1
|
Zhang Y, Wang Z, Wei H, Chen M. Exploring potential circRNA biomarkers for cancers based on double-line heterogeneous graph representation learning. BMC Med Inform Decis Mak 2024; 24:159. [PMID: 38844961 PMCID: PMC11157868 DOI: 10.1186/s12911-024-02564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Compared with the time-consuming and labor-intensive for biological validation in vitro or in vivo, the computational models can provide high-quality and purposeful candidates in an instant. Existing computational models face limitations in effectively utilizing sparse local structural information for accurate predictions in circRNA-disease associations. This study addresses this challenge with a proposed method, CDA-DGRL (Prediction of CircRNA-Disease Association based on Double-line Graph Representation Learning), which employs a deep learning framework leveraging graph networks and a dual-line representation model integrating graph node features. METHOD CDA-DGRL comprises several key steps: initially, the integration of diverse biological information to compute integrated similarities among circRNAs and diseases, leading to the construction of a heterogeneous network specific to circRNA-disease associations. Subsequently, circRNA and disease node features are derived using sparse autoencoders. Thirdly, a graph convolutional neural network is employed to capture the local graph network structure by inputting the circRNA-disease heterogeneous network alongside node features. Fourthly, the utilization of node2vec facilitates depth-first sampling of the circRNA-disease heterogeneous network to grasp the global graph network structure, addressing issues associated with sparse raw data. Finally, the fusion of local and global graph network structures is inputted into an extra trees classifier to identify potential circRNA-disease associations. RESULTS The results, obtained through a rigorous five-fold cross-validation on the circR2Disease dataset, demonstrate the superiority of CDA-DGRL with an AUC value of 0.9866 and an AUPR value of 0.9897 compared to existing state-of-the-art models. Notably, the hyper-random tree classifier employed in this model outperforms other machine learning classifiers. CONCLUSION Thus, CDA-DGRL stands as a promising methodology for reliably identifying circRNA-disease associations, offering potential avenues to alleviate the necessity for extensive traditional biological experiments. The source code and data for this study are available at https://github.com/zywait/CDA-DGRL .
Collapse
Affiliation(s)
- Yi Zhang
- School of Computer Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin, 541004, China
| | - ZhenMei Wang
- School of Big Data, Guangxi Vocational and Technical College, Nanning, 530003, China.
| | - Hanyan Wei
- Pharmacy School, Guilin Medical University, Guilin, 541004, China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, 421010, China
| |
Collapse
|
2
|
Shah HA, Liu J, Yang Z. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. J Bioinform Comput Biol 2024; 22:2450010. [PMID: 39030668 DOI: 10.1142/s0219720024500100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Drugs often target specific metabolic pathways to produce a therapeutic effect. However, these pathways are complex and interconnected, making it challenging to predict a drug's potential effects on an organism's overall metabolism. The mapping of drugs with targeting metabolic pathways in the organisms can provide a more complete understanding of the metabolic effects of a drug and help to identify potential drug-drug interactions. In this study, we proposed a machine learning hybrid model Graph Transformer Integrated Encoder (GTIE-RT) for mapping drugs to target metabolic pathways in human. The proposed model is a composite of a Graph Convolution Network (GCN) and transformer encoder for graph embedding and attention mechanism. The output of the transformer encoder is then fed into the Extremely Randomized Trees Classifier to predict target metabolic pathways. The evaluation of the GTIE-RT on drugs dataset demonstrates excellent performance metrics, including accuracy (>95%), recall (>92%), precision (>93%) and F1-score (>92%). Compared to other variants and machine learning methods, GTIE-RT consistently shows more reliable results.
Collapse
Affiliation(s)
- Hayat Ali Shah
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, P. R. China
| | - Juan Liu
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, P. R. China
| | - Zhihui Yang
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
3
|
Zhang Y, Li S, Meng K, Sun S. Machine Learning for Sequence and Structure-Based Protein-Ligand Interaction Prediction. J Chem Inf Model 2024; 64:1456-1472. [PMID: 38385768 DOI: 10.1021/acs.jcim.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Developing new drugs is too expensive and time -consuming. Accurately predicting the interaction between drugs and targets will likely change how the drug is discovered. Machine learning-based protein-ligand interaction prediction has demonstrated significant potential. In this paper, computational methods, focusing on sequence and structure to study protein-ligand interactions, are examined. Therefore, this paper starts by presenting an overview of the data sets applied in this area, as well as the various approaches applied for representing proteins and ligands. Then, sequence-based and structure-based classification criteria are subsequently utilized to categorize and summarize both the classical machine learning models and deep learning models employed in protein-ligand interaction studies. Moreover, the evaluation methods and interpretability of these models are proposed. Furthermore, delving into the diverse applications of protein-ligand interaction models in drug research is presented. Lastly, the current challenges and future directions in this field are addressed.
