1
|
Miedema IHC, Pouw JEE, Kwakman A, Zwezerijnen GJC, Huisman MC, Timmer FEF, van de Ven R, de Gruijl TD, Hospers GAP, de Langen AJ, Menke-van der Houven van Oordt CW. Exploring the predictive potential of programmed death ligand 1 expression in healthy organs and lymph nodes as measured by 18F-BMS986-192 PET: pooled analysis of data from four solid tumor types. J Immunother Cancer 2024; 12:e008899. [PMID: 38886117 PMCID: PMC11184194 DOI: 10.1136/jitc-2024-008899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) can elicit anticancer immune responses, but predictive biomarkers are needed. We measured programmed death ligand 1 (PD-L1) expression in organs and lymph nodes using 18F-BMS-986192 positron emission tomography (PET)-imaging and looked for correlations with response and immune-related adverse events. METHODS Four 18F-BMS-986192 PET studies in patients with melanoma, lung, pancreatic and oral cancer, receiving ICI treatment, were combined. Imaging data (organ standardized uptake value (SUV)mean, lymph node SUVmax) and clinical data (response to treatment and incidence of immune-related adverse events) were extracted. RESULTS Baseline PD-L1 uptake in the spleen was on average higher in non-responding patients than in responders (spleen SUVmean 16.1±4.4 vs 12.5±3.4, p=0.02). This effect was strongest in lung cancer, and not observed in oral cancer. In the oral cancer cohort, benign tumor-draining lymph nodes (TDLNs) had higher PD-L1 uptake (SUVmax 3.3 IQR 2.5-3.9) compared with non-TDLNs (SUVmax 1.8, IQR 1.4-2.8 p=0.04). Furthermore, in the same cohort non-responders showed an increase in PD-L1 uptake in benign TDLNs on-treatment with ICIs (+15%), while for responders the PD-L1 uptake decreased (-11%). PD-L1 uptake did not predict immune-related adverse events, though elevated thyroid uptake on-treatment correlated with pre-existing thyroid disease or toxicity. CONCLUSION PD-L1 PET uptake in the spleen is a potential negative predictor of response to ICIs. On-treatment with ICIs, PD-L1 uptake in benign TDLNs increases in non-responders, while it decreases in responders, potentially indicating a mechanism for resistance to ICIs in patients with oral cancer.
Collapse
Affiliation(s)
- Iris H C Miedema
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Johanna E E Pouw
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Anne Kwakman
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Marc C Huisman
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Florentine E F Timmer
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Geke A P Hospers
- Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
2
|
Timmer FEF, Geboers B, Ruarus AH, Vroomen LGPH, Schouten EAC, van der Lei S, Vos DJW, Dijkstra M, Schulz HH, Bakker J, van den Bemd BAT, van den Tol PM, Puijk RS, Lissenberg-Witte BI, de Gruijl TD, de Vries JJJ, Lagerwaard FJ, Scheffer HJ, Bruynzeel AME, Meijerink MR. MRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial. Lancet Gastroenterol Hepatol 2024; 9:448-459. [PMID: 38513683 DOI: 10.1016/s2468-1253(24)00017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is an aggressive disease with a dismal prognosis. Stage III locally advanced pancreatic cancer is considered unresectable and current palliative chemotherapy regimens only modestly improve survival. Guidelines suggest chemoradiation or stereotactic ablative body radiotherapy (SABR) could be beneficial in certain circumstances. Other local treatments such as irreversible electroporation could enhance patient outcomes by extending survival while preserving quality of life. We aimed to compare the efficacy and safety of MRI-guided SABR versus CT-guided percutaneous irreversible electroporation following standard FOLFIRINOX chemotherapy. METHODS CROSSFIRE was an open-label, randomised phase 2 superiority trial conducted at the Amsterdam University Medical Centre (Amsterdam, Netherlands). Eligible patients were aged 18 years or older with confirmed histological and radiological stage III locally advanced pancreatic cancer. The maximum tumour diameter was 5 cm and patients had to be pretreated with three to eight cycles of FOLFIRINOX. Patients were randomly assigned (1:1) to MRI-guided SABR (five fractions of 8 Gy delivered on non-consecutive days) or CT-guided percutaneous irreversible electroporation using a computer-generated variable block randomisation model. The primary endpoint was overall survival from randomisation, assessed in the intention-to-treat population. Safety was assessed in the per-protocol population. A prespecified interim futility analysis was done after inclusion of half the original sample size, with a conditional probability of less than 0·2 resulting in halting of the study. The trial was registered at ClinicalTrials.gov, NCT02791503. FINDINGS Between May 1, 2016, and March 31, 2022, 68 patients were enrolled and randomly assigned to SABR (n=34) or irreversible electroporation (n=34), of whom 64 were treated according to protocol. Of the 68 participants, 36 (53%) were male and 32 (47%) were female, with a median age of 65 years (IQR 57-70). Median overall survival from randomisation was 16·1 months (95% CI 12·1-19·4) in the SABR group versus 12·5 months (10·9-17·0) in the irreversible electroporation group (hazard ratio [HR] 1·39 [95% CI 0·84-2·30]; p=0·21). The conditional probability to demonstrate superiority of either technique was 0·13; patient accrual was therefore stopped early for futility. 