1
|
Zhao Q, Xiong S, Cai H, He X, Shi X. Expression and Significance of the Long Non-Coding RNA APTR in the Occurrence and Development of Lung Adenocarcinoma. J Environ Pathol Toxicol Oncol 2025; 44:11-20. [PMID: 39462445 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
As one of the three major malignant tumors, lung adenocarcinoma (LUAD), with its rapid progression and high mortality rate, has become the most dangerous factor endangering human health. This study aims to explore new potential molecular targets, explore the regulatory role of lncRNA APTR in LUAD, and provide a more theoretical basis for the selection of LUAD therapeutic targets. The expression of APTR in LUAD was detected by PCR experiments, and the relationship between APTR and patients' clinical conditions and prognosis was analyzed by chi-square test, multifactor Cox regression, and Kaplan-Meier. The interaction between APTR and miR-298 and the regulation of LUAD cellular activities by APTR/miR-298 were explored by the luciferase reporter gene system. APTR expression was found to be upregulated in LUAD tissues and cells, and the expression of APTR was revealed to be substantially linked with lymph node metastases and TNM stage. High expression of LUAD also predicted a poor prognosis for patients. Downregulation of APTR expression significantly inhibited the activities of LUAD cells. In addition, APTR targeted miR-298 and negatively regulated miR-298 expression. The inhibitory effect of APTR knockdown on LUAD cell activity was also reversed after transfection with miR-298 inhibitor. Increasing expression of APTR is associated with patients' poor prognosis, APTR targets miR-298 and promotes LUAD cellular activity through negative regulation of miR-298.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Shi Xiong
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Hourong Cai
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Xiaofeng He
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University
| | - Xiaoming Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| |
Collapse
|
2
|
Li S, Ma J, Bai J, Zhao Z. Complete remission after pembrolizumab monotherapy in a non-small cell lung cancer patient with PD-L1 negative, high tumor mutational burden, and positive tumor-infiltrating lymphocytes: A case report. Medicine (Baltimore) 2024; 103:e40369. [PMID: 39654211 PMCID: PMC11630958 DOI: 10.1097/md.0000000000040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/12/2024] Open
Abstract
RATIONALE Immune checkpoint inhibitors have been used to treat cancer patients. Non-small cell lung cancer (NSCLC) patients with a high expression level of programmed cell death ligand-1 (PD-L1) could benefit from immune checkpoint inhibitor monotherapy. However, treating NSCLC patients with PD-L1 negative is still a clinical challenge. The utilization of new-type tumor markers as predictive indicators of therapeutic efficacy, with the aim of guiding clinical medication strategies, has emerged as a paramount focus of clinical investigation and interest. PATIENT CONCERNS AND DIAGNOSES We reported a 72-year-old male with cough diagnosed as poorly differentiated metastatic lung adenocarcinoma (cT3N2M1, stage IV). He tested negative for driver gene mutations, and PD-L1 negative (<1%), but a high tumor mutational burden (30.9 and 39.1 mutations/Mb in the lung tissue and blood, respectively), and positive tumor-infiltrating lymphocytes. INTERVENTIONS The patient received pembrolizumab monotherapy. OUTCOMES After 8 treatment cycles over 5 months, repeat examinations showed significantly reduced lung mass and circulating tumor DNA abundance. The patient reached clinical complete remission and had long-term survival with no significant adverse events. LESSONS A comprehensive evaluation of multiple tumor biomarkers should be considered in NSCLC patients. Pembrolizumab monotherapy could benefit NSCLC patients with negative driver genes, PD-L1 negative, a high tumor mutational burden, and positive tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Suoni Li
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Jiequn Ma
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Jie Bai
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Zheng Zhao
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Na SW, Yi JM, Yeo H, Park SM, Jeong M, Chun J, Jeong MK. Bojungikki-Tang Augments Pembrolizumab Efficacy in Human PBMC-Injected H460 Tumor-Bearing Mice. Life (Basel) 2024; 14:1246. [PMID: 39459546 PMCID: PMC11508561 DOI: 10.3390/life14101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Bojungikki-Tang (BJIKT) is traditionally used to enhance digestive function and immunity. It has gained attention as a supplement to chemotherapy or targeted therapy owing to its immune-boosting properties. This study aimed to evaluate the synergistic anti-tumor effects of BJIKT in combination with pembrolizumab in a preclinical model. MHC I/II double knockout NSG mice were humanized with peripheral blood mononuclear cells (PBMCs) and injected subcutaneously with H460 lung tumor cells to establish a humanized tumor model. Both agents were administered to evaluate their impact on tumor growth and immune cell behavior. Immunohistochemistry showed decreased exhaustion markers in CD8(+) and CD4(+) T cells within the tumor, indicating enhanced T cell activity. Additionally, RNA sequencing, transcriptome analysis, and quantitative PCR analysis were performed on tumor tissues to investigate the molecular mechanisms underlying the observed effects. The results confirmed that BJIKT improved T cell function and tumor necrosis factor signaling while suppressing transforming growth factor-β signaling. This modulation led to cell cycle arrest and apoptosis. These findings demonstrate that BJIKT, when combined with pembrolizumab, produces significant anti-tumor effects by altering immune pathways and enhancing the anti-tumor immune response. This study provides valuable insights into the role of BJIKT in the tumor microenvironment and its potential to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Se Won Na
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Jin-Mu Yi
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Heerim Yeo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.Y.); (S.-M.P.)