Collapse
Affiliation(s)
- Yunjiang Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Shuyuan Li
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kong Meng
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Shaorui Sun
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
4
|
Djeddi WE, Hermi K, Ben Yahia S, Diallo G. Advancing drug-target interaction prediction: a comprehensive graph-based approach integrating knowledge graph embedding and ProtBert pretraining. BMC Bioinformatics 2023; 24:488. [PMID: 38114937 PMCID: PMC10731821 DOI: 10.1186/s12859-023-05593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The pharmaceutical field faces a significant challenge in validating drug target interactions (DTIs) due to the time and cost involved, leading to only a fraction being experimentally verified. To expedite drug discovery, accurate computational methods are essential for predicting potential interactions. Recently, machine learning techniques, particularly graph-based methods, have gained prominence. These methods utilize networks of drugs and targets, employing knowledge graph embedding (KGE) to represent structured information from knowledge graphs in a continuous vector space. This phenomenon highlights the growing inclination to utilize graph topologies as a means to improve the precision of predicting DTIs, hence addressing the pressing requirement for effective computational methodologies in the field of drug discovery. RESULTS The present study presents a novel approach called DTIOG for the prediction of DTIs. The methodology employed in this study involves the utilization of a KGE strategy, together with the incorporation of contextual information obtained from protein sequences. More specifically, the study makes use of Protein Bidirectional Encoder Representations from Transformers (ProtBERT) for this purpose. DTIOG utilizes a two-step process to compute embedding vectors using KGE techniques. Additionally, it employs ProtBERT to determine target-target similarity. Different similarity measures, such as Cosine similarity or Euclidean distance, are utilized in the prediction procedure. In addition to the contextual embedding, the proposed unique approach incorporates local representations obtained from the Simplified Molecular Input Line Entry Specification (SMILES) of drugs and the amino acid sequences of protein targets. CONCLUSIONS The effectiveness of the proposed approach was assessed through extensive experimentation on datasets pertaining to Enzymes, Ion Channels, and G-protein-coupled Receptors. The remarkable efficacy of DTIOG was showcased through the utilization of diverse similarity measures in order to calculate the similarities between drugs and targets. The combination of these factors, along with the incorporation of various classifiers, enabled the model to outperform existing algorithms in its ability to predict DTIs. The consistent observation of this advantage across all datasets underlines the robustness and accuracy of DTIOG in the domain of DTIs. Additionally, our case study suggests that the DTIOG can serve as a valuable tool for discovering new DTIs.
Collapse
Affiliation(s)
- Warith Eddine Djeddi
- LR11ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Campus Universitaire, 2092, Tunis, Tunisia.
- High Institute of Informatics in Kef, University of Jendouba, Saleh Ayech, 8189, Jendouba, Tunisia.
| | - Khalil Hermi
- High Institute of Informatics in Kef, University of Jendouba, Saleh Ayech, 8189, Jendouba, Tunisia
| | - Sadok Ben Yahia
- Department of Software Science, Tallinn University of Technology, Ehitajate tee-5, 12618, Tallinn, Estonia
- The Maersk Mc-Kinney Moller Institute, Southern Syddansk Universitet, Alsion 2, 6400, Sønderborg, Denmark
| | - Gayo Diallo
- Bordeaux Population Health Inserm 1219, University of Bordeaux, rue Léo Saignat, 33000, Bordeaux, France
| |
Collapse
|
5
|
Pan S, Xia L, Xu L, Li Z. SubMDTA: drug target affinity prediction based on substructure extraction and multi-scale features. BMC Bioinformatics 2023; 24:334. [PMID: 37679724 PMCID: PMC10485962 DOI: 10.1186/s12859-023-05460-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Drug-target affinity (DTA) prediction is a critical step in the field of drug discovery. In recent years, deep learning-based methods have emerged for DTA prediction. In order to solve the problem of fusion of substructure information of drug molecular graphs and utilize multi-scale information of protein, a self-supervised pre-training model based on substructure extraction and multi-scale features is proposed in this paper. RESULTS For drug molecules, the model obtains substructure information through the method of probability matrix, and the contrastive learning method is implemented on the graph-level representation and subgraph-level representation to pre-train the graph encoder for downstream tasks. For targets, a BiLSTM method that integrates multi-scale features is used to capture long-distance relationships in the amino acid sequence. The experimental results showed that our model achieved better performance for DTA prediction. CONCLUSIONS The proposed model improves the performance of the DTA prediction, which provides a novel strategy based on substructure extraction and multi-scale features.
Collapse
Affiliation(s)
- Shourun Pan
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Leiming Xia
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Lei Xu
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Zhang Y, Hu Y, Han N, Yang A, Liu X, Cai H. A survey of drug-target interaction and affinity prediction methods via graph neural networks. Comput Biol Med 2023; 163:107136. [PMID: 37329615 DOI: 10.1016/j.compbiomed.2023.107136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The tasks of drug-target interaction (DTI) and drug-target affinity (DTA) prediction play important roles in the field of drug discovery. However, biological experiment-based methods are time-consuming and expensive. Recently, computational-based approaches have accelerated the process of drug-target relationship prediction. Drug and target features are represented in structure-based, sequence-based, and graph-based ways. Although some achievements have been made regarding structure-based representations and sequence-based representations, the acquired feature information is not sufficiently rich. Molecular graph-based representations are some of the more popular approaches, and they have also generated a great deal of interest. In this article, we provide an overview of the DTI prediction and DTA prediction tasks based on graph neural networks (GNNs). We briefly discuss the molecular graphs of drugs, the primary sequences of target proteins, and the graph reSLBpresentations of target proteins. Meanwhile, we conducted experiments on various fundamental datasets to substantiate the plausibility of DTI and DTA utilizing graph neural networks.