20 (63%) of 32 patients in the SABR group versus 19 (59%) of 32 patients in the irreversible electroporation group had adverse events (p=0·8) and five (16%) patients in the SABR group versus eight (25%) in the irreversible electroporation group had grade 3-5 adverse events (p=0·35). The most common grade 3-4 adverse events were cholangitis (two [6%] in the SABR group vs one [3%] in the irreversible electroporation group), abdominal pain (one [3%] vs two [6%]), and pancreatitis (none vs two [6%]). One (3%) patient in the SABR group and one (3%) in the irreversible electroporation group died from a treatment-related adverse event. INTERPRETATION CROSSFIRE did not identify a difference in overall survival or incidence of adverse events between MRI-guided SABR and CT-guided percutaneous irreversible electroporation after FOLFIRINOX. Future studies should further assess the added value of local ablative treatment over chemotherapy alone. FUNDING Adessium Foundation, AngioDynamics.
Collapse
Affiliation(s)
- Florentine E F Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Laurien G P H Vroomen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Evelien A C Schouten
- Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Susan van der Lei
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Danielle J W Vos
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hannah H Schulz
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Joyce Bakker
- Department of Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bente A T van den Bemd
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Robbert S Puijk
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Radiology and Nuclear Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan J J de Vries
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Radiology and Nuclear Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Radiology and Nuclear Medicine, Northwest Clinics, Alkmaar, Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Fu C, Tong W, Yu L, Miao Y, Wei Q, Yu Z, Chen B, Wei M. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside? Pharmacol Res 2024; 203:107160. [PMID: 38547937 DOI: 10.1016/j.phrs.2024.107160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/30/2024]
Abstract
Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Weiwei Tong
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110122, PR China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang 110122, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
4
|
Luke JJ, Davar D, Andtbacka RH, Bhardwaj N, Brody JD, Chesney J, Coffin R, de Baere T, de Gruijl TD, Fury M, Goldmacher G, Harrington KJ, Kaufman H, Kelly CM, Khilnani AD, Liu K, Loi S, Long GV, Melero I, Middleton M, Neyns B, Pinato DJ, Sheth RA, Solomon SB, Szapary P, Marabelle A. Society for Immunotherapy of Cancer (SITC) recommendations on intratumoral immunotherapy clinical trials (IICT): from premalignant to metastatic disease. J Immunother Cancer 2024; 12:e008378. [PMID: 38641350 PMCID: PMC11029323 DOI: 10.1136/jitc-2023-008378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Intratumorally delivered immunotherapies have the potential to favorably alter the local tumor microenvironment and may stimulate systemic host immunity, offering an alternative or adjunct to other local and systemic treatments. Despite their potential, these therapies have had limited success in late-phase trials for advanced cancer resulting in few formal approvals. The Society for Immunotherapy of Cancer (SITC) convened a panel of experts to determine how to design clinical trials with the greatest chance of demonstrating the benefits of intratumoral immunotherapy for patients with cancers across all stages of pathogenesis. METHODS An Intratumoral Immunotherapy Clinical Trials Expert Panel composed of international key stakeholders from academia and industry was assembled. A multiple choice/free response survey was distributed to the panel, and the results of this survey were discussed during a half-day consensus meeting. Key discussion points are summarized in the following manuscript. RESULTS The panel determined unique clinical trial designs tailored to different stages of cancer development-from premalignant to unresectable/metastatic-that can maximize the chance of capturing the effect of intratumoral immunotherapies. Design elements discussed included study type, patient stratification and exclusion criteria, indications of randomization, study arm determination, endpoints, biological sample collection, and response assessment with biomarkers and imaging. Populations to prioritize for the study of intratumoral immunotherapy, including stage, type of cancer and line of treatment, were also discussed along with common barriers to the development of these local treatments. CONCLUSIONS The SITC Intratumoral Immunotherapy Clinical Trials Expert Panel has identified key considerations for the design and implementation of studies that have the greatest potential to capture the effect of intratumorally delivered immunotherapies. With more effective and standardized trial designs, the potential of intratumoral immunotherapy can be realized and lead to regulatory approvals that will extend the benefit of these local treatments to the patients who need them the most.
