1
|
Wadhwani N, Bhola N. Olfactory neuroblastoma with orbital protrusion arising in the background of maxillary carcinoma. J Surg Case Rep 2024; 2024:rjae484. [PMID: 39171195 PMCID: PMC11338354 DOI: 10.1093/jscr/rjae484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
An uncommon entity in the class of malignant neuroectodermal nasal tumors is the olfactory neuroblastoma, which originates in the roof of the nasal cavity from the olfactory epithelium. It is often mistaken by clinicians for a nasal polyp because it presents with indistinct features such as nasal obstruction and secondary sinus disease. Olfactory neuroblastoma has been observed to cause morbidity by distant metastasis, invasion through the cribriform plate, and secondary meningitis in most instances. It exhibits a range of biologic activities, from slow growth accompanied by long-term patient survival to a very aggressive malignancy with extensive metastases. We report the incidence of a rare case in which a patient, previously operated on and irradiated for squamous cell carcinoma of the maxilla, developed an olfactory neuroblastoma with orbital protrusion.
Collapse
Affiliation(s)
- Nikhar Wadhwani
- Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha, Maharashtra (442001), India
| | - Nitin Bhola
- Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Sawangi, Wardha, Maharashtra (442001), India
| |
Collapse
|
2
|
Finlay JB, Ireland AS, Hawgood SB, Reyes T, Ko T, Olsen RR, Abi Hachem R, Jang DW, Bell D, Chan JM, Goldstein BJ, Oliver TG. Olfactory neuroblastoma mimics molecular heterogeneity and lineage trajectories of small-cell lung cancer. Cancer Cell 2024; 42:1086-1105.e13. [PMID: 38788720 PMCID: PMC11186085 DOI: 10.1016/j.ccell.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/13/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
The olfactory epithelium undergoes neuronal regeneration from basal stem cells and is susceptible to olfactory neuroblastoma (ONB), a rare tumor of unclear origins. Employing alterations in Rb1/Trp53/Myc (RPM), we establish a genetically engineered mouse model of high-grade metastatic ONB exhibiting a NEUROD1+ immature neuronal phenotype. We demonstrate that globose basal cells (GBCs) are a permissive cell of origin for ONB and that ONBs exhibit cell fate heterogeneity that mimics normal GBC developmental trajectories. ASCL1 loss in RPM ONB leads to emergence of non-neuronal histopathologies, including a POU2F3+ microvillar-like state. Similar to small-cell lung cancer (SCLC), mouse and human ONBs exhibit mutually exclusive NEUROD1 and POU2F3-like states, an immune-cold tumor microenvironment, intratumoral cell fate heterogeneity comprising neuronal and non-neuronal lineages, and cell fate plasticity-evidenced by barcode-based lineage tracing and single-cell transcriptomics. Collectively, our findings highlight conserved similarities between ONB and neuroendocrine tumors with significant implications for ONB classification and treatment.
Collapse
Affiliation(s)
- John B Finlay
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Abbie S Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA
| | - Sarah B Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA
| | - Tony Reyes
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA; Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA
| | - Tiffany Ko
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Rachelle R Olsen
- Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - David W Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Diana Bell
- Division of Anatomic Pathology, City of Hope Comprehensive Cancer Center, Duarte 91010, CA, USA
| | - Joseph M Chan
- Human Oncology and Pathogenesis Program, Memorial-Sloan Kettering Cancer Center, New York City 10065, NY, USA
| | - Bradley J Goldstein
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA; Department of Neurobiology, Duke University, Durham 27710, NC, USA.
| | - Trudy G Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA; Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA.
| |
Collapse
|
3
|
Larkin RM, Lopez DC, Robbins YL, Lassoued W, Canubas K, Warner A, Karim B, Vulikh K, Hodge JW, Floudas CS, Gulley JL, Gallia GL, Allen CT, London NR. Augmentation of tumor expression of HLA-DR, CXCL9, and CXCL10 may improve olfactory neuroblastoma immunotherapeutic responses. J Transl Med 2024; 22:524. [PMID: 38822345 PMCID: PMC11140921 DOI: 10.1186/s12967-024-05339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Olfactory neuroblastoma is a rare malignancy of the anterior skull base typically treated with surgery and adjuvant radiation. Although outcomes are fair for low-grade disease, patients with high-grade, recurrent, or metastatic disease oftentimes respond poorly to standard treatment methods. We hypothesized that an in-depth evaluation of the olfactory neuroblastoma tumor immune microenvironment would identify mechanisms of immune evasion in high-grade olfactory neuroblastoma as well as rational targetable mechanisms for future translational immunotherapeutic approaches. METHODS Multispectral immunofluorescence and RNAScope evaluation of the tumor immune microenvironment was performed on forty-seven clinically annotated olfactory neuroblastoma samples. A retrospective chart review was performed and clinical correlations assessed. RESULTS A significant T cell infiltration was noted in olfactory neuroblastoma samples with a stromal predilection, presence of myeloid-derived suppressor cells, and sparse natural killer cells. A striking decrease was observed in MHC-I expression in high-grade olfactory neuroblastoma compared to low-grade disease, representing a mechanism of immune evasion in high-grade disease. Mechanistically, the immune effector stromal predilection appears driven by low tumor cell MHC class II (HLA-DR), CXCL9, and CXCL10 expression as those tumors with increased tumor cell expression of each of these mediators correlated with significant increases in T cell infiltration. CONCLUSION These data suggest that immunotherapeutic strategies that augment tumor cell expression of MHC class II, CXCL9, and CXCL10 may improve parenchymal trafficking of immune effector cells in olfactory neuroblastoma and augment immunotherapeutic responses.