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (H.Y.); (S.-M.P.)
| | - Mibae Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Jaemoo Chun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| | - Mi-Kyung Jeong
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (S.W.N.); (J.-M.Y.); (M.J.)
| |
Collapse
|
4
|
Liu J, Xia W, Xue F, Xu C. Exploring a new signature for lung adenocarcinoma: analyzing cuproptosis-related genes through Integrated single-cell and bulk RNA sequencing. Discov Oncol 2024; 15:508. [PMID: 39342548 PMCID: PMC11439862 DOI: 10.1007/s12672-024-01389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVES Lung adenocarcinoma (LUAD) continues to pose a significant global health challenge. This research investigates cuproptosis and its association with LUAD progression. Employing various bioinformatics techniques, the study explores the heterogeneity of LUAD cells, identifies prognostic cuproptosis-related genes (CRGs), examines cell-to-cell communication networks, and assesses their functional roles. METHODS We downloaded single-cell RNA sequencing data from TISCH2 and bulk RNA sequencing data from TCGA for exploring LUAD cell heterogeneity. Subsequently, "CellChat" package was employed for intercellular communication network analysis, while weighted correlation network analysis was applied for identification of hub CRGs. Further, A cuproptosis related prognostic signature was constructed via LASSO regression, validated through survival analysis, nomogram development, and ROC curves. We assessed immune infiltration, gene mutations, and GSEA of prognostic CRGs. Finally, in vitro experiments were applied to validate CDC25C's role in LUAD. RESULTS We identified 15 clusters and nine cell type in LUAD. Malignant cells showed active communication and pathway enrichment in "oxidative phosphorylation" and "glycolysis". Meanwhile, prognostic hub CRGs including PFKP, CDC25C, F12, SIGLEC6, and NLRP7 were identified, with a robust prognostic signature. Immune infiltration, gene mutations, and functional enrichment correlated with prognostic CRGs. In vitro cell experiments have shown that CDC25C-deficient LUAD cell lines exhibited reduced activity. CONCLUSION This research reveals the heterogeneity of LUAD cells, identifies key prognostic CRGs, and maps intercellular communication networks, providing insights into LUAD pathogenesis. These findings pave the way for developing targeted therapies and precision medicine approaches.
Collapse
Affiliation(s)
- Jiangtao Liu
- General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wei Xia
- General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Feng Xue
- General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Chen Xu
- Department of Vasculocardiology, Yangzhou Friendship Hospital, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Sun X, Nong M, Meng F, Sun X, Jiang L, Li Z, Zhang P. Architecting the metabolic reprogramming survival risk framework in LUAD through single-cell landscape analysis: three-stage ensemble learning with genetic algorithm optimization. J Transl Med 2024; 22:353. [PMID: 38622716 PMCID: PMC11017668 DOI: 10.1186/s12967-024-05138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Recent studies have increasingly revealed the connection between metabolic reprogramming and tumor progression. However, the specific impact of metabolic reprogramming on inter-patient heterogeneity and prognosis in lung adenocarcinoma (LUAD) still requires further exploration. Here, we introduced a cellular hierarchy framework according to a malignant and metabolic gene set, named malignant & metabolism reprogramming (MMR), to reanalyze 178,739 single-cell reference profiles. Furthermore, we proposed a three-stage ensemble learning pipeline, aided by genetic algorithm (GA), for survival prediction across 9 LUAD cohorts (n = 2066). Throughout the pipeline of developing the three stage-MMR (3 S-MMR) score, double training sets were implemented to avoid over-fitting; the gene-pairing method was utilized to remove batch effect; GA was harnessed to pinpoint the optimal basic learner combination. The novel 3 S-MMR score reflects various aspects of LUAD biology, provides new insights into precision medicine for patients, and may serve as a generalizable predictor of prognosis and immunotherapy response. To facilitate the clinical adoption of the 3 S-MMR score, we developed an easy-to-use web tool for risk scoring as well as therapy stratification in LUAD patients. In summary, we have proposed and validated an ensemble learning model pipeline within the framework of metabolic reprogramming, offering potential insights for LUAD treatment and an effective approach for developing prognostic models for other diseases.
Collapse
Affiliation(s)
- Xinti Sun
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Minyu Nong
- School of Clinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Fei Meng
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojuan Sun
- Department of Oncology, Qingdao University Affiliated Hospital, Qingdao, Shandong, China
| | - Lihe Jiang
- School of Clinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zihao Li
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
6
|
Riondino S, Rosenfeld R, Formica V, Morelli C, Parisi G, Torino F, Mariotti S, Roselli M. Effectiveness of Immunotherapy in Non-Small Cell Lung Cancer Patients with a Diagnosis of COPD: Is This a Hidden Prognosticator for Survival and a Risk Factor for Immune-Related Adverse Events? Cancers (Basel) 2024; 16:1251. [PMID: 38610929 PMCID: PMC11011072 DOI: 10.3390/cancers16071251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The interplay between the immune system and chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) is complex and multifaceted. In COPD, chronic inflammation and oxidative stress can lead to immune dysfunction that can exacerbate lung damage, further worsening the respiratory symptoms. In NSCLC, immune cells can recognise and attack the cancer cells, which, however, can evade or suppress the immune response by various mechanisms, such as expressing immune checkpoint proteins or secreting immunosuppressive cytokines, thus creating an immunosuppressive tumour microenvironment that promotes cancer progression and metastasis. The interaction between COPD and NSCLC further complicates the immune response. In patients with both diseases, COPD can impair the immune response against cancer cells by reducing or suppressing the activity of immune cells, or altering their cytokine profile. Moreover, anti-cancer treatments can also affect the immune system and worsen COPD symptoms by causing lung inflammation and fibrosis. Immunotherapy itself can also cause immune-related adverse events that could worsen the respiratory symptoms in patients with COPD-compromised lungs. In the present review, we tried to understand the interplay between the two pathologies and how the efficacy of immunotherapy in NSCLC patients with COPD is affected in these patients.