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joshua D Brody
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jason Chesney
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | | - Thierry de Baere
- Center for Biotherapies In Situ (BIOTHERIS), INSERM CIC1428, Interventional Radiology Unit, Department of Medical Imaging, Gustave Roussy Cancer Center, University of Paris Saclay, Villejuif, France
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunology, Amsterdam, Netherlands
| | - Matthew Fury
- Oncology Clinical Development, Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | - Kevin J Harrington
- The Institute of Cancer Research, The Royal Marsden National Institute for Health and Care Research Biomedical Research Centre, London, UK
| | - Howard Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Ankyra Therapeutics, Boston, Massachusetts, USA
| | - Ciara M Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Ke Liu
- Marengo Therapeutics, Inc, Cambridge, Massachusetts, USA
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, and Royal North Shore and Mater Hospitals, North Sydney, New South Wales, Australia
| | | | - Mark Middleton
- Department of Oncology, University of Oxford, Oxford, UK
| | - Bart Neyns
- Department of Medical Oncology, Universitair Ziekenhuis Brussel, Jette, Belgium
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen B Solomon
- Chief of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Professor of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Philippe Szapary
- Interventional Oncology, Johnson & Johnson, New Brunswick, New Jersey, USA
| | - Aurelien Marabelle
- Center for Biotherapies In Situ (BIOTHERIS), INSERM CIC1428, Department for Therapeutic Innovation and Early Phase Trials (DITEP), Gustave Roussy Cancer Center, University of Paris Saclay, Villejuif, France
| |
Collapse
|
5
|
Balar PC, Apostolopoulos V, Chavda VP. A new era of immune therapeutics for pancreatic cancer: Monoclonal antibodies paving the way. Eur J Pharmacol 2024; 969:176451. [PMID: 38408598 DOI: 10.1016/j.ejphar.2024.176451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma, remains a devastating disease with a dismal prognosis and limited survival rates. Despite various drug treatments and regimens showing promise in managing the disease, the clinical outcomes have not significantly improved. Immunotherapy however, has become a forefront area in pancreatic cancer treatment. This approach comprises a range of agents, including small molecule drugs, antibodies, combination therapies, and vaccines. In the last 5-8 years, there has been an upsurge of research into the use of monoclonal antibodies to block receptors on cancer or immune cells, revolutionising cancer treatment and management. Several targets have been identified and studied, with the most encouraging noted in relation to checkpoint markers, namely, antibodies targeting anti-programmed cell death 1 (PD-1) and its receptor PD-L1. Herein, we present the clinical developments in immunotherapy in the last 5 years especially those which have been tested in humans against pancreatic cancer.