Collapse
Affiliation(s)
- Riley M Larkin
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diana C Lopez
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yvette L Robbins
- Section on Translational Tumor Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Canubas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ksenia Vulikh
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - James W Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gary L Gallia
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nyall R London
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Lerner DK, Palmer JN. Personalized Approach to Olfactory Neuroblastoma Care. J Pers Med 2024; 14:423. [PMID: 38673050 PMCID: PMC11050786 DOI: 10.3390/jpm14040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Olfactory neuroblastoma (ONB) is an uncommon neuroendocrine malignancy arising from the olfactory neuroepithelium. ONB frequently presents with nonspecific sinonasal complaints, including nasal obstruction and epistaxis, and diagnosis can be obtained through a combination of physical examination, nasal endoscopy, and computed tomography and magnetic resonance imaging. Endoscopic resection with negative margins, with or without craniotomy, as necessary, is the standard of care for definitive treatment of ONB. Regional metastasis to the neck is often detected at presentation or may occur in a delayed fashion and should be addressed through elective neck dissection or radiation. Adjuvant radiotherapy should be considered, particularly in the case of high grade or tumor stage, as well as positive surgical margins. Systemic therapy is an area of active investigation in both the neoadjuvant and adjuvant setting, with many advocating in favor of induction chemotherapy for significant orbital or intracranial involvement prior to surgical resection. Various targeted immunotherapies are currently being studied for the treatment of recurrent or metastatic ONB. Prolonged locoregional and distant surveillance are indicated following definitive treatment, given the tendency for delayed recurrence and metastasis.
Collapse
Affiliation(s)
| | - James N. Palmer
- Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Ma Q, Chen L, Feng K, Guo W, Huang T, Cai YD. Exploring Prognostic Gene Factors in Breast Cancer via Machine Learning. Biochem Genet 2024:10.1007/s10528-024-10712-w. [PMID: 38383836 DOI: 10.1007/s10528-024-10712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Breast cancer remains the most prevalent cancer in women. To date, its underlying molecular mechanisms have not been fully uncovered. The determination of gene factors is important to improve our understanding on breast cancer, which can correlate the specific gene expression and tumor staging. However, the knowledge in this regard is still far from complete. Thus, this study aimed to explore these knowledge gaps by analyzing existing gene expression profile data from 3149 breast cancer samples, where each sample was represented by the expression of 19,644 genes and classified into Nottingham histological grade (NHG) classes (Grade 1, 2, and 3). To this end, a machine learning-based framework was designed. First, the profile data were analyzed by using seven feature ranking algorithms to evaluate the importance of features (genes). Seven feature lists were generated, each of which sorted features in accordance with feature importance evaluated from a special aspect. Then, the incremental feature selection method was applied to each list to determine essential features for classification and building efficient classifiers. Consequently, overlapping genes, such as AURKA, CBX2, and MYBL2, were deemed as potentially related to breast cancer malignancy and prognosis, indicating that such genes were identified to be important by multiple feature ranking algorithms. In addition, the study formulated classification rules to reflect special gene expression patterns for three NHG classes. Some genes and rules were analyzed and supported by recent literature, providing new references for studying breast cancer.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
6
|
Kuan EC, Wang EW, Adappa ND, Beswick DM, London NR, Su SY, Wang MB, Abuzeid WM, Alexiev B, Alt JA, Antognoni P, Alonso-Basanta M, Batra PS, Bhayani M, Bell D, Bernal-Sprekelsen M, Betz CS, Blay JY, Bleier BS, Bonilla-Velez J, Callejas C, Carrau RL, Casiano RR, Castelnuovo P, Chandra RK, Chatzinakis V, Chen SB, Chiu AG, Choby G, Chowdhury NI, Citardi MJ, Cohen MA, Dagan R, Dalfino G, Dallan I, Dassi CS, de Almeida J, Dei Tos AP, DelGaudio JM, Ebert CS, El-Sayed IH, Eloy JA, Evans JJ, Fang CH, Farrell NF, Ferrari M, Fischbein N, Folbe A, Fokkens WJ, Fox MG, Lund VJ, Gallia GL, Gardner PA, Geltzeiler M, Georgalas C, Getz AE, Govindaraj S, Gray ST, Grayson JW, Gross BA, Grube JG, Guo R, Ha PK, Halderman AA, Hanna EY, Harvey RJ, Hernandez SC, Holtzman AL, Hopkins C, Huang Z, Huang Z, Humphreys IM, Hwang PH, Iloreta AM, Ishii M, Ivan ME, Jafari A, Kennedy DW, Khan M, Kimple AJ, Kingdom TT, Knisely A, Kuo YJ, Lal D, Lamarre ED, Lan MY, Le H, Lechner M, Lee NY, Lee JK, Lee VH, Levine CG, Lin JC, Lin DT, Lobo BC, Locke T, Luong AU, Magliocca KR, Markovic SN, Matnjani G, McKean EL, Meço C, Mendenhall WM, Michel L, Na'ara S, Nicolai P, Nuss DW, Nyquist GG, Oakley GM, Omura K, Orlandi RR, Otori N, Papagiannopoulos P, Patel ZM, Pfister DG, Phan J, Psaltis AJ, Rabinowitz MR, Ramanathan M, Rimmer R, Rosen MR, Sanusi O, Sargi ZB, Schafhausen P, Schlosser RJ, Sedaghat AR, Senior BA, Shrivastava R, Sindwani R, Smith TL, Smith KA, Snyderman CH, Solares CA, Sreenath SB, Stamm A, Stölzel K, Sumer B, Surda P, Tajudeen BA, Thompson LDR, Thorp BD, Tong CCL, Tsang RK, Turner JH, Turri-Zanoni M, Udager AM, van Zele T, VanKoevering K, Welch KC, Wise SK, Witterick IJ, Won TB, Wong SN, Woodworth BA, Wormald PJ, Yao WC, Yeh CF, Zhou B, Palmer JN. International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors. Int Forum Allergy Rhinol 2024; 14:149-608. [PMID: 37658764 DOI: 10.1002/alr.23262] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Sinonasal neoplasms, whether benign and malignant, pose a significant challenge to clinicians and represent a model area for multidisciplinary collaboration in order to optimize patient care. The International Consensus Statement on Allergy and Rhinology: Sinonasal Tumors (ICSNT) aims to summarize the best available evidence and presents 48 thematic and histopathology-based topics spanning the field. METHODS In accordance with prior International Consensus Statement on Allergy and Rhinology documents, ICSNT assigned each topic as an Evidence-Based Review with Recommendations, Evidence-Based Review, and Literature Review based on the level of evidence. An international group of multidisciplinary author teams were assembled for the topic reviews using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses format, and completed sections underwent a thorough and iterative consensus-building process. The final document underwent rigorous synthesis and review prior to publication. RESULTS The ICSNT document consists of four major sections: general principles, benign neoplasms and lesions, malignant neoplasms, and quality of life and surveillance. It covers 48 conceptual and/or histopathology-based topics relevant to sinonasal neoplasms and masses. Topics with a high level of evidence provided specific recommendations, while other areas summarized the current state of evidence. A final section highlights research opportunities and future directions, contributing to advancing knowledge and community intervention. CONCLUSION As an embodiment of the multidisciplinary and collaborative model of care in sinonasal neoplasms and masses, ICSNT was designed as a comprehensive, international, and multidisciplinary collaborative endeavor. Its primary objective is to summarize the existing evidence in the field of sinonasal neoplasms and masses.
