1
|
Wang L, Wen X, Yang Y, Hu Z, Jiang J, Duan L, Liao X, He Y, Liu Y, Wang J, Liang Z, Zhu X, Liu Q, Liu T, Luo D. CRISPR/Cas13a-based supersensitive circulating tumor DNA assay for detecting EGFR mutations in plasma. Commun Biol 2024; 7:657. [PMID: 38806596 PMCID: PMC11133305 DOI: 10.1038/s42003-024-06368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Despite recent technological advancements in cell tumor DNA (ctDNA) mutation detection, challenges persist in identifying low-frequency mutations due to inadequate sensitivity and coverage of current procedures. Herein, we introduce a super-sensitivity and specificity technique for detecting ctDNA mutations, named HiCASE. The method utilizes PCR-based CRISPR, coupled with the restriction enzyme. In this work, HiCASE focuses on testing a series of EGFR mutations to provide enhanced detection technology for non-small cell lung cancer (NSCLC), enabling a detection sensitivity of 0.01% with 40 ng cell free DNA standard. When applied to a panel of 140 plasma samples from 120 NSCLC patients, HiCASE exhibits 88.1% clinical sensitivity and 100% specificity with 40 μL of plasma, higher than ddPCR and Super-ARMS assay. In addition, HiCASE can also clearly distinguish T790M/C797S mutations in different positions at a 1% variant allele frequency, offering valuable guidance for drug utilization. Indeed, the established HiCASE assay shows potential for clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiaosha Wen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, PR China
- Shenzhen University Medical School, Shenzhen, 518060, PR China
| | - Yang Yang
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, PR China
- Shenzhen University Medical School, Shenzhen, 518060, PR China
| | - Zheng Hu
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou, 423000, PR China
| | - Jing Jiang
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou, 423000, PR China
| | - Lili Duan
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou, 423000, PR China
| | - Xiaofen Liao
- Translational Medicine Institute, the First People's Hospital of Chenzhou Affiliated to University of South China, Chenzhou, 423000, PR China
| | - Yan He
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, PR China
- Shenzhen University Medical School, Shenzhen, 518060, PR China
| | - Yaru Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, PR China
- Shenzhen University Medical School, Shenzhen, 518060, PR China
| | - Jing Wang
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, PR China
- Shenzhen University Medical School, Shenzhen, 518060, PR China
| | - Zhikun Liang
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, 510665, PR China
| | - Xiaoya Zhu
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, 510665, PR China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, PR China.
- Shenzhen University Medical School, Shenzhen, 518060, PR China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, PR China.
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, 518052, PR China.
- Shenzhen University Medical School, Shenzhen, 518060, PR China.
| |
Collapse
|
2
|
Valentini V, Bucalo A, Conti G, Celli L, Porzio V, Capalbo C, Silvestri V, Ottini L. Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers (Basel) 2024; 16:579. [PMID: 38339330 PMCID: PMC10854694 DOI: 10.3390/cancers16030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Ludovica Celli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
- Medical Oncology Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| |
Collapse
|
3
|
Xu Z, Gao L, Xu D, Yang D, Chen Z, Wang Y. Clinical features of Streptococcus intermedius infection in children: a case series study. Front Microbiol 2023; 14:1207490. [PMID: 37608948 PMCID: PMC10440951 DOI: 10.3389/fmicb.2023.1207490] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Streptococcus intermedius is an opportunistic pathogen associated with prolonged hospital stays and high mortality rates in adults. However, little is currently known about the clinical features of Streptococcus intermedius infection in children. Methods This retrospective case series study included 40 children diagnosed with Streptococcus intermedius, confirmed through bacterial cultures or high-throughput sequencing. Antibiotic resistance was assessed through susceptibility testing. The site and clinical manifestations were evaluated for all patients. Results The common infection sites were the abdominal cavity, skin and soft tissue, intracranial, and invasive pulmonary, with the abdominal cavity being the most frequently affected. The drug susceptibility test showed 100% sensitivity to ceftriaxone, levofloxacin, chloramphenicol, vancomycin, and linezolid, 92.6% sensitivity to penicillin, 73.3% resistance to erythromycin, and 76.7% resistance to clindamycin. Besides antibiotic therapy, surgical intervention or pus drainage was often necessary. Lung imaging of four patients revealed pulmonary abscesses, nodules, or encapsulated pleura. Two cases yielded positive culture results, while three were identified as positive through high-throughput nucleotide sequencing of pleural effusion. Discussion In children with Streptococcus intermedius infection, emphasis should be placed on the risk of pus or abscess formation. In cases of pulmonary abscess and pleural effusion, especially in male children, Streptococcus intermedius should be suspected even if the culture is negative. Improvements in high-throughput nucleotide sequencing are required to reduce misdiagnosis rates.