Collapse
Affiliation(s)
- Yue Zhang
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China.
| | - Yuqing Hu
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Na Han
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Aqing Yang
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Xiaoyong Liu
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
7
|
Qian Y, Li X, Wu J, Zhang Q. MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug-target interaction. BMC Bioinformatics 2023; 24:323. [PMID: 37633938 PMCID: PMC10463755 DOI: 10.1186/s12859-023-05447-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Prediction of drug-target interaction (DTI) is an essential step for drug discovery and drug reposition. Traditional methods are mostly time-consuming and labor-intensive, and deep learning-based methods address these limitations and are applied to engineering. Most of the current deep learning methods employ representation learning of unimodal information such as SMILES sequences, molecular graphs, or molecular images of drugs. In addition, most methods focus on feature extraction from drug and target alone without fusion learning from drug-target interacting parties, which may lead to insufficient feature representation. MOTIVATION In order to capture more comprehensive drug features, we utilize both molecular image and chemical features of drugs. The image of the drug mainly has the structural information and spatial features of the drug, while the chemical information includes its functions and properties, which can complement each other, making drug representation more effective and complete. Meanwhile, to enhance the interactive feature learning of drug and target, we introduce a bidirectional multi-head attention mechanism to improve the performance of DTI. RESULTS To enhance feature learning between drugs and targets, we propose a novel model based on deep learning for DTI task called MCL-DTI which uses multimodal information of drug and learn the representation of drug-target interaction for drug-target prediction. In order to further explore a more comprehensive representation of drug features, this paper first exploits two multimodal information of drugs, molecular image and chemical text, to represent the drug. We also introduce to use bi-rectional multi-head corss attention (MCA) method to learn the interrelationships between drugs and targets. Thus, we build two decoders, which include an multi-head self attention (MSA) block and an MCA block, for cross-information learning. We use a decoder for the drug and target separately to obtain the interaction feature maps. Finally, we feed these feature maps generated by decoders into a fusion block for feature extraction and output the prediction results. CONCLUSIONS MCL-DTI achieves the best results in all the three datasets: Human, C. elegans and Davis, including the balanced datasets and an unbalanced dataset. The results on the drug-drug interaction (DDI) task show that MCL-DTI has a strong generalization capability and can be easily applied to other tasks.
Collapse
Affiliation(s)
- Ying Qian
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Xinyi Li
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Jian Wu
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| | - Qian Zhang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Computer Science and Technology, East China Normal University, North Zhongshan Road, Shanghai, 200062 China
| |
Collapse
|
8
|
Li X, Shang C, Xu C, Wang Y, Xu J, Zhou Q. Development and comparison of machine learning-based models for predicting heart failure after acute myocardial infarction. BMC Med Inform Decis Mak 2023; 23:165. [PMID: 37620904 PMCID: PMC10463624 DOI: 10.1186/s12911-023-02240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
AIMS Heart failure (HF) is one of the common adverse cardiovascular events after acute myocardial infarction (AMI), but the predictive efficacy of numerous machine learning (ML) built models is unclear. This study aimed to build an optimal model to predict the occurrence of HF in AMI patients by comparing seven ML algorithms. METHODS Cohort 1 included AMI patients from 2018 to 2019 divided into HF and control groups. All first routine test data of the study subjects were collected as the features to be selected for the model, and seven ML algorithms with screenable features were evaluated. Cohort 2 contains AMI patients from 2020 to 2021 to establish an early warning model with external validation. ROC curve and DCA curve to analyze the diagnostic efficacy and clinical benefit of the model respectively. RESULTS The best performer among the seven ML algorithms was XgBoost, and the features of XgBoost algorithm for troponin I, triglycerides, urine red blood cell count, γ-glutamyl transpeptidase, glucose, urine specific gravity, prothrombin time, prealbumin, and urea were ranked high in importance. The AUC of the HF-Lab9 prediction model built by the XgBoost algorithm was 0.966 and had good clinical benefits. CONCLUSIONS This study screened the optimal ML algorithm as XgBoost and developed the model HF-Lab9 will improve the accuracy of clinicians in assessing the occurrence of HF after AMI and provide a reference for the selection of subsequent model-building algorithms.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Chengming Shang
- Information center, First Hospital of Jilin University, Changchun, China
| | - Changyan Xu
- Medical Department, First Hospital of Jilin University, Changchun, China
| | - Yiting Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, 1Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
9
|
Karkera N, Acharya S, Palaniappan SK. Leveraging pre-trained language models for mining microbiome-disease relationships. BMC Bioinformatics 2023; 24:290. [PMID: 37468830 PMCID: PMC10357883 DOI: 10.1186/s12859-023-05411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The growing recognition of the microbiome's impact on human health and well-being has prompted extensive research into discovering the links between microbiome dysbiosis and disease (healthy) states. However, this valuable information is scattered in unstructured form within biomedical literature. The structured extraction and qualification of microbe-disease interactions are important. In parallel, recent advancements in deep-learning-based natural language processing algorithms have revolutionized language-related tasks such as ours. This study aims to leverage state-of-the-art deep-learning language models to extract microbe-disease relationships from biomedical literature. RESULTS In this study, we first evaluate multiple pre-trained large language models within a zero-shot or few-shot learning context. In this setting, the models performed poorly out of the box, emphasizing the need for domain-specific fine-tuning of these language models. Subsequently, we fine-tune multiple language models (specifically, GPT-3, BioGPT, BioMedLM, BERT, BioMegatron, PubMedBERT, BioClinicalBERT, and BioLinkBERT) using labeled training data and evaluate their performance. Our experimental results demonstrate the state-of-the-art performance of these fine-tuned models ( specifically GPT-3, BioMedLM, and BioLinkBERT), achieving an average F1 score, precision, and recall of over [Formula: see text] compared to the previous best of 0.74. CONCLUSION Overall, this study establishes that pre-trained language models excel as transfer learners when fine-tuned with domain and problem-specific data, enabling them to achieve state-of-the-art results even with limited training data for extracting microbiome-disease interactions from scientific publications.