Collapse
Affiliation(s)
- Edward C Kuan
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - Eric W Wang
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel M Beswick
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Nyall R London
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sinonasal and Skull Base Tumor Program, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shirley Y Su
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marilene B Wang
- Department of Otolaryngology-Head and Neck Surgery, University of California Los Angeles, Los Angeles, California, USA
| | - Waleed M Abuzeid
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Borislav Alexiev
- Department of Pathology, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Jeremiah A Alt
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Paolo Antognoni
- Division of Radiation Oncology, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pete S Batra
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Mihir Bhayani
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Manuel Bernal-Sprekelsen
- Otorhinolaryngology Department, Surgery and Medical-Surgical Specialties Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Christian S Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Léon Bérard, UNICANCER, Université Claude Bernard Lyon I, Lyon, France
| | - Benjamin S Bleier
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana Bonilla-Velez
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Claudio Callejas
- Department of Otolaryngology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Ricardo L Carrau
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Roy R Casiano
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paolo Castelnuovo
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Simon B Chen
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Alexander G Chiu
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Garret Choby
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Naweed I Chowdhury
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Martin J Citardi
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marc A Cohen
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roi Dagan
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Gianluca Dalfino
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Iacopo Dallan
- Department of Otolaryngology-Head and Neck Surgery, Pisa University Hospital, Pisa, Italy
| | | | - John de Almeida
- Department of Otolaryngology-Head and Neck Surgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Angelo P Dei Tos
- Section of Pathology, Department of Medicine, University of Padua, Padua, Italy
| | - John M DelGaudio
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Charles S Ebert
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ivan H El-Sayed
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - James J Evans
- Department of Neurological Surgery and Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christina H Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, The University Hospital for Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nyssa F Farrell
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Marco Ferrari
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Nancy Fischbein
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Adam Folbe
- Department of Otolaryngology-Head and Neck Surgery, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, USA
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Meha G Fox
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | - Gary L Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mathew Geltzeiler
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Christos Georgalas
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Nicosia Medical School, Nicosia, Cyprus
| | - Anne E Getz
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Satish Govindaraj
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stacey T Gray
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jessica W Grayson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bradley A Gross
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jordon G Grube
- Department of Otolaryngology-Head and Neck Surgery, Albany Medical Center, Albany, New York, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Ashleigh A Halderman
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard J Harvey
- Rhinology and Skull Base Research Group, Applied Medical Research Centre, University of South Wales, Sydney, New South Wales, Australia
| | - Stephen C Hernandez
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Claire Hopkins
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Zhenxiao Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Ian M Humphreys
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Peter H Hwang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alfred M Iloreta
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Masaru Ishii
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Aria Jafari
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohemmed Khan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Todd T Kingdom
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, Aurora, Colorado, USA
| | - Anna Knisely
- Department of Otolaryngology, Head and Neck Surgery, Swedish Medical Center, Seattle, Washington, USA
| | - Ying-Ju Kuo
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Devyani Lal
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric D Lamarre
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ming-Ying Lan
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Matt Lechner
- UCL Division of Surgery and Interventional Science and UCL Cancer Institute, University College London, London, UK
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jivianne K Lee
- Department of Head and Neck Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Victor H Lee
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Corinna G Levine
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jin-Ching Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, Taiwan
| | - Derrick T Lin
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Brian C Lobo
- Department of Otolaryngology-Head and Neck Surgery, University of Florida, Gainesville, Florida, USA
| | - Tran Locke
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amber U Luong
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kelly R Magliocca
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Svetomir N Markovic
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gesa Matnjani
- Department of Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erin L McKean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Cem Meço
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara University Medical School, Ankara, Turkey
- Department of Otorhinolaryngology Head and Neck Surgery, Salzburg Paracelsus Medical University, Salzburg, Austria
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Loren Michel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shorook Na'ara
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California, USA
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Daniel W Nuss
- Department of Otolaryngology-Head and Neck Surgery, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Gurston G Nyquist
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gretchen M Oakley
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Kazuhiro Omura
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Richard R Orlandi
- Department of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Nobuyoshi Otori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Peter Papagiannopoulos