Collapse
Affiliation(s)
- Pankti C Balar
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Werribee Campus, Melbourne, VIC, 3030, Australia
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India.
| |
Collapse
|
6
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
7
|
Tran LC, Özdemir BC, Berger MD. The Role of Immune Checkpoint Inhibitors in Metastatic Pancreatic Cancer: Current State and Outlook. Pharmaceuticals (Basel) 2023; 16:1411. [PMID: 37895882 PMCID: PMC10609661 DOI: 10.3390/ph16101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, characterized by its aggressive tumor biology and poor prognosis. While immune checkpoint inhibitors (ICIs) play a major part in the treatment algorithm of various solid tumors, there is still no evidence of clinical benefit from ICI in patients with metastatic PDAC (mPDAC). This might be due to several reasons, such as the inherent low immunogenicity of pancreatic cancer, the dense stroma-rich tumor microenvironment that precludes an efficient migration of antitumoral effector T cells to the cancer cells, and the increased proportion of immunosuppressive immune cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells (MDSCs), facilitating tumor growth and invasion. In this review, we provide an overview of the current state of ICIs in mPDAC, report on the biological rationale to implement ICIs into the treatment strategy of pancreatic cancer, and discuss preclinical studies and clinical trials in this field. Additionally, we shed light on the challenges of implementing ICIs into the treatment strategy of PDAC and discuss potential future directions.
Collapse
Affiliation(s)
| | | | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
8
|
De Grandis MC, Ascenti V, Lanza C, Di Paolo G, Galassi B, Ierardi AM, Carrafiello G, Facciorusso A, Ghidini M. Locoregional Therapies and Remodeling of Tumor Microenvironment in Pancreatic Cancer. Int J Mol Sci 2023; 24:12681. [PMID: 37628865 PMCID: PMC10454061 DOI: 10.3390/ijms241612681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Despite the advances made in treatment, the prognosis of pancreatic ductal adenocarcinoma (PDAC) remains dismal, even in the locoregional and locally advanced stages, with high relapse rates after surgery. PDAC exhibits a chemoresistant and immunosuppressive phenotype, and the tumor microenvironment (TME) surrounding cancer cells actively participates in creating a stromal barrier to chemotherapy and an immunosuppressive environment. Recently, there has been an increasing use of interventional radiology techniques for the treatment of PDAC, although they do not represent a standard of care and are not included in clinical guidelines. Local approaches such as radiation therapy, hyperthermia, microwave or radiofrequency ablation, irreversible electroporation and high-intensity focused ultrasound exert their action on the tumor tissue, altering the composition and structure of TME and potentially enhancing the action of chemotherapy. Moreover, their action can increase antigen release and presentation with T-cell activation and reduction tumor-induced immune suppression. This review summarizes the current evidence on locoregional therapies in PDAC and their effect on remodeling TME to make it more susceptible to the action of antitumor agents.
Collapse
Affiliation(s)
| | - Velio Ascenti
- Postgraduate School of Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy; (V.A.); (C.L.)
| | - Carolina Lanza
- Postgraduate School of Diagnostic and Interventional Radiology, University of Milan, 20122 Milan, Italy; (V.A.); (C.L.)
| | - Giacomo Di Paolo
- Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (M.C.D.G.); (G.D.P.)
| | - Barbara Galassi
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (M.G.)
| | - Anna Maria Ierardi
- Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.M.I.); (G.C.)
| | - Gianpaolo Carrafiello
- Radiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.M.I.); (G.C.)
- Department of Oncology and Haemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (M.G.)
| |
Collapse
|
9
|
Liu X, Zhuang Y, Huang W, Wu Z, Chen Y, Shan Q, Zhang Y, Wu Z, Ding X, Qiu Z, Cui W, Wang Z. Interventional hydrogel microsphere vaccine as an immune amplifier for activated antitumour immunity after ablation therapy. Nat Commun 2023; 14:4106. [PMID: 37433774 PMCID: PMC10336067 DOI: 10.1038/s41467-023-39759-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
The response rate of pancreatic cancer to chemotherapy or immunotherapy pancreatic cancer is low. Although minimally invasive irreversible electroporation (IRE) ablation is a promising option for irresectable pancreatic cancers, the immunosuppressive tumour microenvironment that characterizes this tumour type enables tumour recurrence. Thus, strengthening endogenous adaptive antitumour immunity is critical for improving the outcome of ablation therapy and post-ablation immune therapy. Here we present a hydrogel microsphere vaccine that amplifies post-ablation anti-cancer immune response via releasing its cargo of FLT3L and CD40L at the relatively lower pH of the tumour bed. The vaccine facilitates migration of the tumour-resident type 1 conventional dendritic cells (cDC1) to the tumour-draining lymph nodes (TdLN), thus initiating the cDC1-mediated antigen cross-presentation cascade, resulting in enhanced endogenous CD8+ T cell response. We show in an orthotopic pancreatic cancer model in male mice that the hydrogel microsphere vaccine transforms the immunologically cold tumour microenvironment into hot in a safe and efficient manner, thus significantly increasing survival and inhibiting the growth of distant metastases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Wei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Zhuozhuo Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Yingjie Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Yuefang Zhang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, No.320 Yueyang Road, 200032, Shanghai, P. R. China
| | - Zhiyuan Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Xiaoyi Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Zilong Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, No.320 Yueyang Road, 200032, Shanghai, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China.