Collapse
Affiliation(s)
- Zhufei Xu
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lichao Gao
- Department of Cardiology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dan Xu
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dehua Yang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhimin Chen
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yingshuo Wang
- Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
4
|
Valentini V, Silvestri V, Bucalo A, Conti G, Karimi M, Di Francesco L, Pomati G, Mezi S, Cerbelli B, Pignataro MG, Nicolussi A, Coppa A, D’Amati G, Giannini G, Ottini L. Molecular profiling of male breast cancer by multigene panel testing: Implications for precision oncology. Front Oncol 2023; 12:1092201. [PMID: 36686738 PMCID: PMC9854133 DOI: 10.3389/fonc.2022.1092201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Compared with breast cancer (BC) in women, BC in men is a rare disease with genetic and molecular peculiarities. Therapeutic approaches for male BC (MBC) are currently extrapolated from the clinical management of female BC, although the disease does not exactly overlap in males and females. Data on specific molecular biomarkers in MBC are lacking, cutting out male patients from more appropriate therapeutic strategies. Growing evidence indicates that Next Generation Sequencing (NGS) multigene panel testing can be used for the detection of predictive molecular biomarkers, including Tumor Mutational Burden (TMB) and Microsatellite Instability (MSI). Methods In this study, NGS multigene gene panel sequencing, targeting 1.94 Mb of the genome at 523 cancer-relevant genes (TruSight Oncology 500, Illumina), was used to identify and characterize somatic variants, Copy Number Variations (CNVs), TMB and MSI, in 15 Formalin-Fixed Paraffin-Embedded (FFPE) male breast cancer samples. Results and discussion A total of 40 pathogenic variants were detected in 24 genes. All MBC cases harbored at least one pathogenic variant. PIK3CA was the most frequently mutated gene, with six (40.0%) MBCs harboring targetable PIK3CA alterations. CNVs analysis showed copy number gains in 22 genes. No copy number losses were found. Specifically, 13 (86.7%) MBCs showed gene copy number gains. MYC was the most frequently amplified gene with eight (53.3%) MBCs showing a median fold-changes value of 1.9 (range 1.8-3.8). A median TMB value of 4.3 (range 0.8-12.3) mut/Mb was observed, with two (13%) MBCs showing high-TMB. The median percentage of MSI was 2.4% (range 0-17.6%), with two (13%) MBCs showing high-MSI. Overall, these results indicate that NGS multigene panel sequencing can provide a comprehensive molecular tumor profiling in MBC. The identification of targetable molecular alterations in more than 70% of MBCs suggests that the NGS approach may allow for the selection of MBC patients eligible for precision/targeted therapy.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mina Karimi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Linda Di Francesco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Mezi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bruna Cerbelli
- Department of Medical-Surgical Sciences and Biotechnologies Sapienza University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia D’Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,*Correspondence: Laura Ottini,
| |
Collapse
|
5
|
Liang H, Liu Y, Guo J, Dou M, Zhang X, Hu L, Chen J. Progression in immunotherapy for advanced prostate cancer. Front Oncol 2023; 13:1126752. [PMID: 36925917 PMCID: PMC10011447 DOI: 10.3389/fonc.2023.1126752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer is one of the most common malignant cancers of the male genitourinary system and has high morbidity and mortality. Currently, treatment modalities for localized prostate cancer focus mainly on radical prostatectomy or radical radiation therapy. Some patients still experience disease recurrence or progression after these treatments, while others are already at an advanced stage or have metastases at the time of diagnosis. With the continuous development and progress of medicine in recent years, immunotherapy has become a revolutionary cancer treatment, and has achieved remarkable accomplishments in the treatment of hematologic malignancies. A variety of immunotherapies have also appeared in the field of advanced prostate cancer treatment, including therapeutic vaccines and immune checkpoint therapies. Despite the discrepancy between the results of some immunotherapy studies, immunotherapy for prostate cancer has shown some initial success, especially in combination immunotherapies. Currently, immunotherapy is mainly used in advanced prostate cancer, especially in patients with metastatic castration-resistant prostate cancer. However, with the development of more clinical trials of immunotherapy, more evidence will be provided supporting the rational application of immunotherapy in the future.