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Zara M Patel
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - David G Pfister
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alkis J Psaltis
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Mindy R Rabinowitz
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan Rimmer
- Department of Otolaryngology-Head and Neck Surgery, Yale University, New Haven, Connecticut, USA
| | - Marc R Rosen
- Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Olabisi Sanusi
- Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Zoukaa B Sargi
- Department of Otolaryngology-Head and Neck Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Philippe Schafhausen
- Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rodney J Schlosser
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ahmad R Sedaghat
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brent A Senior
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raj Shrivastava
- Department of Neurosurgery and Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raj Sindwani
- Head and Neck Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Timothy L Smith
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Kristine A Smith
- Department of Otolaryngology-Head and Neck Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carl H Snyderman
- Departments of Otolaryngology-Head and Neck Surgery and Neurological Surgery, University of California, Irvine, Orange, California, USA
| | - C Arturo Solares
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Satyan B Sreenath
- Department of Otolaryngology-Head and Neck Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Aldo Stamm
- São Paulo ENT Center (COF), Edmundo Vasconcelos Complex, São Paulo, Brazil
| | - Katharina Stölzel
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Baran Sumer
- Department of Otolaryngology-Head and Neck Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pavol Surda
- Department of Otolaryngology-Head and Neck Surgery, Guys and St Thomas' Hospital, London, UK
| | - Bobby A Tajudeen
- Department of Otorhinolaryngology-Head and Neck Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Brian D Thorp
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles C L Tong
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymond K Tsang
- Department of Otolaryngology-Head and Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mario Turri-Zanoni
- Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, ASST Sette Laghi Hospital, Varese, Italy
| | - Aaron M Udager
- Department of Pathology, Michigan Center for Translational Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Thibaut van Zele
- Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Kyle VanKoevering
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Kevin C Welch
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah K Wise
- Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ian J Witterick
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Tae-Bin Won
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Stephanie N Wong
- Division of Otorhinolaryngology, Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - William C Yao
- Department of Otorhinolaryngology-Head & Neck Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Chien-Fu Yeh
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing Zhou
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education, Beijing, China
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Qin S, Sun S, Wang Y, Li C, Fu L, Wu M, Yan J, Li W, Lv J, Chen L. Immune, metabolic landscapes of prognostic signatures for lung adenocarcinoma based on a novel deep learning framework. Sci Rep 2024; 14:527. [PMID: 38177198 PMCID: PMC10767103 DOI: 10.1038/s41598-023-51108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor with high lethality, and the aim of this study was to identify promising biomarkers for LUAD. Using the TCGA-LUAD dataset as a discovery cohort, a novel joint framework VAEjMLP based on variational autoencoder (VAE) and multilayer perceptron (MLP) was proposed. And the Shapley Additive Explanations (SHAP) method was introduced to evaluate the contribution of feature genes to the classification decision, which helped us to develop a biologically meaningful biomarker potential scoring algorithm. Nineteen potential biomarkers for LUAD were identified, which were involved in the regulation of immune and metabolic functions in LUAD. A prognostic risk model for LUAD was constructed by the biomarkers HLA-DRB1, SCGB1A1, and HLA-DRB5 screened by Cox regression analysis, dividing the patients into high-risk and low-risk groups. The prognostic risk model was validated with external datasets. The low-risk group was characterized by enrichment of immune pathways and higher immune infiltration compared to the high-risk group. While, the high-risk group was accompanied by an increase in metabolic pathway activity. There were significant differences between the high- and low-risk groups in metabolic reprogramming of aerobic glycolysis, amino acids, and lipids, as well as in angiogenic activity, epithelial-mesenchymal transition, tumorigenic cytokines, and inflammatory response. Furthermore, high-risk patients were more sensitive to Afatinib, Gefitinib, and Gemcitabine as predicted by the pRRophetic algorithm. This study provides prognostic signatures capable of revealing the immune and metabolic landscapes for LUAD, and may shed light on the identification of other cancer biomarkers.
Collapse
Affiliation(s)
- Shimei Qin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Shibin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Chao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Lei Fu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Ming Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Jinxing Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
8
|
López L, Fernández-Vañes L, Cabal VN, García-Marín R, Suárez-Fernández L, Codina-Martínez H, Lorenzo-Guerra SL, Vivanco B, Blanco-Lorenzo V, Llorente JL, López F, Hermsen MA. Sox2 and βIII-Tubulin as Biomarkers of Drug Resistance in Poorly Differentiated Sinonasal Carcinomas. J Pers Med 2023; 13:1504. [PMID: 37888115 PMCID: PMC10608336 DOI: 10.3390/jpm13101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Poorly differentiated sinonasal carcinomas (PDCs) are tumors that have a poor prognosis despite advances in classical treatment. Predictive and prognostic markers and new personalized treatments could improve the oncological outcomes of patients. In this study, we analyzed SOX2 and βIII-tubulin as biomarkers that could have prognostic and therapeutic impacts on these tumors. The cohort included 57 cases of PDCs: 36 sinonasal undifferentiated carcinoma (SNUC) cases, 13 olfactory neuroblastoma (ONB) cases, and 8 sinonasal neuroendocrine carcinoma (SNEC) cases. Clinical follow-up data were available for 26 of these cases. Sox2 expression was detected using immunohistochemistry in 6 (75%) SNEC cases, 19 (53%) SNUC cases, and 6 (46%) ONB cases. The absence of Sox2 staining correlated with a higher rate of recurrence (p = 0.015), especially distant recurrence. The majority of cases showed βIII-tubulin expression, with strong positivity in 85%, 75%, and 64% of SNEC, ONB, and SNUC cases, respectively. Tumors with stronger βIII-tubulin expression demonstrated longer disease-free survival than those with no expression or low expression (p = 0.049). Sox2 and βIII-tubulin expression is common in poorly differentiated sinonasal tumors and has prognostic and therapeutic utility.