Collapse
|
7
|
Ning J, Ding J, Wang S, Jiang Y, Wang D, Jiang S. GPC3 Promotes Lung Squamous Cell Carcinoma Progression and HLA-A2-Restricted GPC3 Antigenic Peptide-Modified Dendritic Cell-Induced Cytotoxic T Lymphocytes to Kill Lung Squamous Cell Carcinoma Cells. J Immunol Res 2023; 2023:5532617. [PMID: 37965271 PMCID: PMC10643027 DOI: 10.1155/2023/5532617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is associated with poor clinical prognosis and lacks available targeted agents. GPC3 is upregulated in LUSC. Our study aimed to explore the roles of GPC3 in LUSC and the antitumor effects of HLA-A2-restricted GPC3 antigenic peptide-sensitized dendritic cell (DC)-induced cytotoxic T lymphocytes (CTLs) on LUSC. LUSC cells with GPC3 knockdown and overexpression were built using lentivirus packaging, and cell viability, clone formation, apoptosis, cycle, migration, and invasion were determined. Western blotting was used to detect the expression of cell cycle-related proteins and PI3K-AKT pathway-associated proteins. Subsequently, HLA-A2-restricted GPC3 antigenic peptides were predicted and synthesized by bioinformatic databases, and DCs were induced and cultured in vitro. Finally, HLA-A2-restricted GPC3 antigenic peptide-modified DCs were co-cultured with T cells to generate specific CTLs, and the killing effects of different CTLs on LUSC cells were studied. A series of cell function experiments showed that GPC3 overexpression promoted the proliferation, migration, and invasion of LUSC cells, inhibited their apoptosis, increased the number of cells in S phase, and reduced the cells in G2/M phase. GPC3 knockdown downregulated cyclin A, c-Myc, and PI3K, upregulated E2F1, and decreased the pAKT/AKT level. Three HLA-A2-restricted GPC3 antigenic peptides were synthesized, with GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-modified DCs inducing CTL production, and exhibiting strong targeted killing ability in LUSC cells at 80 : 1 multiplicity of infection. GPC3 may advance the onset and progression of LUSC, and GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-loaded DC-induced CTLs have a superior killing ability against LUSC cells.
Collapse
Affiliation(s)
- Jing Ning
- Department of General Medicine, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
- Molecular Oncology Department of Cancer Research Institution, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jianqiao Ding
- Department of Thoracic Surgery (2), Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun 130000, China
| | - Youhong Jiang
- Molecular Oncology Department of Cancer Research Institution, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Daqing Wang
- Hope Plaza Children's Hospital District of Dalian Municipal Women and Children's Medical Center, Dalian 116000, China
| | - Shenyi Jiang
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shengyang 110001, China
| |
Collapse
|
8
|
Wang L, Du C, Jiang B, Chen L, Wang Z. Adjusting the dose of traditional drugs combined with immunotherapy: reshaping the immune microenvironment in lung cancer. Front Immunol 2023; 14:1256740. [PMID: 37901223 PMCID: PMC10600379 DOI: 10.3389/fimmu.2023.1256740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Immunotherapy is currently the most promising clinical treatment for lung cancer, not only revolutionizing second-line therapy but now also approved for first-line treatment. However, its clinical efficiency is not high and not all patients benefit from it. Thus, finding the best combination strategy to expand anti-PD-1/PD-L1-based immunotherapy is now a hot research topic. The conventional use of chemotherapeutic drugs and targeted drugs inevitably leads to resistance, toxic side effects and other problems. Recent research, however, suggests that by adjusting the dosage of drugs and blocking the activation of mutational mechanisms that depend on acquired resistance, it is possible to reduce toxic side effects, activate immune cells, and reshape the immune microenvironment of lung cancer. Here, we discuss the effects of different chemotherapeutic drugs and targeted drugs on the immune microenvironment. We explore the effects of adjusting the dosing sequence and timing, and the mechanisms of such responses, and show how the effectiveness and reliability of combined immunotherapy provide improved treatment outcomes.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Changqi Du
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Bing Jiang
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zibing Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Chen MT, Li BZ, Zhang EP, Zheng Q. Potential roles of tumor microenvironment in gefitinib-resistant non-small cell lung cancer: A narrative review. Medicine (Baltimore) 2023; 102:e35086. [PMID: 37800802 PMCID: PMC10553124 DOI: 10.1097/md.0000000000035086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/15/2023] [Indexed: 10/07/2023] Open
Abstract
During the course of treating non-small cell lung cancer (NSCLC) with epithelial growth factor receptor (EGFR) mutant, gefitinib resistance (GR) is unavoidable. As the environment for tumor cells to grow and survive, tumor microenvironment (TME) can significantly affect therapeutic response and clinical outcomes, offering new opportunities for addressing GR. Dynamic changes within the TME were identified during the treatment of gefitinib, suggesting the close relationship between TME and GR. Various dynamic processes like angiogenesis, hypoxia-pathway activation, and immune evasion can be blocked so as to synergistically enhance the therapeutic effects of gefitinib or reverse GR. Besides, cellular components like macrophages can be reprogrammed for the same purpose. In this review, we summarized recently proposed therapeutic targets to provide an overview of the potential roles of TME in treating gefitinib-resistant NSCLC, and discussed the difficulty of applying these targets in cancer treatment.