Collapse
Affiliation(s)
- Hao Liang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yang Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jiao Guo
- Department of Immunology, School of Basic Medical sciences, Weifang Medical University, Weifang, Shandong, China
| | - Maoyang Dou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoyi Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liyong Hu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Immunology, School of Basic Medical sciences, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
6
|
Glen WB, Schandl CA. Next-Generation Sequencing Informatic Architecture Considerations. Methods Mol Biol 2023; 2621:27-37. [PMID: 37041438 DOI: 10.1007/978-1-0716-2950-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Clinically relevant sequencing methodologies continue to expand in number, diversity, complexity, and scale. This evolving and varied landscape requires unique implementations in all aspects of the assay, including the wet bench, bioinformatics, and reporting. Following implementation, the informatics of many of these tests continue to change over time, from software and annotation source updates, guidelines, and knowledgebase changes to changes in underlying information technology (IT) infrastructure. Key principles can be applied when implementing the informatics of a new clinical test which can greatly improve the lab's ability to deal with these updates rapidly and reliably. In this chapter, we discuss a variety of informatics issues which span all NGS applications. In particular, there is the need for implementing a reliable, repeatable, redundant, and version-controlled bioinformatics pipeline and architecture and a discussion of common methodologies to address these needs.
Collapse
Affiliation(s)
- W Bailey Glen
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | - Cynthia A Schandl
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Wu CHW, Lim TY, Wang C, Seltzsam S, Zheng B, Schierbaum L, Schneider S, Mann N, Connaughton DM, Nakayama M, van der Ven AT, Dai R, Kolvenbach CM, Kause F, Ottlewski I, Stajic N, Soliman NA, Kari JA, El Desoky S, Fathy HM, Milosevic D, Turudic D, Al Saffar M, Awad HS, Eid LA, Ramanathan A, Senguttuvan P, Mane SM, Lee RS, Bauer SB, Lu W, Hilger AC, Tasic V, Shril S, Sanna-Cherchi S, Hildebrandt F. Copy Number Variation Analysis Facilitates Identification of Genetic Causation in Patients with Congenital Anomalies of the Kidney and Urinary Tract. EUR UROL SUPPL 2022; 44:106-112. [PMID: 36185583 PMCID: PMC9520493 DOI: 10.1016/j.euros.2022.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Background Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.
Collapse
Affiliation(s)
- Chen-Han Wilfred Wu
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Case Western Reserve University and University Hospitals, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals, Cleveland, OH, USA
| | - Tze Y. Lim
- Division of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunyan Wang
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve Seltzsam
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Bixia Zheng
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Schierbaum
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sophia Schneider
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dervla M. Connaughton
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amelie T. van der Ven
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rufeng Dai
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline M. Kolvenbach
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Franziska Kause
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabel Ottlewski
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Natasa Stajic
- Department of Pediatric Nephrology, Institute for Mother and Child Health Care, Belgrade, Serbia
| | - Neveen A. Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Cairo University, Egyptian Group for Orphan Renal Diseases, Cairo, Egypt
| | - Jameela A. Kari
- Department of Pediatrics, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Sherif El Desoky
- Department of Pediatrics, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Hanan M. Fathy
- Pediatric Nephrology Unit, University of Alexandria, Alexandria, Egypt
| | - Danko Milosevic
- Department of Pediatric Nephrology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Daniel Turudic
- Department of Pediatric Nephrology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Muna Al Saffar
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hazem S. Awad
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Loai A. Eid
- Pediatric Nephrology Department, Dubai Hospital, Dubai, United Arab Emirates
- Department of Pediatrics, Dubai Medical College and Kidney Centre of Excellence, Al Jalila Children’s Specialty Hospital, Dubai, United Arab Emirates
| | - Aravind Ramanathan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Prabha Senguttuvan
- Department of Pediatric Nephrology, Dr. Mehta’s Multi-Specialty Hospital, Chennai, India
| | - Shrikant M. Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard S. Lee
- Department of Urology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stuart B. Bauer
- Department of Urology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Alina C. Hilger
- Department of Pediatric and Adolescent Medicine, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Velibor Tasic
- Medical Faculty Skopje, University Children’s Hospital, Skopje, Macedonia
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Simone Sanna-Cherchi
- Division of Nephrology, Columbia University Irving Medical Center, New York, NY, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding author. Division of Nephrology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA. Tel. +1 617 3556129; Fax: +1 617 8300365.