Collapse
Affiliation(s)
- Luis López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Laura Fernández-Vañes
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Virginia N. Cabal
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Rocío García-Marín
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Laura Suárez-Fernández
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Helena Codina-Martínez
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Sara L. Lorenzo-Guerra
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| | - Blanca Vivanco
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (B.V.); (V.B.-L.)
| | - José L. Llorente
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Fernando López
- Department of Otolaryngology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain; (L.L.); (L.F.-V.); (J.L.L.)
| | - Mario A. Hermsen
- Department of Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (V.N.C.); (R.G.-M.); (L.S.-F.); (H.C.-M.); (S.L.L.-G.); (M.A.H.)
| |
Collapse
|
9
|
Zunitch MJ, Fisch AS, Lin B, Barrios-Camacho CM, Faquin WC, Tachie-Baffour Y, Louie JD, Jang W, Curry WT, Gray ST, Lin DT, Schwob JE, Holbrook EH. Molecular Evidence for Olfactory Neuroblastoma as a Tumor of Malignant Globose Basal Cells. Mod Pathol 2023; 36:100122. [PMID: 36841178 PMCID: PMC10198888 DOI: 10.1016/j.modpat.2023.100122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Olfactory neuroblastoma (ONB, esthesioneuroblastoma) is a sinonasal cancer with an underdeveloped diagnostic toolkit, and is the subject of many incidents of tumor misclassification throughout the literature. Despite its name, connections between the cancer and normal cells of the olfactory epithelium have not been systematically explored and markers of olfactory epithelial cell types are not deployed in clinical practice. Here, we utilize an integrated human-mouse single-cell atlas of the nasal mucosa, including the olfactory epithelium, to identify transcriptomic programs that link ONB to a specific population of stem/progenitor cells known as olfactory epithelial globose basal cells (GBCs). Expression of a GBC transcription factor NEUROD1 distinguishes both low- and high-grade ONB from sinonasal undifferentiated carcinoma, a potential histologic mimic with a distinctly unfavorable prognosis. Furthermore, we identify a reproducible subpopulation of highly proliferative ONB cells expressing the GBC stemness marker EZH2, suggesting that EZH2 inhibition may play a role in the targeted treatment of ONB. Finally, we study the cellular states comprising ONB parenchyma using single-cell transcriptomics and identify evidence of a conserved GBC transcriptional regulatory circuit that governs divergent neuronal-versus-sustentacular differentiation. These results link ONB to a specific cell type for the first time and identify conserved developmental pathways within ONB that inform diagnostic, prognostic, and mechanistic investigation.
Collapse
Affiliation(s)
- Matthew J Zunitch
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Adam S Fisch
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yaw Tachie-Baffour
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - Jonathan D Louie
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Woochan Jang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stacey T Gray
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Derrick T Lin
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts; Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| | - Eric H Holbrook
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Xing B, Pu C, Chen Y, Sheng Y, Zhang B, Cui J, Wu G, Zhao Y. Insights into the characteristics of primary radioresistant cervical cancer using single-cell transcriptomics. Hum Cell 2023; 36:1135-1146. [PMID: 36867313 PMCID: PMC10110719 DOI: 10.1007/s13577-023-00882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
Radioresistance is a major cause of radiotherapy failure among patients with cervical cancer (CC), the fourth most common cause of cancer mortality in women worldwide. Traditional CC cell lines lose intra-tumoral heterogeneity, posing a challenge for radioresistance research. Meanwhile, conditional reprogramming (CR) maintains intra-tumoral heterogeneity and complexity, as well as the genomic and clinical characteristics of original cells and tissues. Three radioresistant and two radiosensitive primary CC cell lines were developed under CR conditions from patient specimens, and their characteristics were verified via immunofluorescence, growth kinetics, clone forming assay, xenografting, and immunohistochemistry. The CR cell lines had homogenous characteristics with original tumor tissues and maintained radiosensitivity in vitro and in vivo, while also maintaining intra-tumoral heterogeneity according to single-cell RNA sequencing analysis. Upon further investigation, 20.83% of cells in radioresistant CR cell lines aggregated in the G2/M cell cycle phase, which is sensitive to radiation, compared to 38.1% of cells in radiosensitive CR cell lines. This study established three radioresistant and two radiosensitive CC cell lines through CR, which will benefit further research investigating radiosensitivity in CC. Our present study may provide an ideal model for research on development of radioresistance and potential therapeutic targets in CC.
Collapse
Affiliation(s)
- Biyuan Xing
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baofang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Center for Biosafety Mega-Science, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Henson JC, Cutler CC, Cole KL, Lucke-Wold B, Khan M, Alt JA, Karsy M. Immunohistochemical Profiling and Staging in Esthesioneuroblastoma: A Single-Center Cohort Study and Systematic Review. World Neurosurg 2023; 170:e652-e665. [PMID: 36435382 DOI: 10.1016/j.wneu.2022.11.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Esthesioneuroblastoma (ENB) is a rare sinonasal malignant neoplasm with 40% 5-year survival. Because of the rarity of the tumor, the optimal treatment and subsequent prediction of prognosis are unclear. We studied a modern series of patients with ENB to evaluate the association of immunohistochemical (IHC) markers and clinical stages/grades with outcomes. METHODS A single-center retrospective review of patients with ENB treated during a 25-year period was performed. A systematic literature review evaluating the prognostic benefits of current staging systems in evaluating survival outcomes in ENB was undertaken. RESULTS Among 29 included patients, 25 (85%) were treated surgically at our institution, with 76% of those endoscopically resected; 7 (24.1%) received chemotherapy, and 18 (62.1%) received radiation therapy. The 5-year overall survival (OS) was 91.3%, and 10-year OS was 78.3%. Progression-free survival at 5 and 10 years was 85.6% and 68.2%, respectively. A total of 36 distinct IHC markers were used to diagnose ENB but were inconsistent in predicting survival. A systematic literature review revealed predictive accuracy for OS using the Kadish, TNM, and Hyams staging/grading systems was 68%, 42%, and 50%, respectively. CONCLUSIONS This study reports the 5- and 10-year OS and progression-free survival in a modern series of patients with ENB. No traditional IHC marker consistently predicted outcome. Some novel reviewed markers show promise but have yet to enter clinical mainstream use. Our systematic review of accepted staging/grading systems also demonstrated a need for further investigation due to limited prognostic accuracy.