Collapse
Affiliation(s)
- Mu-Tong Chen
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Bai-Zhi Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - En-Pu Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| | - Qing Zheng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Chi A, Nguyen NP. Mechanistic rationales for combining immunotherapy with radiotherapy. Front Immunol 2023; 14:1125905. [PMID: 37377970 PMCID: PMC10291094 DOI: 10.3389/fimmu.2023.1125905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Immunotherapy consisted mainly of immune checkpoint inhibitors (ICIs) has led to significantly improved antitumor response. However, such response has been observed only in tumors possessing an overall responsive tumor immune micro-environment (TIME), in which the presence of functional tumor-infiltrating lymphocytes (TILs) is critical. Various mechanisms of immune escape from immunosurveillance exist, leading to different TIME phenotypes in correlation with primary or acquired resistance to ICIs. Radiotherapy has been shown to induce antitumor immunity not only in the irradiated primary tumor, but also at unirradiated distant sites of metastases. Such antitumor immunity is mainly elicited by radiation's stimulatory effects on antigenicity and adjuvanticity. Furthermore, it may be significantly augmented when irradiation is combined with immunotherapy, such as ICIs. Therefore, radiotherapy represents one potential therapeutic strategy to restore anti-tumor immunity in tumors presenting with an unresponsive TIME. In this review, the generation of anti-tumor immunity, its impairment, radiation's immunogenic properties, and the antitumor effects of combining radiation with immunotherapy will be comprehensively discussed.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Capital Medical University Xuanwu Hospital, Beijing, China
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nam Phong Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| |
Collapse
|
11
|
Lin M, Huang Z, Chen Y, Xiao H, Wang T. Lung cancer patients with chronic obstructive pulmonary disease benefit from anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:1038715. [PMID: 36532019 PMCID: PMC9751394 DOI: 10.3389/fimmu.2022.1038715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are two of the most fatal respiratory diseases, seriously threatening human health and imposing a heavy burden on families and society. Although COPD is a significant independent risk factor for LC, it is still unclear how COPD affects the prognosis of LC patients, especially when LC patients with COPD receive immunotherapy. With the development of immune checkpoint inhibition (ICI) therapy, an increasing number of inhibitors of programmed cell death-1 (PD-1) and PD-1 ligand (PD-L1) have been applied to the treatment of LC. Recent studies suggest that LC patients with COPD may benefit more from immunotherapy. In this review, we systematically summarized the outcomes of LC patients with COPD after anti-PD-1/PD-L1 treatment and discussed the tumor immune microenvironment (TIME) regulated by COPD in LC immunotherapy, which provides novel insights for the clinical treatment of LC patients with COPD.
Collapse
Affiliation(s)
- Mao Lin
- Department of Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zongyao Huang
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yingfu Chen
- Department of Pharmacy, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Hongtao Xiao
- Department of Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- Department of Clinical Research, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China,*Correspondence: Ting Wang,
| |
Collapse
|
12
|
Shi Y, Dai S, Lei Y. Development and validation of a combined metabolism and immune prognostic model in lung adenocarcinoma. J Thorac Dis 2022; 14:4983-4997. [PMID: 36647508 PMCID: PMC9840026 DOI: 10.21037/jtd-22-1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Background Tumor metabolism and immune response can affect the biological behavior of tumor cells. There is an obvious relationship between glycolysis and immune response. However, the association between metabolism and immune response and prognosis in lung adenocarcinoma (LUAD) has not yet been examined in a comprehensive and detailed manner. The establishment of reliable models for predicting the prognosis of LUAD based on glycolysis ability and immune status is still highly anticipated. Methods The expression of genes were obtained from online databases, and the differentially expressed genes in LUAD tissues and adjacent tissues were identified. We used LUAD samples in The Cancer Genome Atlas (TCGA) database as training set and the Gene Expression Omnibus (GEO) databases as validation sets. The best predictive model was constructed using least absolute selection and shrinkage operator (LASSO) regression and Cox regression. The receiver operator characteristic (ROC) curve is used to verify the accuracy of the model. The expression status of the Glycolysis-related genes (GRGs) and the status of the immune cells in LUCD patients were further analyzed. The protein levels of the 3 identified genes were then tested in LUAD patients. Results We identified 3 GRGs and immune-related genes (i.e., fibroblast growth factor 2, hyaluronan-mediated motor receptor, and nuclear receptor 0B2) and constructed a stable comprehensive index of glycolysis and immunity (CIGI) prediction model. The validation results for this CIGI model were quite stable across different datasets and patient subgroups and the CIGI score can be included as an independent prognostic factor for LUAD patients. The area under the curve (AUC) values of 1-, 3- and 5-year of the finally established nomogram model are 0.767, 0.735 and 0.769. Further analysis showed that LUAD patients in the low-risk group had lower levels of glycolytic gene expression than those in the high-risk group and exhibited an immunosuppressed state. Finally, hyaluronan-mediated motor receptor may play a role in inhibiting cancer, while fibroblast growth factor 2 and nuclear receptor 0B2 may play roles in promoting cancer. Conclusions In this study, we established a new prognostic prediction model for LUAD patients that combines glycolysis ability and immune status.