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, 200025, Shanghai, P. R. China.
- Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No.149, South Chongqing Road, 200025, Shanghai, P. R. China.
| |
Collapse
|
10
|
Are Aspects of Integrative Concepts Helpful to Improve Pancreatic Cancer Therapy? Cancers (Basel) 2023; 15:cancers15041116. [PMID: 36831465 PMCID: PMC9953994 DOI: 10.3390/cancers15041116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous clinical studies have been conducted to improve the outcomes of patients suffering from pancreatic cancer. Different approaches using targeted therapeutic strategies and precision medicine methods have been investigated, and synergies and further therapeutic advances may be achieved through combinations with integrative methods. For pancreatic tumors, a particular challenge is the presence of a microenvironment and a dense stroma, which is both a physical barrier to drug penetration and a complex entity being controlled by the immune system. Therefore, the state of immunological tolerance in the tumor microenvironment must be overcome, which is a considerable challenge. Integrative approaches, such as hyperthermia, percutaneous irreversible electroporation, intra-tumoral injections, phytotherapeutics, or vitamins, in combination with standard-oncological therapies, may potentially contribute to the control of pancreatic cancer. The combined application of standard-oncological and integrative methods is currently being studied in ongoing clinical trials. An actual overview is given here.
Collapse
|
11
|
Meng L, Wei Y, Xiao Y. Chemo-immunoablation of solid tumors: A new concept in tumor ablation. Front Immunol 2023; 13:1057535. [PMID: 36713427 PMCID: PMC9878389 DOI: 10.3389/fimmu.2022.1057535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023] Open
Abstract
Chemical ablation was designed to inject chemical agents directly into solid tumors to kill cells and is currently only used clinically for the palliative treatment of tumors. The application and combination of different drugs, from anhydrous ethanol, and glacial acetic acid to epi-amycin, have been clinically tested for a long time. The effectiveness is unsatisfactory due to chemical agents' poor diffusion and concentration. Immunotherapy is considered a prospective oncologic therapeutic. Still, the clinical applications were limited by the low response rate of patients to immune drugs and the immune-related adverse effects caused by high doses. The advent of intratumoral immunotherapy has well addressed these issues. However, the efficacy of intratumoral immunotherapy alone is uncertain, as suggested by the results of preclinical and clinical studies. In this study, we will focus on the research of immunosuppressive tumor microenvironment with chemoablation and intratumoral immunotherapy, the synergistic effect between chemotherapeutic drugs and immunotherapy. We propose a new concept of intratumoral chemo-immunoablation. The concept opens a new perspective for tumor treatment from direct killing of tumor cells while, enhancing systemic anti-tumor immune response, and significantly reducing adverse effects of drugs.