Collapse
Affiliation(s)
- J Curran Henson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Chris C Cutler
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, College of Medicine, North Chicago, Illinois, USA
| | - Kyril L Cole
- College of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Majid Khan
- School of Medicine, University of Nevada Reno, Reno, Nevada, USA
| | - Jeremiah A Alt
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
12
|
Lucidi D, Cantaffa C, Miglio M, Spina F, Alicandri Ciufelli M, Marchioni A, Marchioni D. Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms-A Systematic Review. Int J Mol Sci 2023; 24:ijms24032670. [PMID: 36768990 PMCID: PMC9916834 DOI: 10.3390/ijms24032670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/22/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Sinonasal neoplasms are uncommon diseases, characterized by heterogeneous biological behavior, which frequently results in challenges in differential diagnosis and treatment choice. The aim of this review was to examine the pathogenesis and molecular mechanisms underlying the regulation of tumor initiation and growth, in order to better define diagnostic and therapeutic strategies as well as the prognostic impact of these rare neoplasms. A systematic review according to Preferred Reporting Items for Systematic Review and Meta-Analysis criteria was conducted between September and November 2022. The authors considered the three main histological patterns of sinonasal tumors, namely Squamous Cell Carcinoma, Intestinal-Type Adenocarcinoma, and Olfactory Neuroblastoma. In total, 246 articles were eventually included in the analysis. The genetic and epigenetic changes underlying the oncogenic process were discussed, through a qualitative synthesis of the included studies. The identification of a comprehensive model of carcinogenesis for each sinonasal cancer subtype is needed, in order to pave the way toward tailored treatment approaches and improve survival for this rare and challenging group of cancers.
Collapse
Affiliation(s)
- Daniela Lucidi
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Carla Cantaffa
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
- Correspondence: ; Tel.: +39-3385313850; Fax: +39-0594222402
| | - Matteo Miglio
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Federica Spina
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Matteo Alicandri Ciufelli
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, 41124 Modena, Italy
| | - Daniele Marchioni
- Department of Otolaryngology, Head and Neck Surgery, University Hospital of Modena, 41124 Modena, Italy
| |
Collapse
|
13
|
Olfactory Neuroblastoma: Morphological Reappraisal and Molecular Insights with Quantum Leap in Clinical Perspectives. Curr Oncol Rep 2023; 25:11-18. [PMID: 36449116 DOI: 10.1007/s11912-022-01348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE OF REVIEW The purpose of review is to provide a comprehensive review of the literature focusing on the recent advances in the diagnosis, molecular underpinning, and targeted therapy of olfactory neuroblastoma (ONB). RECENT FINDINGS Studies focused on the molecular fingerprinting of ONB are critical to engage new promising treatment strategies. Molecular-based subtype classifications have been proposed (basal-like ONB and neural-like ONB) but are not widely used. The rationale for implementation of DNA methylation analysis and IDH2 sequencing in routine work-up for ONB is gaining recognition. Expression of somatostatin receptors (SSTR) in ONB open new avenues for both, diagnostic (especially metastatic disease) and new treatment protocols with somatostatin analogs. Olfactory carcinoma is proposed as a unifying diagnostic terminology pertinent to epithelial divergent differentiation in olfactory neuroblastoma. Molecular (genetic and epigenetic) efforts on olfactory neuroblastoma are promising; however further refinement is needed for employment of these biomarkers as clinical standard of care. Ongoing and future multi-institutional collaborative studies will contribute to further understanding of ONB biology and aid the development of targeted treatments for this disease.