| |
Collapse
|
8
|
SPTSSA Is a Prognostic Marker for Glioblastoma Associated with Tumor-Infiltrating Immune Cells and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6711085. [PMID: 36062185 PMCID: PMC9434331 DOI: 10.1155/2022/6711085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Background. SPTSSA encodes the small subunit A of serine palmitoyltransferase. It catalyzes the formation of sphingoid long-chain base backbone of sphingolipids. Its role in glioma prognosis and tumor-infiltrating immune cells remains unclear. Methods. We analyzed SPTSSA expression and association with clinical prognosis using GEPIA and CGGA database. Then, GSEA was performed to identify relevant biological functions of SPTSSA. The correlations between SPTSSA expression and tumor immune infiltrates were investigated using CIBERSORT and TIMER. Finally, IHC and IF were performed to confirm the value of prognosis and the correlation with immune infiltration. Results. SPTSSA expression was significantly upregulated in diffuse glioma compared to normal tissues and associated with poor survival in GEPIA and CGGA database. Then, we identified biological processes and signaling pathways associated with SPTSSA expression. The result showed that SPTSSA enriched in the GO term like oxidative stress. Finally, we showed that SPTSSA expression was significantly associated with tumor-infiltrating immune cells and overall survival via IHC. Conclusion. These findings suggest that SPTSSA expression might be used as a prognostic biomarker for glioma and potential target for novel glioma therapy.
Collapse
|
9
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|
10
|
Gim JA. A Genomic Information Management System for Maintaining Healthy Genomic States and Application of Genomic Big Data in Clinical Research. Int J Mol Sci 2022; 23:5963. [PMID: 35682641 PMCID: PMC9180925 DOI: 10.3390/ijms23115963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 01/19/2023] Open
Abstract
Improvements in next-generation sequencing (NGS) technology and computer systems have enabled personalized therapies based on genomic information. Recently, health management strategies using genomics and big data have been developed for application in medicine and public health science. In this review, I first discuss the development of a genomic information management system (GIMS) to maintain a highly detailed health record and detect diseases by collecting the genomic information of one individual over time. Maintaining a health record and detecting abnormal genomic states are important; thus, the development of a GIMS is necessary. Based on the current research status, open public data, and databases, I discuss the possibility of a GIMS for clinical use. I also discuss how the analysis of genomic information as big data can be applied for clinical and research purposes. Tremendous volumes of genomic information are being generated, and the development of methods for the collection, cleansing, storing, indexing, and serving must progress under legal regulation. Genetic information is a type of personal information and is covered under privacy protection; here, I examine the regulations on the use of genetic information in different countries. This review provides useful insights for scientists and clinicians who wish to use genomic information for healthy aging and personalized medicine.