Collapse
Affiliation(s)
- Liangliang Meng
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China,Department of Radiology, Chinese PAP Hospital of Beijing, Beijing, China
| | - Yingtian Wei
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Yueyong Xiao,
| |
Collapse
|
12
|
Polyakov AN, Patyutko YI, Kudashkin NE, Kantieva DM, Romanova KA, Nasonova EA, Korshak AV, Egenov OA, Podluzhnyi DV. [Irreversible electroporation in locally advanced pancreatic cancer]. Khirurgiia (Mosk) 2023:29-38. [PMID: 37916555 DOI: 10.17116/hirurgia202310129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To determine the feasibility of irreversible electroporation (IRE) for locally advanced pancreatic adenocarcinoma. MATERIAL AND METHODS Twenty-three patients underwent IRE after chemotherapy for locally advanced pancreatic cancer between 2015 and 2022. IRE was performed during laparotomy as a rule (n=22). In one case, IRE was combined with palliative pancretoduodenectomy. Nineteen (86.3%) patients received adjuvant chemotherapy after the procedure. The follow-up examination included contrast-enhanced CT/MRI of the abdomen, chest X-ray or CT, analysis of CA 19-9 marker one month after surgery and then every three months. RESULTS Complications after IRE developed in 5 (21.7%) patients. Three patients (13.0%) had arrhythmia, two (8.7%) ones had pancreatic necrosis. A 90-day mortality after the procedure was 4.3% (n=1), the cause was pancreatic necrosis. According to intraoperative data and the first examination (CT/MRI), the entire tumor infiltrate was treated in 21 (91.3%) cases. Median follow-up was 19 months. Median period until local recurrence was 15 months. Isolated local recurrence was observed in 7 patients. Of these, 3 ones underwent radiotherapy, one patient underwent repeated IRE. Distant metastases were found in 11 patients; systemic therapy was restarted. Median time to progression was 7 months after IRE and 14 months after initiation of chemotherapy. The median overall survival was 16 months after electroporation and 25 months after chemotherapy. CONCLUSION Irreversible electroporation may be useful in carefully selected patients with unresectable locally advanced pancreatic adenocarcinoma after successful induction chemotherapy. This procedure provides local control, but the impact on long-term outcomes and feasibility of routine use should be analyzed in randomized trials.
Collapse
Affiliation(s)
- A N Polyakov
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - Yu I Patyutko
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - N E Kudashkin
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - D M Kantieva
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - K A Romanova
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - E A Nasonova
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - A V Korshak
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - O A Egenov
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| | - D V Podluzhnyi
- Blokhin National Medical Cancer Research Center, Moscow, Russia
| |
Collapse
|
13
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
14
|
Senders ZJ, Martin RCG. Intratumoral Immunotherapy and Tumor Ablation: A Local Approach with Broad Potential. Cancers (Basel) 2022; 14:cancers14071754. [PMID: 35406525 PMCID: PMC8996835 DOI: 10.3390/cancers14071754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Several intratumoral immunotherapeutic agents have shown efficacy in controlling local disease; however, their ability to induce a durable systemic immune response is limited. Likewise, tumor ablation is well-established due to its role in local disease control but generally produces only a modest immunogenic effect. It has recently been recognized, however, that there is potential synergy between these two modalities and their distinct mechanisms of immune modulation. The aim of this review is to evaluate the existing data regarding multimodality therapy with intratumoral immunotherapy and tumor ablation. We discuss the rationale for this therapeutic approach, highlight novel combinations, and address the challenges to their clinical utility. There is substantial evidence that combination therapy with intratumoral immunotherapy and tumor ablation can potentiate durable systemic immune responses and should be further evaluated in the clinical setting.