Collapse
Affiliation(s)
| | - Sathwik Acharya
- The Systems Biology Institute, Tokyo, Japan
- PES University, Bengaluru, India
| | - Sucheendra K Palaniappan
- The Systems Biology Institute, Tokyo, Japan.
- Iom Bioworks Pvt Ltd., Bengaluru, India.
- SBX Corporation, Tokyo, Japan.
| |
Collapse
|
10
|
Mahdi-Esferizi R, Haji Molla Hoseyni B, Mehrpanah A, Golzade Y, Najafi A, Elahian F, Zadeh Shirazi A, Gomez GA, Tahmasebian S. DeeP4med: deep learning for P4 medicine to predict normal and cancer transcriptome in multiple human tissues. BMC Bioinformatics 2023; 24:275. [PMID: 37403016 DOI: 10.1186/s12859-023-05400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND P4 medicine (predict, prevent, personalize, and participate) is a new approach to diagnosing and predicting diseases on a patient-by-patient basis. For the prevention and treatment of diseases, prediction plays a fundamental role. One of the intelligent strategies is the design of deep learning models that can predict the state of the disease using gene expression data. RESULTS We create an autoencoder deep learning model called DeeP4med, including a Classifier and a Transferor that predicts cancer's gene expression (mRNA) matrix from its matched normal sample and vice versa. The range of the F1 score of the model, depending on tissue type in the Classifier, is from 0.935 to 0.999 and in Transferor from 0.944 to 0.999. The accuracy of DeeP4med for tissue and disease classification was 0.986 and 0.992, respectively, which performed better compared to seven classic machine learning models (Support Vector Classifier, Logistic Regression, Linear Discriminant Analysis, Naive Bayes, Decision Tree, Random Forest, K Nearest Neighbors). CONCLUSIONS Based on the idea of DeeP4med, by having the gene expression matrix of a normal tissue, we can predict its tumor gene expression matrix and, in this way, find effective genes in transforming a normal tissue into a tumor tissue. Results of Differentially Expressed Genes (DEGs) and enrichment analysis on the predicted matrices for 13 types of cancer showed a good correlation with the literature and biological databases. This led that by using the gene expression matrix, to train the model with features of each person in a normal and cancer state, this model could predict diagnosis based on gene expression data from healthy tissue and be used to identify possible therapeutic interventions for those patients.
Collapse
Affiliation(s)
- Roohallah Mahdi-Esferizi
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Amir Mehrpanah
- Faculty of Mathematics, Shahid Beheshti University, Tehran, Iran
| | - Yazdan Golzade
- Department of Mathematics, Faculty of Basic Sciences, Iran University of Science and Technology,(IUST), Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Zadeh Shirazi
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Shahram Tahmasebian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
11
|
Chen ZH, Zhao BW, Li JQ, Guo ZH, You ZH. GraphCPIs: A novel graph-based computational model for potential compound-protein interactions. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:721-728. [PMID: 37251691 PMCID: PMC10209012 DOI: 10.1016/j.omtn.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Identifying proteins that interact with drug compounds has been recognized as an important part in the process of drug discovery. Despite extensive efforts that have been invested in predicting compound-protein interactions (CPIs), existing traditional methods still face several challenges. The computer-aided methods can identify high-quality CPI candidates instantaneously. In this research, a novel model is named GraphCPIs, proposed to improve the CPI prediction accuracy. First, we establish the adjacent matrix of entities connected to both drugs and proteins from the collected dataset. Then, the feature representation of nodes could be obtained by using the graph convolutional network and Grarep embedding model. Finally, an extreme gradient boosting (XGBoost) classifier is exploited to identify potential CPIs based on the stacked two kinds of features. The results demonstrate that GraphCPIs achieves the best performance, whose average predictive accuracy rate reaches 90.09%, average area under the receiver operating characteristic curve is 0.9572, and the average area under the precision and recall curve is 0.9621. Moreover, comparative experiments reveal that our method surpasses the state-of-the-art approaches in the field of accuracy and other indicators with the same experimental environment. We believe that the GraphCPIs model will provide valuable insight to discover novel candidate drug-related proteins.