Collapse
Affiliation(s)
- Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
11
|
Cheng A, Harikrishna JA, Redwood CS, Lit LC, Nath SK, Chua KH. Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability. Int J Mol Sci 2022; 23:ijms23073976. [PMID: 35409335 PMCID: PMC8999725 DOI: 10.3390/ijms23073976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Charles S. Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Swapan K. Nath
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Correspondence: (S.K.N.); (K.H.C.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.K.N.); (K.H.C.)
| |
Collapse
|
12
|
Bang E, Oh S, Chang HE, Shin IS, Park KU, Kim ES. Zika Virus Infection During Research Vaccine Development: Investigation of the Laboratory-Acquired Infection via Nanopore Whole-Genome Sequencing. Front Cell Infect Microbiol 2022; 12:819829. [PMID: 35321315 PMCID: PMC8936174 DOI: 10.3389/fcimb.2022.819829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) emerged as a serious public health problem since the first major outbreak in 2007. Current ZIKV diagnostic methods can successfully identify known ZIKV but are impossible to track the origin of viruses and pathogens other than known ZIKV strains. We planned to determine the ability of Whole Genome Sequencing (WGS) in clinical epidemiology by evaluating whether it can successfully detect the origin of ZIKV in a suspected case of laboratory-acquired infection (LAI). ZIKV found in the patient sample was sequenced with nanopore sequencing technology, followed by the production of the phylogenetic tree, based on the alignment of 38 known ZIKV strains with the consensus sequence. The closest viral strain with the consensus sequence was the strain used in the laboratory, with a percent identity of 99.27%. We think WGS showed its time-effectiveness and ability to detect the difference between strains to the level of a single base. Additionally, to determine the global number of LAIs, a literature review of articles published in the last 10 years was performed, and 53 reports of 338 LAIs were found. The lack of a universal reporting system was worrisome, as in the majority of cases (81.1%), the exposure route was unknown.
Collapse
Affiliation(s)
- Eunsik Bang
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- *Correspondence: Kyoung Un Park, ; Eu Suk Kim,
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- *Correspondence: Kyoung Un Park, ; Eu Suk Kim,
| |
Collapse
|
13
|
Alburquerque-González B, López-Abellán MD, Luengo-Gil G, Montoro-García S, Conesa-Zamora P. Design of Personalized Neoantigen RNA Vaccines Against Cancer Based on Next-Generation Sequencing Data. Methods Mol Biol 2022; 2547:165-185. [PMID: 36068464 DOI: 10.1007/978-1-0716-2573-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The good clinical results of immune checkpoint inhibitors (ICIs) in recent cancer therapy and the success of RNA vaccines against SARS-nCoV2 have provided important lessons to the scientific community. On the one hand, the efficacy of ICI depends on the number and immunogenicity of tumor neoantigens (TNAs) which unfortunately are not abundantly expressed in many cancer subtypes. On the other hand, novel RNA vaccines have significantly improved both the stability and immunogenicity of mRNA and its efficient delivery, this way overcoming past technique limitations and also allowing a quick vaccine development at the same time. These two facts together have triggered a resurgence of therapeutic cancer vaccines which can be designed to include individual TNAs and be synthesized in a timeframe short enough to be suitable for the tailored treatment of a given cancer patient.In this chapter, we explain the pipeline for the synthesis of TNA-carrying RNA vaccines which encompasses several steps such as individual tumor next-generation sequencing (NGS), selection of immunogenic TNAs, nucleic acid synthesis, drug delivery systems, and immunogenicity assessment, all of each step comprising different alternatives and variations which will be discussed.
Collapse
Affiliation(s)
- Begoña Alburquerque-González
- Pathology and Histology Department Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - María Dolores López-Abellán
- Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain
| | - Ginés Luengo-Gil
- Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain
| | - Silvia Montoro-García
- Cell Culture Lab, Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Pablo Conesa-Zamora
- Pathology and Histology Department Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain.
- Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain.
| |
Collapse
|
14
|
Honoré N, Galot R, van Marcke C, Limaye N, Machiels JP. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers (Basel) 2021; 13:5364. [PMID: 34771526 PMCID: PMC8582541 DOI: 10.3390/cancers13215364] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
One reason why some patients experience recurrent disease after a curative-intent treatment might be the persistence of residual tumor cells, called minimal residual disease (MRD). MRD cannot be identified by standard radiological exams or clinical evaluation. Tumor-specific alterations found in the blood indirectly diagnose the presence of MRD. Liquid biopsies thus have the potential to detect MRD, allowing, among other things, the detection of circulating tumor DNA (ctDNA), circulating tumor cells (CTC), or tumor-specific microRNA. Although liquid biopsy is increasingly studied, several technical issues still limit its clinical applicability: low sensitivity, poor standardization or reproducibility, and lack of randomized trials demonstrating its clinical benefit. Being able to detect MRD could give clinicians a more comprehensive view of the risk of relapse of their patients and could select patients requiring treatment escalation with the goal of improving cancer survival. In this review, we are discussing the different methodologies used and investigated to detect MRD in solid cancers, their respective potentials and issues, and the clinical impacts that MRD detection will have on the management of cancer patients.