Collapse
Affiliation(s)
- Yu Shi
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shihui Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Lei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Identification and Application of a Novel Immune-Related lncRNA Signature on the Prognosis and Immunotherapy for Lung Adenocarcinoma. Diagnostics (Basel) 2022; 12:diagnostics12112891. [PMID: 36428951 PMCID: PMC9689875 DOI: 10.3390/diagnostics12112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) participates in the immune regulation of lung cancer. However, limited studies showed the potential roles of immune-related lncRNAs (IRLs) in predicting survival and immunotherapy response of lung adenocarcinoma (LUAD). Methods: Based on The Cancer Genome Atlas (TCGA) and ImmLnc databases, IRLs were identified through weighted gene coexpression network analysis (WGCNA), Cox regression, and Lasso regression analyses. The predictive ability was validated by Kaplan−Meier (KM) and receiver operating characteristic (ROC) curves in the internal dataset, external dataset, and clinical study. The immunophenoscore (IPS)-PD1/PD-L1 blocker and IPS-CTLA4 blocker data of LUAD were obtained in TCIA to predict the response to immune checkpoint inhibitors (ICIs). The expression levels of immune checkpoint molecules and markers for hyperprogressive disease were analyzed. Results: A six-IRL signature was identified, and patients were stratified into high- and low-risk groups. The low-risk had improved survival outcome (p = 0.006 in the training dataset, p = 0.010 in the testing dataset, p < 0.001 in the entire dataset), a stronger response to ICI (p < 0.001 in response to anti-PD-1/PD-L1, p < 0.001 in response to anti-CTLA4), and higher expression levels of immune checkpoint molecules (p < 0.001 in PD-1, p < 0.001 in PD-L1, p < 0.001 in CTLA4) but expressed more biomarkers of hyperprogression in immunotherapy (p = 0.002 in MDM2, p < 0.001 in MDM4). Conclusion: The six-IRL signature exhibits a promising prediction value of clinical prognosis and ICI efficacy in LUAD. Patients with low risk might gain benefits from ICI, although some have a risk of hyperprogressive disease.
Collapse
|
14
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
15
|
Chen C, Tang D, Gu C, Wang B, Yao Y, Wang R, Zhang H, Gao W. Characterization of the Immune Microenvironmental Landscape of Lung Squamous Cell Carcinoma with Immune Cell Infiltration. DISEASE MARKERS 2022; 2022:2361507. [PMID: 36411824 PMCID: PMC9674995 DOI: 10.1155/2022/2361507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 08/22/2023]
Abstract
BACKGROUND Increasing evidence supports that immune cell infiltration (ICI) patterns play a key role in the tumor progression of lung squamous cell carcinoma (LUSC). However, to date, the immune infiltration picture of LUSC has not been elucidated. METHOD TCGA was used to download multiomics data from LUSC samples. At the same time, we included two datasets on lung squamous cell carcinoma, GSE17710 and GSE157010. To reveal the landscape of tumor immune microenvironment (TIME), the ESTIMATE algorithm, ssGSEA approach, and CIBERSORT analysis are used. To quantify the ICI pattern in a single tumor, consistent clustering is used to determine the LUSC subtype based on the ICI pattern, and principal component analysis (PCA) is used to obtain the ICI score. The prognostic value of the Kaplan-Meier curves is confirmed. GSEA (Gene Set Enrichment Analysis) was used to perform functional annotation. To investigate the immunotherapeutic effects of the ICI score, the immunophenotyping score (IPS) is used. Finally, analyze the mutation data with the "maftools" R package. RESULTS We identified four different immune infiltration patterns with different prognosis and biological characteristics in 792 LUSC samples. The identification of ICI patterns in individual tumors developed under ICI-related characteristic genes based on the ICI score helps to analyze the biological process, clinical results, immune cell infiltration, immunotherapy effects, and genetic variation. Immune failure is indicated by a high ICI score subtype marked by immunosuppression. Patients with low ICI scores have an abundance of efficient immune cells, which corresponds to the immunological activation phenotype and may have therapeutic benefits. The immunophenotypic score was used as a surrogate indicator of immunotherapy results, and samples with low ICI scores obtained significantly higher immunophenotypic scores. Finally, the relationship between the ICI score and tumor mutation burden (TMB) was proven. CONCLUSION This study fully clarified the indispensable role of the ICI model in the complexity and diversity of TIME. The quantitative identification of ICI patterns in a single tumor will help draw the picture of TIME and further optimize precision immunotherapy.