Collapse
|
14
|
Tan K, Mo J, Li M, Dong Y, Han Y, Sun X, Ma Y, Zhu K, Wu W, Lu L, Liu J, Zhao K, Zhang L, Tang Y, Lv Z. SMAD9-MYCN positive feedback loop represents a unique dependency for MYCN-amplified neuroblastoma. J Exp Clin Cancer Res 2022; 41:352. [PMID: 36539767 PMCID: PMC9764568 DOI: 10.1186/s13046-022-02563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor occurring during childhood and high-risk NB patients have a poor prognosis. The amplified MYCN gene serves as an important determinant of a high risk of NB. METHODS We performed an integrative screen using public NB tissue and cell line data, and identified that SMAD9 played an important role in high-risk NB. An investigation of the super-enhancers database (SEdb) and chromatin immunoprecipitation sequencing (ChIP-seq) dataset along with biological experiments of incorporating gene knockdown and CRISPR interference (CRISPRi) were performed to identify upstream regulatory mechanism of SMAD9. Gene knockdown and rescue, quantitative real-time PCR (Q-RT-PCR), cell titer Glo assays, colony formation assays, a subcutaneous xenograft model and immunohistochemistry were used to determine the functional role of SMAD9 in NB. An integrative analysis of ChIP-seq data with the validation of CRISPRi and dual-luciferase reporter assays and RNA sequencing (RNA-seq) data with Q-RT-PCR validation was conducted to analyze the downstream regulatory mechanism of SMAD9. RESULTS High expression of SMAD9 was specifically induced by the transcription factors including MYCN, PHOX2B, GATA3 and HAND2 at the enhancer region. Genetic suppression of SMAD9 inhibited MYCN-amplified NB cell proliferation and tumorigenicity both in vitro and in vivo. Further studies revealed that SMAD9 bound to the MYCN promoter and transcriptionally regulate MYCN expression, with MYCN reciprocally binding to the SMAD9 enhancer and transactivating SMAD9, thus forming a positive feedback loop along with the MYCN-associated cancer cell cycle. CONCLUSION This study delineates that SMAD9 forms a positive transcriptional feedback loop with MYCN and represents a unique tumor-dependency for MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Mo
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Li
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Dong
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Han
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Sun
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxuan Ma
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewen Zhao
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zhang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yujie Tang
- Research Center of Translational medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Personalized Medicine in Skull Base and Sinonasal Tumors. J Pers Med 2022; 12:jpm12121983. [PMID: 36556204 PMCID: PMC9784792 DOI: 10.3390/jpm12121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Skull base and sinonasal tumors (SBSNTs) represent a considerable challenge for clinicians in view of their rarity, anatomical complexity of the site of origin, and great histological variety [...].
Collapse
|
16
|
Liu YC, Yang YD, Liu WQ, Du TT, Wang R, Ji M, Yang BB, Li L, Chen XG. Benzobis(imidazole) derivatives as STAT3 signal inhibitors with antitumor activity. Bioorg Med Chem 2022; 65:116757. [PMID: 35504209 DOI: 10.1016/j.bmc.2022.116757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Polycyclic aromatic systems have been considered good biological probes, but some may also be good scaffolds for drug development. In this study, a series of benzobis(imidazole) derivatives were identified as STAT3 signal inhibitors, among which compound 24 showed significant inhibition of IL-6 induced JAK/STAT3 signalling pathway activation. Moreover, 24 inhibited cancer cell growth and migration, and induced cell apoptosis as well as cycle arrest in human hepatocellular carcinoma cells (HepG2) and oesophageal carcinoma cells (EC109). Compound 24 also displayed obvious antitumor activity in a mouse HepG2 cell xenograft tumor model without affecting the body weight. These results confirmed that 24 was a potential STAT3 signal inhibitor with certain antitumor activity.
Collapse
Affiliation(s)
- Yi-Chen Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya-Dong Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Liu
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ru Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Xiao-Guang Chen
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
17
|
Ferrari M, Mattavelli D, Tomasoni M, Raffetti E, Bossi P, Schreiber A, Orlandi E, Taboni S, Rampinelli V, Gualtieri T, Turri-Zanoni M, Battaglia P, Arosio AD, Bignami M, Tartaro T, Molteni M, Bertazzoni G, Fiaux-Camous D, Jourdaine C, Verillaud B, Eu D, Nair D, Moiyadi A, Shetty P, Ghosh-Laskar S, Budrukkar A, Magrini SM, Guillerm S, Faivre S, Piazza C, Gilbert RW, Irish JC, de Almeida JR, Pai P, Herman P, Castelnuovo P, Nicolai P. The MUSES∗: a prognostic study on 1360 patients with sinonasal cancer undergoing endoscopic surgery-based treatment: ∗MUlti-institutional collaborative Study on Endoscopically treated Sinonasal cancers. Eur J Cancer 2022; 171:161-182. [PMID: 35724468 DOI: 10.1016/j.ejca.2022.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Over the last 2 decades, transnasal endoscopic surgery (TES) has become the most frequently employed surgical technique to treat sinonasal malignancies. The rarity and heterogeneity of sinonasal cancers have hampered large non-population-based analyses. METHODOLOGY All patients receiving TES-including treatment between 1995 and 2021 in 5 referral hospitals were included. A prognostic study was performed, and multivariable models were transformed into nomograms. Training and validation sets were based on results from 3 European and 2 non-European centres, respectively. RESULTS The training and validation set included 940 and 420 patients, respectively. The mean age at surgery, primary-versus-recurrent presentation, histology distribution, type of surgery, T category and type of adjuvant treatment were differently distributed in the training and validation set. In the training set, 5-year overall survival and recurrence-free survival with a 95%-confidence interval were 72.7% (69.5-76.0%) and 66.4% (63.1-69.8%), respectively, significantly varying with histology. At multivariable analyses, age, gender, previous treatment, the extent of resection on the cranial, lateral and posterolateral axes, grade/subtype, T category, nodal status, margin status and adjuvant treatment were all associated with different prognostic outcomes, displaying a heterogeneous significance and effect size according to histology. The internal and external validation of nomograms was satisfactory (optimism-corrected C-index >0.7 and cumulative area under curve >0.7) for all histologies but mucosal melanoma. CONCLUSIONS Outcomes of TES-based treatment of sinonasal cancers vary substantially with histology. This large, non-population-based study provides benchmark data on the prognosis of sinonasal cancers that are deemed suitable for treatment including TES.