Collapse
Affiliation(s)
- Natasha Honoré
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
| | - Rachel Galot
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Cédric van Marcke
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Nisha Limaye
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Jean-Pascal Machiels
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
15
|
Guenay-Greunke Y, Bohan DA, Traugott M, Wallinger C. Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Sci Rep 2021; 11:19510. [PMID: 34593851 PMCID: PMC8484467 DOI: 10.1038/s41598-021-98018-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/30/2021] [Indexed: 01/23/2023] Open
Abstract
High-throughput sequencing platforms are increasingly being used for targeted amplicon sequencing because they enable cost-effective sequencing of large sample sets. For meaningful interpretation of targeted amplicon sequencing data and comparison between studies, it is critical that bioinformatic analyses do not introduce artefacts and rely on detailed protocols to ensure that all methods are properly performed and documented. The analysis of large sample sets and the use of predefined indexes create challenges, such as adjusting the sequencing depth across samples and taking sequencing errors or index hopping into account. However, the potential biases these factors introduce to high-throughput amplicon sequencing data sets and how they may be overcome have rarely been addressed. On the example of a nested metabarcoding analysis of 1920 carabid beetle regurgitates to assess plant feeding, we investigated: (i) the variation in sequencing depth of individually tagged samples and the effect of library preparation on the data output; (ii) the influence of sequencing errors within index regions and its consequences for demultiplexing; and (iii) the effect of index hopping. Our results demonstrate that despite library quantification, large variation in read counts and sequencing depth occurred among samples and that the sequencing error rate in bioinformatic software is essential for accurate adapter/primer trimming and demultiplexing. Moreover, setting an index hopping threshold to avoid incorrect assignment of samples is highly recommended.
Collapse
Affiliation(s)
- Yasemin Guenay-Greunke
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria. .,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria.
| | - David A Bohan
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Michael Traugott
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Corinna Wallinger
- Applied Animal Ecology, Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.,Institute of Interdisciplinary Mountain Research, IGF, Austrian Academy of Sciences, Technikerstraße 21a, 6020, Innsbruck, Austria
| |
Collapse
|
16
|
Jin Z, Zhu Z, Zhang W, Liu L, Tang M, Li D, Yan D, Zhu X. Effects of TRIM59 on RAW264.7 macrophage gene expression and function. Immunobiology 2021; 226:152109. [PMID: 34252840 DOI: 10.1016/j.imbio.2021.152109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/12/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Macrophages have a variety of functions, such as secreting cytokines, phagocytosis, et al. Tripartite motif containing 59 (TRIM59) protein is highly expressed in tumor cells. It can regulate proliferation of tumor cells and promote tumor progression. Recent studies shown that the expression of TRIM59 was different in macrophages when stimulated by different stimuli, however, the effects of TRIM59 on macrophage gene expression profiles and functions are still unknown. In our study, we constructed RAW264.7 macrophages with high and low expression of TRIM59, and used next generation sequencing to explore the effects of TRIM59 on macrophage gene expression profiles. Results showed that TRIM59 affected an abundant number of genes, and may affect phagocytosis and cell cycles. We also examined the expression of surface molecules, secretion of cytokines, phagocytosis, proliferation, and apoptosis of macrophages, and confirmed that TRIM59 increased the expression of FcγRs CD16/32, CD64 and the secretion of TNF-α and IL-10, promoted phagocytosis and proliferation of RAW264.7 cells, inhibited the expression of complement receptor CD11b and antigen presentation related receptors (MHCII, CD80), but TRIM59 had no significant effect on apoptosis. Our study explored the effect of TRIM59 on the gene expression and function of macrophages comprehensively.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, West of Zhongshan Avenue 183#, Guangzhou, Guangdong Province, China
| | - Wenxin Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|