Collapse
Affiliation(s)
- Chunji Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai, China
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai 200040, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai 200030, China
| | - Dongfang Tang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai, China
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai 200040, China
| | - Chang Gu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Bin Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai, China
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai 200040, China
| | - Yuanshan Yao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai, China
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai 200040, China
| | - Rui Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, Shanghai 200030, China
| | - Huibiao Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai, China
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai 200040, China
| | - Wen Gao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai, China
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, No. 221 West Yanan Road, Shanghai 200040, China
| |
Collapse
|
16
|
Qi J, Yin J, Ding G. A Connexin-Based Biomarker Model Applicable for Prognosis and Immune Landscape Assessment in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9261339. [PMID: 36276289 PMCID: PMC9581606 DOI: 10.1155/2022/9261339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022]
Abstract
Purpose Gap junction protein (Connexin) family is the basic unit of cellular connection, whose multiple members were recently demonstrated to be associated with tumor progression. However, the expression pattern and prognostic value of connexin in lung adenocarcinoma (LUAD) have not yet been elucidated. Methods Consensus cluster algorithm was first applied to determine a novel molecular subtype in LUAD based on connexin genes. The differentially expressed genes (DEGs) between two clusters were obtained to include in Cox regression analyses for the model construction. To examine the predictive capacity of the signature, survival curves and ROC plots were conducted. We implemented GSEA method to uncover the function effects enriched in the risk model. Moreover, the tumor immune microenvironment in LUAD was depicted by CIBERSORT and ssGSEA methods. Results The integrated LUAD cohort (TCGA-LUAD and GSE68465) were clustered into two subtypes (C1 = 217 and C2 = 296) based on 21 connexins and the clinical outcomes of LUAD cases in the two clusters showed remarkable discrepancy. Next, we collected 222 DEGs among two subclusters to build a prognostic model using stepwise Cox analyses. Our proposed model consisted of six genes that accurately forecast patient outcomes and differentiate patient risk. GSEA indicated that high-risk group was involved in tumor relevant pathways were activated in high-risk group, such as PI3K/AKT signaling, TGF-β pathway, and p53 pathway. Furthermore, LUAD cases with high-risk presented higher infiltration level of M2 macrophage and neutrophil, suggesting high-risk group were more likely to generate an immunosuppressive status. Conclusion Our data identified a novel connexin-based subcluster in LUAD and further created a risk signature which plays a central part in prognosis assessment and clinical potency.
Collapse
Affiliation(s)
- Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Yin
- Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Deng X, Wang Z, Luo Y, Li Z, Chen L. Prediction of lung squamous cell carcinoma immune microenvironment and immunotherapy efficiency with pyroptosis-derived genes. Medicine (Baltimore) 2022; 101:e30304. [PMID: 36123889 PMCID: PMC9478317 DOI: 10.1097/md.0000000000030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a common subtype of lung cancer that exhibits diverse pyroptosis regulatory patterns. Studies have highlighted the significance of pyroptosis in cancer invasion and immune responses. We aimed to explore the signatures of pyroptosis-related genes and their immune relevance in LUSC. Using The Cancer Genome Atlas (TCGA)-LUSC cohort and 5 gene expression omnibus (GEO) datasets, we performed consensus clustering based on 41 pyroptosis-related genes, and single sample gene set enrichment analysis (ssGSEA) was employed to calculate the infiltration levels of distinct clusters. A pyroptosis scoring scheme using the principal component analysis (PCA) method was used to quantify pyroptosis regulation in patients with LUSC and predict their prognosis. Four pyroptosis clusters were identified among 833 LUSC samples, which were associated with different Kyoto encyclopedia of genes and genome (KEGG) signaling pathways and tumor microenvironment infiltration features, and were highly consistent with 4 reported immune phenotypes: immune-responsive, immune-non-functional, immune-exclusion, and immune-ignorance. We then divided the patients into high- and low-pyroptosis score subgroups, and patients with higher scores were characterized by prolonged survival and attenuated immune infiltration. Moreover, higher scores were correlated with male patients, higher microsatellite instability, lower immune checkpoint inhibitor expression (such as CTLA-4 and GAL-9), and high mutation rates of typical mutated genes (e.g., TP53 and TTN). In particular, patients with lower pyroptosis scores showed better immune response to immune checkpoint inhibitor treatment. Pyroptosis regulatory patterns in the immune microenvironment can predict the clinical outcomes of patients with LUSC. Accurately quantifying the pyroptosis of individual patients will strengthen the understanding of heterogeneity within the LUSC tumor microenvironment infiltration areas.
Collapse
Affiliation(s)
- Xiaheng Deng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhibo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Liang Chen, Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210000, China (e-mail: )
| |
Collapse
|
18
|
Identification and Validation of a GPX4-Related Immune Prognostic Signature for Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:9054983. [PMID: 35620733 PMCID: PMC9130018 DOI: 10.1155/2022/9054983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD) is a commonly occurring histological subtype of lung cancer. Glutathione peroxidase 4 (GPX4) is an important regulatory factor of ferroptosis and is involved in the development of many cancers, but its prognostic significance has not been systematically described in LUAD. In this study, we focused on developing a robust GPX4-related prognostic signature (GPS) for LUAD. Data for the training cohort was extracted from The Cancer Genome Atlas, and that for the validation cohort was sourced from the GSE72094 dataset including 863 LUAD patients. GPX4-related genes were screened out by weighted gene coexpression network analysis and Spearman’s correlation analysis. Then, Cox regression and least absolute shrinkage and selection operator regression analyses were employed to construct a GPS. The ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and GSEA were utilized to evaluate the relationship between GPS and the tumor microenvironment (TME). We constructed and validated a GPS premised on four GPX4-related genes (KIF14, LATS2, PRKCE, and TM6SF1), which could classify LUAD patients into low- and high-score cohorts. The high-risk cohort presented noticeably poorer overall survival (OS) as opposed to the low-risk cohort, meaning that the GPS may be utilized as an independent predictor of the OS of LUAD. The GPS was also adversely correlated with multiple tumor-infiltrating immune cells and immune-related processes and pathways in TME. Furthermore, greater sensitivity to erlotinib and lapatinib were identified in the low-risk cohort based on the GDSC database. Our findings suggest that the GPS can effectively forecast the prognosis of LUAD patients and may possibly regulate the TME of LUAD.
