1
|
Shimi G. Dietary approaches for controlling cancer by limiting the Warburg effect: a review. Nutr Rev 2024; 82:1281-1291. [PMID: 37903372 DOI: 10.1093/nutrit/nuad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Cancer is a mysterious disease. Among other alterations, tumor cells, importantly, have metabolic modifications. A well-known metabolic modification commonly observed in cancer cells has been termed the Warburg effect. This phenomenon is defined as a high preference for glucose uptake, and increased lactate production from that glucose, even when oxygen is readily available. Some anti-cancer drugs target the proposed Warburg effect, and some dietary regimens can function similarly. However, the most suitable dietary strategies for treating particular cancers are not yet well understood. The aim of this review was to describe findings regarding the impact of various proposed dietary regimens targeting the Warburg effect. The evidence suggests that combining routine cancer therapies with diet-based strategies may improve the outcome in treating cancer. However, designing individualized therapies must be our ultimate goal.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
3
|
Pio R, Senent Y, Tavira B, Ajona D. Fasting and fasting-mimicking conditions in the cancer immunotherapy era. J Physiol Biochem 2024:10.1007/s13105-024-01020-3. [PMID: 38587595 DOI: 10.1007/s13105-024-01020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Fasting and fasting-mimicking conditions modulate tumor metabolism and remodel the tumor microenvironment (TME), which could be exploited for the treatment of tumors. A body of evidence demonstrates that fasting and fasting-mimicking conditions can kill cancer cells, or sensitize them to the antitumor activity of standard-of-care drugs while protecting normal cells against their toxic side effects. Pre- and clinical data also suggest that immune responses are involved in these therapeutic effects. Therefore, there is increasing interest in evaluating the impact of fasting-like conditions in the efficacy of antitumor therapies based on the restoration or activation of antitumor immune responses. Here, we review the recent progress in the intersection of fasting-like conditions and current cancer treatments, with an emphasis on cancer immunotherapy.
Collapse
Affiliation(s)
- Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Yaiza Senent
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Beatriz Tavira
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain.
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
4
|
Zhang PF, Xie D. Targeting the gut microbiota to enhance the antitumor efficacy and attenuate the toxicity of CAR-T cell therapy: a new hope? Front Immunol 2024; 15:1362133. [PMID: 38558812 PMCID: PMC10978602 DOI: 10.3389/fimmu.2024.1362133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous efficacy in the treatment of hematologic malignancies and represents a promising treatment regimen for cancer. Despite the striking response in patients with hematologic malignancies, most patients with solid tumors treated with CAR-T cells have a low response rate and experience major adverse effects, which indicates the need for biomarkers that can predict and improve clinical outcomes with future CAR-T cell treatments. Recently, the role of the gut microbiota in cancer therapy has been established, and growing evidence has suggested that gut microbiota signatures may be harnessed to personally predict therapeutic response or adverse effects in optimizing CAR-T cell therapy. In this review, we discuss current understanding of CAR-T cell therapy and the gut microbiota, and the interplay between the gut microbiota and CAR-T cell therapy. Above all, we highlight potential strategies and challenges in harnessing the gut microbiota as a predictor and modifier of CAR-T cell therapy efficacy while attenuating toxicity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Gastric Cancer Center, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Xie
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
5
|
David A, Lev-Ari S. Targeting the Gut Microbiome to Improve Immunotherapy Outcomes: A Review. Integr Cancer Ther 2024; 23:15347354241269870. [PMID: 39223798 PMCID: PMC11369881 DOI: 10.1177/15347354241269870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/18/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The following narrative review embarks on a comprehensive exploration of the role played by the gut microbiome within the Diet-Microbiota-Immunity (DMI) tripartite, aiming to enhance anti-cancer immunotherapy efficacy. While revolutionizing cancer treatment, resistance to immunotherapy and immune-related adverse events (irAEs) remain challenges. The tumor microenvironment (TME), shaped by cancer cells, influences immunotherapy resistance. The gut microbiome, influenced by genetics, environment, diet, and interventions, emerges as a critical player in TME reshaping, thereby modulating immune responses and treatment outcomes. Dietary patterns like the Mediterranean diet, caloric restriction modifications, and specific nutritional components show promise in influencing the tumor microenvironment and gut microbiome for better treatment outcomes. Antibiotics, disrupting gut microbiota diversity, may compromise immunotherapy efficacy. This review emphasizes the need for tailored nutritional strategies to manipulate microbial communities, enhance immune regulation, and improve immunotherapy accessibility while minimizing side effects. Ongoing studies investigate the impact of dietary interventions on cancer immunotherapy, pointing toward promising developments in personalized cancer care. This narrative review synthesizes existing knowledge and charts a course for future investigations, presenting a holistic perspective on the dynamic interplay between dietary interventions, the gut microbiome, and cancer immunotherapy within the DMI tripartite.
