI: 10.1002/brb3.3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Handedness is a conspicuous characteristic in human behavior, with a worldwide proportion of approximately 90% of people preferring to use the right hand for many tasks. In the Korean population, the proportion of left-handedness is relatively low at approximately 7%-10%, similar to that in other East-Asian cultures in which the use of the left hand for writing and other public activities has historically been oppressed. METHODS In this study, we conducted two genome-wide association studies (GWASs) between right-handedness and left-handedness, and between right-handedness and ambidexterity using logistic regression analyses using a Korean community-based cohort. We also performed association analyses with previously reported variants and our findings. RESULTS A total of 8806 participants were included for analysis, and the results identified 28 left-handedness-associated and 15 ambidexterity-associated loci; of these, two left-handedness loci (NEIL3 [rs11726465] and SVOPL [rs117495448]) and one ambidexterity locus (PDE8B/WDR41 [rs118077080]) showed near genome-wide significance. Association analyses with previously reported variants replicated ANKS1B (rs7132513) in left-handedness and ANKIB1 (rs2040498) in ambidexterity. CONCLUSION The variants and positional candidate genes identified and replicated in this study were largely associated with brain development, cerebral asymmetry, neurological processes, and neuropsychiatric diseases in line with previous findings. As the first East-Asian GWAS related to handedness, these results may provide an intriguing reference for further human neurologic research in the future.
Collapse
Affiliation(s)
- Youhyun Song
- Department of Family MedicineGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
- Healthcare Research Team, Health Promotion CenterGangnam Severance HospitalYonsei University College of MedicineSeoulSouth Korea
| | - Dasom Lee
- Theragen Bio Co. Ltd.Gyeonggi‐doSouth Korea
| | | | - Ji Won Lee
- Department of Family MedicineSeverance HospitalYonsei University College of MedicineSeoulSouth Korea
- Institute for Innovation in Digital HealthcareYonsei UniversitySeoulSouth Korea
| | | |
Collapse
|
4
|
Velasco G, Link W. Pseudokinases, Tribbles Proteins and Cancer. Cancers (Basel) 2023; 15:3547. [PMID: 37509210 PMCID: PMC10376989 DOI: 10.3390/cancers15143547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The human kinome comprises 518 protein kinases, of which approximately 10% lack one or more of the conserved amino acids necessary for catalytic activity [...].
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
5
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
6
|
Wang K, Liufu S, Yu Z, Xu X, Ai N, Li X, Liu X, Chen B, Zhang Y, Ma H, Yin Y. miR-100-5p Regulates Skeletal Muscle Myogenesis through the Trib2/mTOR/S6K Signaling Pathway. Int J Mol Sci 2023; 24:ijms24108906. [PMID: 37240251 DOI: 10.3390/ijms24108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play crucial regulatory roles in many biological processes, including the growth and development of skeletal muscle. miRNA-100-5p is often associated with tumor cell proliferation and migration. This study aimed to uncover the regulatory mechanism of miRNA-100-5p in myogenesis. In our study, we found that the miRNA-100-5p expression level was significantly higher in muscle tissue than in other tissues in pigs. Functionally, this study shows that miR-100-5p overexpression significantly promotes the proliferation and inhibits the differentiation of C2C12 myoblasts, whereas miR-100-5p inhibition results in the opposite effects. Bioinformatic analysis predicted that Trib2 has potential binding sites for miR-100-5p at the 3'UTR region. A dual-luciferase assay, qRT-qPCR, and Western blot confirmed that Trib2 is a target gene of miR-100-5p. We further explored the function of Trib2 in myogenesis and found that Trib2 knockdown markedly facilitated proliferation but suppressed the differentiation of C2C12 myoblasts, which is contrary to the effects of miR-100-5p. In addition, co-transfection experiments demonstrated that Trib2 knockdown could attenuate the effects of miR-100-5p inhibition on C2C12 myoblasts differentiation. In terms of the molecular mechanism, miR-100-5p suppressed C2C12 myoblasts differentiation by inactivating the mTOR/S6K signaling pathway. Taken together, our study results indicate that miR-100-5p regulates skeletal muscle myogenesis through the Trib2/mTOR/S6K signaling pathway.