Collapse
Affiliation(s)
- Marco Ferrari
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, Padua, Italy; Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada; Technology for Health (PhD Program), Department of Information Engineering, University of Brescia, Brescia, Italy.
| | - Davide Mattavelli
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Michele Tomasoni
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Elena Raffetti
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Bossi
- Unit of Medical Oncology, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Alberto Schreiber
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Stefano Taboni
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, Padua, Italy; Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada; Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Vittorio Rampinelli
- Technology for Health (PhD Program), Department of Information Engineering, University of Brescia, Brescia, Italy; Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Tommaso Gualtieri
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Mario Turri-Zanoni
- Division of Otorhinolaryngology, Department of Surgical Specialties, "ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi", Varese, Italy; Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Head and Neck Surgery & Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paolo Battaglia
- Division of Otorhinolaryngology, Department of Surgical Specialties, "ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi", Varese, Italy; Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Head and Neck Surgery & Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alberto D Arosio
- Division of Otorhinolaryngology, Department of Surgical Specialties, "ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi", Varese, Italy
| | - Maurizio Bignami
- Division of Otorhinolaryngology, "ASST Lariana", University of Insubria, Como, Italy
| | - Tiziana Tartaro
- Department of Medical Oncology, "ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi", Varese, Italy
| | - Marinella Molteni
- Department of Radiotherapy, "ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi", Varese, Italy
| | | | | | - Clement Jourdaine
- Hopital Lariboisiere, APHP Nord - Université De Paris, INSERM U 1141, Paris, France
| | - Benjamin Verillaud
- Hopital Lariboisiere, APHP Nord - Université De Paris, INSERM U 1141, Paris, France
| | - Donovan Eu
- Department of Otolaryngology - Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, Ontario, Canada; Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Deepa Nair
- Department of Head & Neck Surgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Sarbani Ghosh-Laskar
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ashwini Budrukkar
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Stefano M Magrini
- Unit of Radiation Oncology, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Sophie Guillerm
- Department of Radiotherapy Assistance Publique - Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Sandrine Faivre
- Department of Medical Oncology Assistance Publique - Hôpitaux de Paris, Hôpital Saint Louis, Université de Paris, Paris, France
| | - Cesare Piazza
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiologic Sciences, and Public Health, "ASST Spedali Civili di Brescia", University of Brescia, Brescia, Italy
| | - Ralph W Gilbert
- Department of Otolaryngology - Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Jonathan C Irish
- Department of Otolaryngology - Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, Ontario, Canada; Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - John R de Almeida
- Department of Otolaryngology - Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, Ontario, Canada
| | - Prathamesh Pai
- Department of Head & Neck Surgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Philippe Herman
- Hopital Lariboisiere, APHP Nord - Université De Paris, INSERM U 1141, Paris, France
| | - Paolo Castelnuovo
- Division of Otorhinolaryngology, Department of Surgical Specialties, "ASST Sette Laghi, Ospedale di Circolo e Fondazione Macchi", Varese, Italy; Division of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Head and Neck Surgery & Forensic Dissection Research Center (HNS&FDRc), Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Piero Nicolai
- Unit of Otorhinolaryngology - Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, Padua, Italy
| |
Collapse
|
18
|
Uccella S, Facco C, Chiaravalli AM, Pettenon F, La Rosa S, Turri-Zanoni M, Castelnuovo P, Cerati M, Sessa F. Transcription Factor Expression in Sinonasal Neuroendocrine Neoplasms and Olfactory Neuroblastoma (ONB): Hyams' Grades 1-3 ONBs Expand the Spectrum of SATB2 and GATA3-Positive Neoplasms. Endocr Pathol 2022; 33:264-273. [PMID: 35522392 PMCID: PMC9135868 DOI: 10.1007/s12022-022-09715-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
Sinonasal neuroendocrine neoplasms (SN-NENs) are rare and mostly include neuroendocrine carcinoma (NEC), whereas neuroendocrine tumor (NET) is exceptional in this site. Olfactory neuroblastoma (ONB) is a malignant neuroectodermal neoplasm arising in the nasal cavity. Albeit crucial for correct patients' management, the distinction of high grade ONB from NEC is challenging and requires additional diagnostic markers. The transcription factor SATB2 has been recently introduced in routine diagnostics as an immunohistochemical marker of distal intestine differentiation. No specific data are available about SATB2 and GATA3 expression in SN-NENs. GATA3, SATB2, and, for comparison, CDX2 expression were investigated in a series of epithelial and non-epithelial SN-NENs. We collected 26 cases of ONB and 7 cases of epithelial SN-NENs diagnosed and treated in our Institution. ONBs were graded according to Hyams' system and epithelial NENs were reclassified into 5 NECs, 1 MiNEN, and 1 amphicrine carcinoma. Immunohistochemistry was performed using standard automated protocols. Hyams' grades 1-3 ONBs stained diffusely and intensely for SATB2, whereas grade 4 ONBs and NECs were globally negative. The non-neuroendocrine component of MiNEN and the amphicrine carcinoma were strongly positive. GATA3 was heterogeneously and unpredictably expressed in Hyams' grades 1-3 ONBs, whereas grade 4 ONBs and NECs were completely negative. CDX2 was negative in all cases. Our study identifies, for the first time, SATB2 and GATA3 expression as features of Hyams' grades 1-3 ONBs, expands the spectrum of SATB2 and GATA3-positive neoplasms, and suggests that Hyams' grade 4 ONBs are not only clinically but also biologically different from low graded ONBs.
Collapse
Affiliation(s)
- Silvia Uccella
- Unit of Pathology, Dept. of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy.
| | - Carla Facco
- Dept. of Pathology, ASST Dei Sette Laghi, Varese, Italy
| | | | - Fabiana Pettenon
- Unit of Pathology, Dept. of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy
| | - Stefano La Rosa
- Unit of Pathology, Dept. of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy
| | - Mario Turri-Zanoni
- Unit of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paolo Castelnuovo
- Unit of Otorhinolaryngology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Fausto Sessa
- Unit of Pathology, Dept. of Medicine and Surgery, University of Insubria, via O. Rossi 9, 21100, Varese, Italy
| |
Collapse
|
19
|
Conservative management of orbital involvement in malignant tumors. Curr Opin Otolaryngol Head Neck Surg 2022; 30:125-129. [DOI: 10.1097/moo.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|