Collapse
Affiliation(s)
- Adi David
- Tal Center for Integrative Medicine, Institute of Oncology, Sheba Medical Center, Ramat-Gan, Israel
| | - Shaked Lev-Ari
- Ella Lemelbaum Institute For Immuno-Oncology, Sheba Medical Center, Ramat-Gan, Israel
- Education Authority, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
6
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Isaac-Lam MF, DeMichael KM. Calorie restriction and breast cancer treatment: a mini-review. J Mol Med (Berl) 2022; 100:1095-1109. [PMID: 35760911 DOI: 10.1007/s00109-022-02226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Calorie restriction (CR), referred to as a reduction in dietary calorie intake without malnutrition, has been demonstrated to be a safe way to extend longevity of yeast, worms, and laboratory animals, and to decrease the risk factors in age-related diseases including cancer in humans. Pre-clinical studies in animal models demonstrated that CR may enhance the efficacy of chemotherapy, radiation therapy, and immunotherapy during breast cancer treatment. Reduced calorie intake ameliorates risk factors and delays the onset of cancer by altering metabolism and fostering health-enhancing characteristics including increased autophagy and insulin sensitivity, and decreased blood glucose levels, inflammation, angiogenesis, and growth factor signaling. CR is not a common protocol implemented by medical practitioners to the general public due to the lack of substantial clinical studies. Future research and clinical trials are urgently needed to understand fully the biochemical basis of CR or CR mimetics to support its benefits. Here, we present a mini-review of research studies integrating CR as an adjuvant to chemotherapy, radiation therapy, or immunotherapy during breast cancer treatment.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA.
| | - Kelly M DeMichael
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA
| |
Collapse
|
8
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity. Cancers (Basel) 2022; 14:cancers14061390. [PMID: 35326541 PMCID: PMC8946179 DOI: 10.3390/cancers14061390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Stimulating our body’s own immune response to fight cancer is important for the success of cancer treatment in general. To further improve current cancer therapy, preclinical research shows that short-term fasting diets enhance cancer therapy efficacy, such as chemotherapy. Short-term fasting diets are low-caloric and low in protein for 3–5 days; they are usually done every couple of weeks. This review summarizes preclinical and clinical evidence of fasting diets synergizing with cancer therapy by boosting antitumor immunity. Abstract Short-term fasting (STF), using a low caloric, low protein fasting mimicking diet (FMD), appears to be a promising strategy to enhance chemotherapy-based cancer efficacy, while potentially alleviating toxicity. Preclinical results suggest that enhanced tumor immunity and decreased growth signaling, via lowering of circulating insulin and insulin growth factor 1 (IGF-1) levels form the potential underlying mechanisms. STF may boost anti-tumor responses by promoting tumor immunogenicity and decreasing local immunosuppression. These findings warrant further studies focused on the combination of STF, not only with chemotherapy, but also with immunotherapy to evaluate the full range of benefits of STF in cancer treatment. Here, we delineate the underlying anticancer mechanisms of fasting. We summarize preclinical evidence of STF boosting antitumor immunity and alleviating immunosuppression, as well as the clinical findings reporting the immunomodulatory effects of STF during various cancer treatments, including immunotherapy.
Collapse
|
10
|
Collins N, Belkaid Y. Control of immunity via nutritional interventions. Immunity 2022; 55:210-223. [PMID: 35139351 DOI: 10.1016/j.immuni.2022.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022]
Abstract
Nutrition affects all physiological processes including those linked to the development and function of our immune system. Here, we discuss recent evidence and emerging concepts supporting the idea that our newfound relationship with nutrition in industrialized countries has fundamentally altered the way in which our immune system is wired. This will be examined through the lens of studies showing that mild or transient reductions in dietary intake can enhance protective immunity while also limiting aberrant inflammatory responses. We will further discuss how trade-offs and priorities begin to emerge in the context of severe nutritional stress. In those settings, specific immunological functions are heightened to re-enforce processes and tissue sites most critical to survival. Altogether, these examples will emphasize the profound influence nutrition has over the immune system and highlight how a mechanistic exploration of this cross talk could ultimately lead to the design of novel therapeutic approaches that prevent and treat disease.