Collapse
Affiliation(s)
- Kaiming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zonggang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xueli Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nini Ai
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
7
|
Popovic R, Yu Y, Leal NS, Fedele G, Loh SHY, Martins LM. Upregulation of Tribbles decreases body weight and increases sleep duration. Dis Model Mech 2023; 16:dmm049942. [PMID: 37083954 PMCID: PMC10151826 DOI: 10.1242/dmm.049942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
Eukaryotic Tribbles proteins are pseudoenzymes that regulate multiple aspects of intracellular signalling. Both Drosophila melanogaster and mammalian members of this family of pseudokinases act as negative regulators of insulin signalling. Mammalian tribbles pseudokinase (TRIB) genes have also been linked to insulin resistance and type 2 diabetes mellitus. Type 2 diabetes mellitus is associated with increased body weight, sleep problems and increased long-term mortality. Here, we investigated how manipulating the expression of Tribbles impacts body weight, sleep and mortality. We showed that the overexpression of Drosophila tribbles (trbl) in the fly fat body reduces both body weight and lifespan in adult flies without affecting food intake. Furthermore, it decreases the levels of Drosophila insulin-like peptide 2 (DILP2; ILP2) and increases night-time sleep. The three genes encoding TRIBs of mammals, TRIB1, TRIB2 and TRIB3, show both common and unique features. As the three human TRIB genes share features with Drosophila trbl, we further explored the links between TRIB genetic variants and both body weight and sleep in the human population. We identified associations between the polymorphisms and expression levels of the pseudokinases and markers of body weight and sleep duration. We conclude that Tribbles pseudokinases are involved in the control of body weight, lifespan and sleep.
Collapse
Affiliation(s)
- Rebeka Popovic
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nuno Santos Leal
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Giorgio Fedele
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Samantha H. Y. Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
8
|
Ma B, Zhang W, Wang X, Jiang H, Tang L, Yang W, Kang Q, Cao J. Polymorphisms in TRIB2 and CAPRIN2 Genes Contribute to the Susceptibility to High Myopia-Induced Cataract in Han Chinese Population. Med Sci Monit 2023; 29:e937702. [PMID: 36710479 PMCID: PMC9896844 DOI: 10.12659/msm.937702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myopia has been shown to be associated with many pathological complications including cataracts, and previous evidence supported that high myopia facilitates the formation of cataracts. However, no studies have identified a link between the genetic susceptibility of high myopia-induced cataracts (HMC) and the underlying genetic mechanisms. Our study aimed to determine how the TRIB2 and CAPRIN2 genes correlate to the risk of HMC. MATERIAL AND METHODS In total, we successfully recruited 3162 participants, including 1026 participants with high myopia and cataracts and 2136 controls with high myopia only. For genotyping, 22 tag single nucleotide polymorphisms (SNPs) in TRIB2 and CAPRIN2 genes were chosen. Single marker association analysis and functional effects of significant SNPs were carried out. RESULTS Strong correlation signals were captured for SNP rs890069 (χ²=22.13, P=2.55×10-6) in TRIB2 and SNP rs17739338 (χ²=16.07, P=6.10×10-5) in CAPRIN2. In patients with high myopia, the C allele at SNP rs890069 was strongly linked to cataract risk (OR [95% CI]=1.36 [1.20-1.55]). In patients with high myopia, the T allele at SNP rs17739338 was significantly related to a lower risk of cataract (OR [95% CI]=0.54 [0.40-0.74]). In different types of human tissues, SNPs rs890069 and rs17739338 were found to be significantly correlated to the levels of TRIB2 and CAPRIN2 gene expression. CONCLUSIONS Our study indicated that both TRIB2 and CAPRIN2 genes conferred the susceptibility to cataract in patients with high myopia and Chinese Han ancestry. Future research remains necessary for fully understanding the pathogenic mechanisms and genetic characteristics of cataract.