Collapse
|
19
|
Liu S, Cao X, Wang D, Zhu H. Iron metabolism: State of the art in hypoxic cancer cell biology. Arch Biochem Biophys 2022; 723:109199. [DOI: 10.1016/j.abb.2022.109199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
|
20
|
Wang Z, Zhang L, Xu W, Li J, Liu Y, Zeng X, Zhong M, Zhu Y. The Multi-Omics Analysis of Key Genes Regulating EGFR-TKI Resistance, Immune Infiltration, SCLC Transformation in EGFR-Mutant NSCLC. J Inflamm Res 2022; 15:649-667. [PMID: 35140497 PMCID: PMC8818984 DOI: 10.2147/jir.s341001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Background Lung cancer is a high-risk malignancy worldwide. The harboring of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) makes EGFR-tyrosine kinase inhibitor (EGFR-TKI) an attractive therapeutic option. However, patients usually suffer the primary and secondary resistance to EGFR-TKI. And the molecular alteration is still not fully clear and needs further study. Methods The GEO database was utilized to find the differentially expressed genes (DEGs) in NSCLC profiles resistant to the 1st or 2nd generation EGFR-TKI. We analyzed the expression and pathway enrichment of hub genes, and the prognosis of EGFR mutant/wild-type lung adenocarcinoma (LUAD). Moreover, small cell lung cancer (SCLC) and TKI-resistant profiles were used to find common DEGs, and construct miRNA regulatory network. Analysis was performed of hub genes' related immune infiltration, drug sensitivity, and methylation. Further, we analyzed hub gene expression in EGFR-mutant LUAD and paracancerous tissue by qRT-PCR. Results A total of 107 DEGs were found related to TKI resistance. Eleven hub genes were obtained after visualization, of which 5 hub genes were co-expressed in SCLC with common miRNAs. Lower expression of SPP1 (hub gene) was associated with better survival in NSCLC. The immune infiltration analysis showed more CD4+ T cells in the resistant group with high expression of SPP1. SPP1 and CD44 promoters’ methylations were independent prognostic factors of LUAD. And the expression level of SPP1 related to the sensitivity of EGFR-TKIs in multiple cancer cell lines. qRT-PCR validated the higher expression of SPP1 in EGFR-mutant LUAD than in normal tissue. Conclusion Our study suggested that the upregulation of SPP1 might induce resistance to the 1st and 2nd generation EGFR-TKI, and influence tumor immune infiltration, resulting in poor survival. ZEB1, SPP1, MUC1, CD44, and ESRP1 might be molecular drivers of SCLC transformation of TKI resistance.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Lingling Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Wenwen Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Yi Liu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaozhu Zeng
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Maoxi Zhong
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People’s Republic of China
- Correspondence: Yuxi Zhu, Tel +86-23-88955813, Fax +862368811487, Email
| |
Collapse
|
21
|
Li M, Ren H, Zhang Y, Liu N, Fan M, Wang K, Yang T, Chen M, Shi P. MECOM/PRDM3 and PRDM16 Serve as Prognostic-Related Biomarkers and Are Correlated With Immune Cell Infiltration in Lung Adenocarcinoma. Front Oncol 2022; 12:772686. [PMID: 35174083 PMCID: PMC8841357 DOI: 10.3389/fonc.2022.772686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background The MDS1 and EVI1 complex locus (MECOM, also called PRDM3) and PR domain containing 16 (PRDM16) are two highly related zinc finger transcription factors associated with many malignancies. However, the mechanisms of MECOM and PRDM16 in prognosis and tumor immune infiltration in lung adenocarcinoma (LUAD) remain uncertain. Methods The Cancer Genome Atlas (TCGA), Oncomine, UALCAN, GEPIA, and TIMER databases were searched to determine the relationship between the expression of MECOM and PRDM16, clinicopathological features, immune infiltration, and prognosis in LUAD. Coexpressed genes of the two genes were investigated by CBioPortal, and the potential mechanism of MECOM- and PRDM16-related genes was elucidated by GO and KEGG analyses. STRING database was utilized to further construct the protein-protein interaction network of the coexpressed genes, and the hub genes were identified by Cytoscape. Finally, qRT-PCR was performed to identify the mRNA levels of the target genes in LUAD. Results mRNA levels of MECOM and PRDM16 were downregulated in LUAD (p < 0.05), and the low expression of the two genes was associated with the age, gender, smoking duration, tissue subtype, poor stage, nodal metastasis status, TP53 mutation, and prognosis in LUAD (p < 0.05). MECOM and PRDM16 were also found to be correlated with the expression of a variety of immune cell subsets and their markers. KEGG analysis showed that both of them were mainly enriched in the cell cycle, cellular senescence, DNA replication, and p53 signaling pathway. Importantly, the mRNA levels of the two genes were also found to be decreased in the clinical samples of LUAD by qRT-PCR. Conclusion MECOM and PRDM16 may serve as potential prognostic biomarkers which govern immune cell recruitment to LUAD.