Collapse
Affiliation(s)
- Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Stirling ER, Bronson SM, Mackert JD, Cook KL, Triozzi PL, Soto-Pantoja DR. Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells 2022; 11:179. [PMID: 35011741 PMCID: PMC8750774 DOI: 10.3390/cells11010179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/29/2022] Open
Abstract
Expression of immune checkpoint proteins restrict immunosurveillance in the tumor microenvironment; thus, FDA-approved checkpoint inhibitor drugs, specifically PD-1/PD-L1 and CTLA-4 inhibitors, promote a cytotoxic antitumor immune response. Aside from inflammatory signaling, immune checkpoint proteins invoke metabolic reprogramming that affects immune cell function, autonomous cancer cell bioenergetics, and patient response. Therefore, this review will focus on the metabolic alterations in immune and cancer cells regulated by currently approved immune checkpoint target proteins and the effect of costimulatory receptor signaling on immunometabolism. Additionally, we explore how diet and the microbiome impact immune checkpoint blockade therapy response. The metabolic reprogramming caused by targeting these proteins is essential in understanding immune-related adverse events and therapeutic resistance. This can provide valuable information for potential biomarkers or combination therapy strategies targeting metabolic pathways with immune checkpoint blockade to enhance patient response.
Collapse
Affiliation(s)
- Elizabeth R. Stirling
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
| | - Steven M. Bronson
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jessica D. Mackert
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Pierre L. Triozzi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Hematology and Oncology, Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - David R. Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.R.S.); (K.L.C.); (P.L.T.)
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest School of Medicine Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
12
|
Clifton KK, Ma CX, Fontana L, Peterson LL. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J Clin 2021; 71:527-546. [PMID: 34383300 DOI: 10.3322/caac.21694] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic caloric restriction (CR) has powerful anticarcinogenic actions in both preclinical and clinical studies but may be difficult to sustain. As an alternative to CR, there has been growing interest in intermittent fasting (IF) in both the scientific and lay community as a result of promising study results, mainly in experimental animal models. According to a survey by the International Food Information Council Foundation, IF has become the most popular diet in the last year, and patients with cancer are seeking advice from oncologists about its beneficial effects for cancer prevention and treatment. However, as discussed in this review, results from IF studies in rodents are controversial and suggest potential detrimental effects in certain oncologic conditions. The effects of IF on human cancer incidence and prognosis remain unknown because of a lack of high-quality randomized clinical trials. Preliminary studies suggest that prolonged fasting in some patients who have cancer is safe and potentially capable of decreasing chemotherapy-related toxicity and tumor growth. However, because additional trials are needed to elucidate the risks and benefits of fasting for patients with cancer, the authors would not currently recommend patients undergoing active cancer treatment partake in IF outside the context of a clinical trial. IF may be considered in adults seeking cancer-prevention benefits through means of weight management, but whether IF itself affects cancer-related metabolic and molecular pathways remains unanswered.
Collapse
Affiliation(s)
- Katherine K Clifton
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Cynthia X Ma
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Department of Clinical and Experimental Sciences, Brescia University, Brescia, Italy
| | - Lindsay L Peterson
- School of Medicine, Division of Medical Oncology, Washington University in St Louis, St Louis, Missouri
| |
Collapse
|
13
|
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front Nutr 2021; 8:717343. [PMID: 34552954 PMCID: PMC8450594 DOI: 10.3389/fnut.2021.717343] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
The human diet and dietary patterns are closely linked to the health status. High-calorie Western-style diets have increasingly come under scrutiny as their caloric load and composition contribute to the development of non-communicable diseases, such as diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-reduced and health-promoting diets have shown promising results in maintaining health and reducing disease burden throughout aging. More recently, pharmacological Caloric Restriction Mimetics (CRMs) have gained interest of the public and scientific community as promising candidates that mimic some of the myriad of effects induced by caloric restriction. Importantly, many of the CRM candidates activate autophagy, prolong life- and healthspan in model organisms and ameliorate diverse disease symptoms without the need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine), hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g., resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify as CRM candidates, which are naturally available via foods and beverages. However, it is yet unclear how these bioactive substances contribute to the benefits of healthy diets. In this review, we thus discuss dietary sources, availability and intake levels of dietary CRMs. Finally, since translational research on CRMs has entered the clinical stage, we provide a summary of their effects in clinical trials.
Collapse
Affiliation(s)
- Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|