Collapse
Affiliation(s)
- Zhan-Heng Chen
- Department of Clinical Anesthesiology, Faculty of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Hao Guo
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
12
|
Amiri Souri E, Chenoweth A, Karagiannis SN, Tsoka S. Drug repurposing and prediction of multiple interaction types via graph embedding. BMC Bioinformatics 2023; 24:202. [PMID: 37193964 DOI: 10.1186/s12859-023-05317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug-target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. RESULTS A computational drug repurposing approach was proposed to predict novel drug-target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug-drug and protein-protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. CONCLUSION DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug-target-disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.
Collapse
Affiliation(s)
- E Amiri Souri
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - A Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK.
| |
Collapse
|
13
|
Syama K, Jothi JAA, Khanna N. Automatic disease prediction from human gut metagenomic data using boosting GraphSAGE. BMC Bioinformatics 2023; 24:126. [PMID: 37003965 PMCID: PMC10067187 DOI: 10.1186/s12859-023-05251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The human microbiome plays a critical role in maintaining human health. Due to the recent advances in high-throughput sequencing technologies, the microbiome profiles present in the human body have become publicly available. Hence, many works have been done to analyze human microbiome profiles. These works have identified that different microbiome profiles are present in healthy and sick individuals for different diseases. Recently, several computational methods have utilized the microbiome profiles to automatically diagnose and classify the host phenotype. RESULTS In this work, a novel deep learning framework based on boosting GraphSAGE is proposed for automatic prediction of diseases from metagenomic data. The proposed framework has two main components, (a). Metagenomic Disease graph (MD-graph) construction module, (b). Disease prediction Network (DP-Net) module. The graph construction module constructs a graph by considering each metagenomic sample as a node in the graph. The graph captures the relationship between the samples using a proximity measure. The DP-Net consists of a boosting GraphSAGE model which predicts the status of a sample as sick or healthy. The effectiveness of the proposed method is verified using real and synthetic datasets corresponding to diseases like inflammatory bowel disease and colorectal cancer. The proposed model achieved a highest AUC of 93%, Accuracy of 95%, F1-score of 95%, AUPRC of 95% for the real inflammatory bowel disease dataset and a best AUC of 90%, Accuracy of 91%, F1-score of 87% and AUPRC of 93% for the real colorectal cancer dataset. CONCLUSION The proposed framework outperforms other machine learning and deep learning models in terms of classification accuracy, AUC, F1-score and AUPRC for both synthetic and real metagenomic data.
Collapse
Affiliation(s)
- K Syama
- Department of Computer Science, Birla Institute of Technology and Science Pilani Dubai Campus, Dubai International Academic City , Dubai, UAE
| | - J Angel Arul Jothi
- Department of Computer Science, Birla Institute of Technology and Science Pilani Dubai Campus, Dubai International Academic City , Dubai, UAE.
| | | |
Collapse
|
14
|
Pratyush P, Pokharel S, Saigo H, KC DB. pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model. BMC Bioinformatics 2023; 24:41. [PMID: 36755242 PMCID: PMC9909867 DOI: 10.1186/s12859-023-05164-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Protein S-nitrosylation (SNO) plays a key role in transferring nitric oxide-mediated signals in both animals and plants and has emerged as an important mechanism for regulating protein functions and cell signaling of all main classes of protein. It is involved in several biological processes including immune response, protein stability, transcription regulation, post translational regulation, DNA damage repair, redox regulation, and is an emerging paradigm of redox signaling for protection against oxidative stress. The development of robust computational tools to predict protein SNO sites would contribute to further interpretation of the pathological and physiological mechanisms of SNO. RESULTS Using an intermediate fusion-based stacked generalization approach, we integrated embeddings from supervised embedding layer and contextualized protein language model (ProtT5) and developed a tool called pLMSNOSite (protein language model-based SNO site predictor). On an independent test set of experimentally identified SNO sites, pLMSNOSite achieved values of 0.340, 0.735 and 0.773 for MCC, sensitivity and specificity respectively. These results show that pLMSNOSite performs better than the compared approaches for the prediction of S-nitrosylation sites. CONCLUSION Together, the experimental results suggest that pLMSNOSite achieves significant improvement in the prediction performance of S-nitrosylation sites and represents a robust computational approach for predicting protein S-nitrosylation sites. pLMSNOSite could be a useful resource for further elucidation of SNO and is publicly available at https://github.com/KCLabMTU/pLMSNOSite .