Collapse
Affiliation(s)
- Meng Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanpeng Zhang
- Department of Talent Highland, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Center for Translational Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Liu
- Department of Medical Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Fan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Yang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Puyu Shi, ; ; Mingwei Chen, ;
| | - Puyu Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Puyu Shi, ; ; Mingwei Chen, ;
| |
Collapse
|
22
|
Li L, Yu X, Ma G, Ji Z, Bao S, He X, Song L, Yu Y, Shi M, Liu X. Identification of an Innate Immune-Related Prognostic Signature in Early-Stage Lung Squamous Cell Carcinoma. Int J Gen Med 2021; 14:9007-9022. [PMID: 34876838 PMCID: PMC8643179 DOI: 10.2147/ijgm.s341175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Background Early-stage lung squamous cell carcinoma (LUSC) progression is accompanied by changes in immune microenvironments and the expression of immune-related genes (IRGs). Identifying innate IRGs associated with prognosis may improve treatment and reveal new immunotherapeutic targets. Methods Gene expression profiles and clinical data of early-stage LUSC patients were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases and IRGs from the InnateDB database. Univariate and multivariate Cox regression and LASSO regression analyses were performed to identify an innate IRG signature model prognostic in patients with early-stage LUSC. The predictive ability of this model was assessed by time-dependent receiver operator characteristic curve analysis, with the independence of the model-determined risk score assessed by univariate and multivariate Cox regression analyses. Overall survival (OS) in early-stage LUSC patients was assessed using a nomogram and decision curve analysis (DCA). Functional and biological pathways were determined by gene set enrichment analysis, and differences in biological functions and immune microenvironments between the high- and low-risk groups were assessed by ESTIMATE and the CIBERSORT algorithm. Results A signature involving six IRGs (SREBF2, GP2, BMX, NR1H4, DDX41, and GOPC) was prognostic of OS. Samples were divided into high- and low-risk groups based on median risk scores. OS was significantly shorter in the high-risk than in the low-risk group in the training (P < 0.001), GEO validation (P = 0.00021) and TCGA validation (P = 0.034) cohorts. Multivariate Cox regression analysis showed that risk score was an independent risk factor for OS, with the combination of risk score and T stage being optimally predictive of clinical benefit. GSEA, ESTIMATE, and the CIBERSORT algorithm showed that immune cell infiltration was higher and immune-related pathways were more strongly expressed in the low-risk group. Conclusion A signature that includes these six innate IRGs may predict prognosis in patients with early-stage LUSC.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xue Yu
- Department of Pediatrics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 420100, People's Republic of China
| | - Guanqiang Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhiqi Ji
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shihao Bao
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaopeng He
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Yang Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, People's Republic of China.,Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| |
Collapse
|
23
|
Wojas-Krawczyk K, Paśnik I, Kucharczyk T, Wieleba I, Krzyżanowska N, Gil M, Krawczyk P, Milanowski J. Immunoprofiling: An Encouraging Method for Predictive Factors Examination in Lung Cancer Patients Treated with Immunotherapy. Int J Mol Sci 2021; 22:ijms22179133. [PMID: 34502043 PMCID: PMC8431454 DOI: 10.3390/ijms22179133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
The efficiency of immunotherapy using monoclonal antibodies that inhibit immune checkpoints has been proven in many clinical studies and well documented by numerous registration approaches. To date, PD-L1 expression on tumor and immune cells, tumor mutation burden (TMB), and microsatellite instability (MSI) are the only validated predictive factors used for the qualification of cancer patients for immunotherapy. However, they are not the ideal predictive factors. No response to immunotherapy could be observed in patients with high PD-L1 expression, TMB, or MSI. On the other hand, the effectiveness of this treatment method also may occur in patients without PD-L1 expression or with low TMB and with microsatellite stability. When considering the best predictive factor, we should remember that the effectiveness of immunotherapy relies on an overly complex process depending on many factors. To specifically stimulate lymphocytes, not only should their activity in the tumor microenvironment be unlocked, but above all, they should recognize tumor antigens. The proper functioning of the anticancer immune system requires the proper interaction of many elements of the specific and non-specific responses. For these reasons, a multi-parameter analysis of the immune system at its different activity levels is considered a very future-oriented predictive marker. Such complex immunological analysis is performed using modern molecular biology techniques. Based on the gene expression studies, we can determine the content of individual immune cells within the tumor, its stroma, and beyond. This includes all cell types from active memory cytotoxic T cells, M1 macrophages, to exhausted T cells, regulatory T cells, and M2 macrophages. In this article, we summarize the possibilities of using an immune system analysis to predict immunotherapy efficacy in cancer patients. Moreover, we present the advantages and disadvantages of immunoprofiling as well as a proposed future direction for this new method of immune system analysis in cancer patients who receive immunotherapy.
Collapse
Affiliation(s)
- Kamila Wojas-Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-605 Lublin, Poland; (T.K.); (I.W.); (N.K.); (J.M.); (P.K.)
- Correspondence:
| | - Iwona Paśnik
- Department of Clinical Pathomorphology, Medical University of Lublin, 20-605 Lublin, Poland;
| | - Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-605 Lublin, Poland; (T.K.); (I.W.); (N.K.); (J.M.); (P.K.)
| | - Irena Wieleba
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-605 Lublin, Poland; (T.K.); (I.W.); (N.K.); (J.M.); (P.K.)
| | - Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-605 Lublin, Poland; (T.K.); (I.W.); (N.K.); (J.M.); (P.K.)
| | - Michał Gil
- Institute of Genetics and Immunology GENIM LCC in Lublin, 20-609 Lublin, Poland;
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-605 Lublin, Poland; (T.K.); (I.W.); (N.K.); (J.M.); (P.K.)
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-605 Lublin, Poland; (T.K.); (I.W.); (N.K.); (J.M.); (P.K.)
| |
Collapse
|