Collapse
Affiliation(s)
- Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Wenpei Zhang
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Xiaochen Wang
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Huili Jiang
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| | - Li Tang
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| | - Wen Yang
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| | - Qianyan Kang
- Department of Ophthalmology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, PR China
| | - Juan Cao
- Department of Ophthalmology, Xi’an Fourth Hospital, Xi’an, Shaanxi, PR China
| |
Collapse
|
9
|
TRIB3 Modulates PPARγ-Mediated Growth Inhibition by Interfering with the MLL Complex in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms231810535. [PMID: 36142452 PMCID: PMC9503934 DOI: 10.3390/ijms231810535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Aberrant expression or activity of proteins are amongst the best understood mechanisms that can drive cancer initiation and progression, as well as therapy resistance. TRIB3, a member of the Tribbles family of pseudokinases, is often dysregulated in cancer and has been associated with breast cancer initiation and metastasis formation. However, the underlying mechanisms by which TRIB3 contributes to these events are unclear. In this study, we demonstrate that TRIB3 regulates the expression of PPARγ, a transcription factor that has gained attention as a potential drug target in breast cancer for its antiproliferative actions. Proteomics and phosphoproteomics analyses together with classical biochemical assays indicate that TRIB3 interferes with the MLL complex and reduces MLL-mediated H3K4 trimethylation of the PPARG locus, thereby reducing PPARγ mRNA expression. Consequently, the overexpression of TRIB3 blunts the antiproliferative effect of PPARγ ligands in breast cancer cells, while reduced TRIB3 expression gives the opposite effect. In conclusion, our data implicate TRIB3 in epigenetic gene regulation and suggest that expression levels of this pseudokinase may serve as a predictor of successful experimental treatments with PPARγ ligands in breast cancer.
Collapse
|
10
|
Yoshida T, Aonuma H, Otsuka S, Ichimura H, Saiki E, Hashimoto K, Ote M, Matsumoto S, Iwadate K, Miyawaki T, Kanuka H. A human tissue-based assay identifies a novel carrion blowfly strain for maggot debridement therapy. Sci Rep 2022; 12:12191. [PMID: 35842442 PMCID: PMC9288425 DOI: 10.1038/s41598-022-16253-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Maggot debridement therapy (MDT) is a form of therapeutic wound treatment in which live fly larvae are used intentionally to debride necrotic tissues. MDT has been widely used to treat chronic wounds in humans or animals, such as diabetic foot ulcers. Larvae of a carrion blowfly, Lucilia sericata (green bottle fly), debride wounds by consuming necrotic tissue and removing pathogenic bacteria, promoting effective wound healing. Most medical L. sericata strains were initially collected from natural environments using animal meat as bait and reared on artificial protein-rich media or ground meat. It remains to be examined which strain would be more appropriate for MDT, whereas any method for evaluating the fly’s therapeutic potential in humans has not been available. A feeding assay was developed using minced human tissues obtained from surgical waste. To establish L. sericata strains highly eligible for MDT, carrion fly larvae were collected from 45 corpses subjected to forensic autopsy (such as decomposed bodies). Four corpse-derived L. sericata strains were obtained and evaluated using the feeding assay. One strain showed that its feeding activity was 1.4 times higher than the control strain used in conventional MDT. The body length of the adult fly of the corpse-derived strain was longer than the control, which was consistent with the observation that its cell size was enlarged. The human tissue-based assay developed in this study accurately evaluated the ability of fly larvae to debride necrotic wounds. The L. sericata strain newly established from human corpses harboring high feeding activity may offer a clinically significant improvement in MDT.