Collapse
Affiliation(s)
- Pawel Pratyush
- grid.259979.90000 0001 0663 5937Department of Computer Science, Michigan Technological University, Houghton, MI USA
| | - Suresh Pokharel
- grid.259979.90000 0001 0663 5937Department of Computer Science, Michigan Technological University, Houghton, MI USA
| | - Hiroto Saigo
- grid.177174.30000 0001 2242 4849Department of Electrical Engineering and Computer Science, Kyushu University, 744, Motooka, Nishi-Ku, 819-0395 Japan
| | - Dukka B. KC
- grid.259979.90000 0001 0663 5937Department of Computer Science, Michigan Technological University, Houghton, MI USA
| |
Collapse
|
15
|
Selvaraj MK, Thakur A, Kumar M, Pinnaka AK, Suri CR, Siddhardha B, Elumalai SP. Ion-pumping microbial rhodopsin protein classification by machine learning approach. BMC Bioinformatics 2023; 24:29. [PMID: 36707759 PMCID: PMC9881276 DOI: 10.1186/s12859-023-05138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhodopsin is a seven-transmembrane protein covalently linked with retinal chromophore that absorbs photons for energy conversion and intracellular signaling in eukaryotes, bacteria, and archaea. Haloarchaeal rhodopsins are Type-I microbial rhodopsin that elicits various light-driven functions like proton pumping, chloride pumping and Phototaxis behaviour. The industrial application of Ion-pumping Haloarchaeal rhodopsins is limited by the lack of full-length rhodopsin sequence-based classifications, which play an important role in Ion-pumping activity. The well-studied Haloarchaeal rhodopsin is a proton-pumping bacteriorhodopsin that shows promising applications in optogenetics, biosensitized solar cells, security ink, data storage, artificial retinal implant and biohydrogen generation. As a result, a low-cost computational approach is required to identify Ion-pumping Haloarchaeal rhodopsin sequences and its subtype. RESULTS This study uses a support vector machine (SVM) technique to identify these ion-pumping Haloarchaeal rhodopsin proteins. The haloarchaeal ion pumping rhodopsins viz., bacteriorhodopsin, halorhodopsin, xanthorhodopsin, sensoryrhodopsin and marine prokaryotic Ion-pumping rhodopsins like actinorhodopsin, proteorhodopsin have been utilized to develop the methods that accurately identified the ion pumping haloarchaeal and other type I microbial rhodopsins. We achieved overall maximum accuracy of 97.78%, 97.84% and 97.60%, respectively, for amino acid composition, dipeptide composition and hybrid approach on tenfold cross validation using SVM. Predictive models for each class of rhodopsin performed equally well on an independent data set. In addition to this, similar results were achieved using another machine learning technique namely random forest. Simultaneously predictive models performed equally well during five-fold cross validation. Apart from this study, we also tested the own, blank, BLAST dataset and annotated whole-genome rhodopsin sequences of PWS haloarchaeal isolates in the developed methods. The developed web server ( https://bioinfo.imtech.res.in/servers/rhodopred ) can identify the Ion Pumping Haloarchaeal rhodopsin proteins and their subtypes. We expect this web tool would be useful for rhodopsin researchers. CONCLUSION The overall performance of the developed method results show that it accurately identifies the Ionpumping Haloarchaeal rhodopsin and their subtypes using known and unknown microbial rhodopsin sequences. We expect that this study would be useful for optogenetics, molecular biologists and rhodopsin researchers.
Collapse
Affiliation(s)
- Muthu Krishnan Selvaraj
- grid.418099.dMTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Anamika Thakur
- grid.418099.dVirology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Manoj Kumar
- grid.418099.dVirology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Anil Kumar Pinnaka
- grid.418099.dMTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Chander Raman Suri
- grid.418099.dBiosensor Department, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| | - Busi Siddhardha
- grid.412517.40000 0001 2152 9956Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Senthil Prasad Elumalai
- grid.418099.dBiochemical Engineering Research and Process Development Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, 160036 India
| |
Collapse
|
16
|
Robust and accurate prediction of self-interacting proteins from protein sequence information by exploiting weighted sparse representation based classifier. BMC Bioinformatics 2022; 23:518. [PMID: 36457083 PMCID: PMC9713954 DOI: 10.1186/s12859-022-04880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Self-interacting proteins (SIPs), two or more copies of the protein that can interact with each other expressed by one gene, play a central role in the regulation of most living cells and cellular functions. Although numerous SIPs data can be provided by using high-throughput experimental techniques, there are still several shortcomings such as in time-consuming, costly, inefficient, and inherently high in false-positive rates, for the experimental identification of SIPs even nowadays. Therefore, it is more and more significant how to develop efficient and accurate automatic approaches as a supplement of experimental methods for assisting and accelerating the study of predicting SIPs from protein sequence information. RESULTS In this paper, we present a novel framework, termed GLCM-WSRC (gray level co-occurrence matrix-weighted sparse representation based classification), for predicting SIPs automatically based on protein evolutionary information from protein primary sequences. More specifically, we firstly convert the protein sequence into Position Specific Scoring Matrix (PSSM) containing protein sequence evolutionary information, exploiting the Position Specific Iterated BLAST (PSI-BLAST) tool. Secondly, using an efficient feature extraction approach, i.e., GLCM, we extract abstract salient and invariant feature vectors from the PSSM, and then perform a pre-processing operation, the adaptive synthetic (ADASYN) technique, to balance the SIPs dataset to generate new feature vectors for classification. Finally, we employ an efficient and reliable WSRC model to identify SIPs according to the known information of self-interacting and non-interacting proteins. CONCLUSIONS Extensive experimental results show that the proposed approach exhibits high prediction performance with 98.10% accuracy on the yeast dataset, and 91.51% accuracy on the human dataset, which further reveals that the proposed model could be a useful tool for large-scale self-interacting protein prediction and other bioinformatics tasks detection in the future.
Collapse
|
17
|
Zhang ML, Zhao BW, Su XR, He YZ, Yang Y, Hu L. RLFDDA: a meta-path based graph representation learning model for drug-disease association prediction. BMC Bioinformatics 2022; 23:516. [PMID: 36456957 PMCID: PMC9713188 DOI: 10.1186/s12859-022-05069-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Drug repositioning is a very important task that provides critical information for exploring the potential efficacy of drugs. Yet developing computational models that can effectively predict drug-disease associations (DDAs) is still a challenging task. Previous studies suggest that the accuracy of DDA prediction can be improved by integrating different types of biological features. But how to conduct an effective integration remains a challenging problem for accurately discovering new indications for approved drugs. METHODS In this paper, we propose a novel meta-path based graph representation learning model, namely RLFDDA, to predict potential DDAs on heterogeneous biological networks. RLFDDA first calculates drug-drug similarities and disease-disease similarities as the intrinsic biological features of drugs and diseases. A heterogeneous network is then constructed by integrating DDAs, disease-protein associations and drug-protein associations. With such a network, RLFDDA adopts a meta-path random walk model to learn the latent representations of drugs and diseases, which are concatenated to construct joint representations of drug-disease associations. As the last step, we employ the random forest classifier to predict potential DDAs with their joint representations. RESULTS To demonstrate the effectiveness of RLFDDA, we have conducted a series of experiments on two benchmark datasets by following a ten-fold cross-validation scheme. The results show that RLFDDA yields the best performance in terms of AUC and F1-score when compared with several state-of-the-art DDAs prediction models. We have also conducted a case study on two common diseases, i.e., paclitaxel and lung tumors, and found that 7 out of top-10 diseases and 8 out of top-10 drugs have already been validated for paclitaxel and lung tumors respectively with literature evidence. Hence, the promising performance of RLFDDA may provide a new perspective for novel DDAs discovery over heterogeneous networks.
Collapse
Affiliation(s)
- Meng-Long Zhang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| | - Yi-Zhou He
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Yue Yang
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
| | - Lun Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi, China
| |
Collapse
|
18
|
Moon C, Kim D. Prediction of drug-target interactions through multi-task learning. Sci Rep 2022; 12:18323. [PMID: 36316405 PMCID: PMC9622881 DOI: 10.1038/s41598-022-23203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/26/2022] [Indexed: 12/31/2022] Open
Abstract
Identifying the binding between the target proteins and molecules is essential in drug discovery. The multi-task learning method has been introduced to facilitate knowledge sharing among tasks when the amount of information for each task is small. However, multi-task learning sometimes worsens the overall performance or generates a trade-off between individual task's performance. In this study, we propose a general multi-task learning scheme that not only increases the average performance but also minimizes individual performance degradation, through group selection and knowledge distillation. The groups are selected on the basis of chemical similarity between ligand sets of targets, and the similar targets in the same groups are trained together. During training, we apply knowledge distillation with teacher annealing. The multi-task learning models are guided by the predictions of the single-task learning models. This method results in higher average performance than that from single-task learning and classic multi-task learning. Further analysis reveals that multi-task learning is particularly effective for low performance tasks, and knowledge distillation helps the model avoid the degradation in individual task performance in multi-task learning.
Collapse
Affiliation(s)
- Chaeyoung Moon
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Dongsup Kim
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|
19
|
iPiDA-GCN: Identification of piRNA-disease associations based on Graph Convolutional Network. PLoS Comput Biol 2022; 18:e1010671. [DOI: 10.1371/journal.pcbi.1010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022] Open
Abstract
Motivation
Piwi-interacting RNAs (piRNAs) play a critical role in the progression of various diseases. Accurately identifying the associations between piRNAs and diseases is important for diagnosing and prognosticating diseases. Although some computational methods have been proposed to detect piRNA-disease associations, it is challenging for these methods to effectively capture nonlinear and complex relationships between piRNAs and diseases because of the limited training data and insufficient association representation.
Results
With the growth of piRNA-disease association data, it is possible to design a more complex machine learning method to solve this problem. In this study, we propose a computational method called iPiDA-GCN for piRNA-disease association identification based on graph convolutional networks (GCNs). The iPiDA-GCN predictor constructs the graphs based on piRNA sequence information, disease semantic information and known piRNA-disease associations. Two GCNs (Asso-GCN and Sim-GCN) are used to extract the features of both piRNAs and diseases by capturing the association patterns from piRNA-disease interaction network and two similarity networks. GCNs can capture complex network structure information from these networks, and learn discriminative features. Finally, the full connection networks and inner production are utilized as the output module to predict piRNA-disease association scores. Experimental results demonstrate that iPiDA-GCN achieves better performance than the other state-of-the-art methods, benefitted from the discriminative features extracted by Asso-GCN and Sim-GCN. The iPiDA-GCN predictor is able to detect new piRNA-disease associations to reveal the potential pathogenesis at the RNA level. The data and source code are available at http://bliulab.net/iPiDA-GCN/.