Collapse
Affiliation(s)
- Takuma Yoshida
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan.,Department of Plastic and Reconstructive Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroka Aonuma
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Saori Otsuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetoshi Ichimura
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Erisha Saiki
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan.,Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Kosei Hashimoto
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Manabu Ote
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sari Matsumoto
- Department of Forensic Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kimiharu Iwadate
- Department of Forensic Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeshi Miyawaki
- Department of Plastic and Reconstructive Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan. .,Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Abstract
Tribbles proteins are pervasive pseudokinases in cellular signaling. They play a major role in the differentiation of myeloid cells, hepatocytes and adipocytes, and more widely in immune function, metabolism and cancer. Like many other pseudokinases, an inherent lack of catalytic activity has meant that a specialized cadre of techniques has been required to investigate Tribbles function. A prerequisite to most in vitro biochemistry has been robust methods for purifying useful quantities of Tribbles protein, which can sometimes exhibit non-optimal behavior upon recombinant expression. For instance, structural studies of the Tribbles family have largely focused on TRIB1, in part because of more readily available protein. Here we describe methods we have developed to routinely produce milligram quantities of TRIB1, and specific considerations when employing TRIB1 protein for various downstream analyses. Namely, we describe preparation and crystallization of TRIB1 for structural studies, and using fluorescence polarization and isothermal titration calorimetry to analyze interactions with TRIB1. We hope that applying these considerations can facilitate further understanding of TRIB1 function, specifically, and can be selectively applied to improve studies of other Tribbles proteins and pseudokinases more generally.
Collapse
|
12
|
Deletion of TRIB3 disrupts the tumor progression induced by integrin αvβ3 in lung cancer. BMC Cancer 2022; 22:459. [PMID: 35473511 PMCID: PMC9044834 DOI: 10.1186/s12885-022-09593-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrin αvβ3 has been proposed as crucial determinant for tumor sustained progression and a molecular marker for the estimation of tumor angiogenesis. Our study suggested that integrin αvβ3 could efficiently promote lung cancer cell proliferation and stem-like phenotypes in a tribbles homolog 3 (TRIB3) dependent manner. RESULT Integrin αvβ3 could mediate the activation of FAK/AKT pro-survival signaling pathway. Meanwhile, activated TRIB3 interacted with AKT to upregulated FOXO1 and SOX2 expression, resulting in sustained tumor progression in lung cancer. Our further analysis revealed that TRIB3 was significantly upregulated in lung tumor tissues and correlated with the poor outcome in clinical patients, indicating the potential role of TRIB3 in diagnostic and prognostic estimation for patients with lung cancer. CONCLUSION Our study showed here for the first time that integrin αvβ3 promote lung cancer development by activating the FAK/AKT/SOX2 axis in a TRIB3 dependent signaling pathway, and interrupting TRIB3/AKT interaction significantly improved the outcome of chemotherapy in tumor-bearing mice, representing a promising therapeutic strategy in lung cancer.
Collapse
|
13
|
Ruiz-Cantos M, Hutchison CE, Shoulders CC. Musings from the Tribbles Research and Innovation Network. Cancers (Basel) 2021; 13:cancers13184517. [PMID: 34572744 PMCID: PMC8467127 DOI: 10.3390/cancers13184517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
This commentary integrates historical and modern findings that underpin our understanding of the cell-specific functions of the Tribbles (TRIB) proteins that bear on tumorigenesis. We touch on the initial discovery of roles played by mammalian TRIB proteins in a diverse range of cell-types and pathologies, for example, TRIB1 in regulatory T-cells, TRIB2 in acute myeloid leukaemia and TRIB3 in gliomas; the origins and diversity of TRIB1 transcripts; microRNA-mediated (miRNA) regulation of TRIB1 transcript decay and translation; the substantial conformational changes that ensue on binding of TRIB1 to the transcription factor C/EBPα; and the unique pocket formed by TRIB1 to sequester its C-terminal motif bearing a binding site for the E3 ubiquitin ligase COP1. Unashamedly, the narrative is relayed through the perspective of the Tribbles Research and Innovation Network, and its establishment, progress and future ambitions: the growth of TRIB and COP1 research to hasten discovery of their cell-specific contributions to health and obesity-related cancers.
Collapse
|