Collapse
|
20
|
Zhao L, Zhu Y, Wang J, Wen N, Wang C, Cheng L. A brief review of protein-ligand interaction prediction. Comput Struct Biotechnol J 2022; 20:2831-2838. [PMID: 35765652 PMCID: PMC9189993 DOI: 10.1016/j.csbj.2022.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/21/2023] Open
Abstract
The task of identifying protein–ligand interactions (PLIs) plays a prominent role in the field of drug discovery. However, it is infeasible to identify potential PLIs via costly and laborious in vitro experiments. There is a need to develop PLI computational prediction approaches to speed up the drug discovery process. In this review, we summarize a brief introduction to various computation-based PLIs. We discuss these approaches, in particular, machine learning-based methods, with illustrations of different emphases based on mainstream trends. Moreover, we analyzed three research dynamics that can be further explored in future studies.
Collapse
Affiliation(s)
- Lingling Zhao
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Yan Zhu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Junjie Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Naifeng Wen
- School of Mechanical and Electrical Engineering, Dalian Minzu University, Dalian, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
- Corresponding authors.
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
- Corresponding authors.
| |
Collapse
|
21
|
Zhou R, Liang YF, Cheng HL, Wang W, Huang DW, Wang Z, Feng X, Han ZW, Song B, Padoan A, Plebani M, Wang QT. A highly accurate delta check method using deep learning for detection of sample mix-up in the clinical laboratory. Clin Chem Lab Med 2021; 60:1984-1992. [PMID: 34963042 DOI: 10.1515/cclm-2021-1171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Delta check (DC) is widely used for detecting sample mix-up. Owing to the inadequate error detection and high false-positive rate, the implementation of DC in real-world settings is labor-intensive and rarely capable of absolute detection of sample mix-ups. The aim of the study was to develop a highly accurate DC method based on designed deep learning to detect sample mix-up. METHODS A total of 22 routine hematology test items were adopted for the study. The hematology test results, collected from two hospital laboratories, were independently divided into training, validation, and test sets. By selecting six mainstream algorithms, the Deep Belief Network (DBN) was able to learn error-free and artificially (intentionally) mixed sample results. The model's analytical performance was evaluated using training and test sets. The model's clinical validity was evaluated by comparing it with three well-recognized statistical methods. RESULTS When the accuracy of our model in the training set reached 0.931 at the 22nd epoch, the corresponding accuracy in the validation set was equal to 0.922. The loss values for the training and validation sets showed a similar (change) trend over time. The accuracy in the test set was 0.931 and the area under the receiver operating characteristic curve was 0.977. DBN demonstrated better performance than the three comparator statistical methods. The accuracy of DBN and revised weighted delta check (RwCDI) was 0.931 and 0.909, respectively. DBN performed significantly better than RCV and EDC. Of all test items, the absolute difference of DC yielded higher accuracy than the relative difference for all methods. CONCLUSIONS The findings indicate that input of a group of hematology test items provides more comprehensive information for the accurate detection of sample mix-up by machine learning (ML) when compared with a single test item input method. The DC method based on DBN demonstrated highly effective sample mix-up identification performance in real-world clinical settings.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Laboratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Center for Clinical Laboratories, Beijing, P.R. China
| | - Yu-Fang Liang
- Department of Laboratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Hua-Li Cheng
- Department of Laboratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Wei Wang
- Department of Blood Transfusion, Beijing Ditan Hospital, Capital Medical University, Beijing, P.R. China
| | - Da-Wei Huang
- Department of Laboratory Medicine, Beijing Longfu Hospital, Beijing, P.R. China
| | - Zhe Wang
- Inner Mongolia Wesure Date Technology Co., Ltd, Inner Mongolia, P.R. China
| | - Xiang Feng
- Inner Mongolia Wesure Date Technology Co., Ltd, Inner Mongolia, P.R. China
| | - Ze-Wen Han
- Inner Mongolia Wesure Date Technology Co., Ltd, Inner Mongolia, P.R. China
| | - Biao Song
- Inner Mongolia Wesure Date Technology Co., Ltd, Inner Mongolia, P.R. China
| | - Andrea Padoan
- Department of Laboratory Medicine, University Hospital of Padova, Padova, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University Hospital of Padova, Padova, Italy
| | - Qing-Tao Wang
- Department of Laboratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, Beijing, P.R. China.,Beijing Center for Clinical Laboratories, Beijing, P.R. China
| |
Collapse
|
22
|
Hu L, Zhao BW, Yang S, Luo X, Zhou M. Predicting Large-scale Protein-protein Interactions by Extracting Coevolutionary Patterns with MapReduce Paradigm. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) 2021:939-944. [DOI: 10.1109/smc52423.2021.9658839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|