Collapse
|
15
|
Imran KM, Nagai-Singer MA, Brock RM, Alinezhadbalalami N, Davalos RV, Allen IC. Exploration of Novel Pathways Underlying Irreversible Electroporation Induced Anti-Tumor Immunity in Pancreatic Cancer. Front Oncol 2022; 12:853779. [PMID: 35372046 PMCID: PMC8972192 DOI: 10.3389/fonc.2022.853779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Advancements in medical sciences and technologies have significantly improved the survival of many cancers; however, pancreatic cancer remains a deadly diagnosis. This malignancy is often diagnosed late in the disease when metastases have already occurred. Additionally, the location of the pancreas near vital organs limits surgical candidacy, the tumor's immunosuppressive environment limits immunotherapy success, and it is highly resistant to radiation and chemotherapy. Hence, clinicians and patients alike need a treatment paradigm that reduces primary tumor burden, activates systemic anti-tumor immunity, and reverses the local immunosuppressive microenvironment to eventually clear distant metastases. Irreversible electroporation (IRE), a novel non-thermal tumor ablation technique, applies high-voltage ultra-short pulses to permeabilize targeted cell membranes and induce cell death. Progression with IRE technology and an array of research studies have shown that beyond tumor debulking, IRE can induce anti-tumor immune responses possibly through tumor neo-antigen release. However, the success of IRE treatment (i.e. full ablation and tumor recurrence) is variable. We believe that IRE treatment induces IFNγ expression, which then modulates immune checkpoint molecules and thus leads to tumor recurrence. This indicates a co-therapeutic use of IRE and immune checkpoint inhibitors as a promising treatment for pancreatic cancer patients. Here, we review the well-defined and speculated pathways involved in the immunostimulatory effects of IRE treatment for pancreatic cancer, as well as the regulatory pathways that may negate these anti-tumor responses. By defining these underlying mechanisms, future studies may identify improvements to systemic immune system engagement following local tumor ablation with IRE and beyond.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Nastaran Alinezhadbalalami
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
16
|
Okada H, Takahashi K, Yaku H, Kobiyama K, Iwaisako K, Zhao X, Shiokawa M, Uza N, Kodama Y, Ishii KJ, Seno H. In situ vaccination using unique TLR9 ligand K3-SPG induces long-lasting systemic immune response and synergizes with systemic and local immunotherapy. Sci Rep 2022; 12:2132. [PMID: 35136110 PMCID: PMC8825851 DOI: 10.1038/s41598-022-05702-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
Although checkpoint inhibitors (CPIs) have changed the paradigm of cancer therapy, low response rates and serious systemic adverse events remain challenging. In situ vaccine (ISV), intratumoral injection of immunomodulators that stimulate innate immunity at the tumor site, allows for the development of vaccines in patients themselves. K3-SPG, a second-generation nanoparticulate Toll-like receptor 9 (TLR9) ligand consisting of K-type CpG oligodeoxynucleotide (ODN) wrapped with SPG (schizophyllan), integrates the best of conventional CpG ODNs, making it an ideal cancer immunotherapy adjuvant. Focusing on clinical feasibility for pancreaticobiliary and gastrointestinal cancers, we investigated the antitumor activity of K3-SPG-ISV in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). K3-SPG-ISV suppressed tumor growth more potently than K3-ISV or K3-SPG intravenous injections, prolonged survival, and enhanced the antitumor effect of CPIs. Notably, in PDAC model, K3-SPG-ISV alone induced systemic antitumor effect and immunological memory. ISV combination of K3-SPG and agonistic CD40 antibody further enhanced the antitumor effect. Our results imply that K3-SPG-based ISV can be applied as monotherapy or combined with CPIs to improve their response rate or, conversely, with CPI-free local immunotherapy to avoid CPI-related adverse events. In either strategy, the potency of K3-SPG-based ISV would provide the rationale for its clinical application to puncturable pancreaticobiliary and gastrointestinal malignancies.
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan.
| | - Hiroaki Yaku
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Kouji Kobiyama
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, 610-0394, Japan
| | - Xiangdong Zhao
- Division of HBP Surgery and Transplantation, Department of Surgery, Kyoto University, 54-Shogoin Kawahara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54-Syogoin Kawara-cho, Sakyoku, Kyoto, 606-8507, Japan
| |
Collapse
|
17
|
Zhang N, Li Z, Han X, Zhu Z, Li Z, Zhao Y, Liu Z, Lv Y. Irreversible Electroporation: An Emerging Immunomodulatory Therapy on Solid Tumors. Front Immunol 2022; 12:811726. [PMID: 35069599 PMCID: PMC8777104 DOI: 10.3389/fimmu.2021.811726] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Irreversible electroporation (IRE), a novel non-thermal ablation technique, is utilized to ablate unresectable solid tumors and demonstrates favorable safety and efficacy in the clinic. IRE applies electric pulses to alter the cell transmembrane voltage and causes nanometer-sized membrane defects or pores in the cells, which leads to loss of cell homeostasis and ultimately results in cell death. The major drawbacks of IRE are incomplete ablation and susceptibility to recurrence, which limit its clinical application. Recent studies have shown that IRE promotes the massive release of intracellular concealed tumor antigens that become an “in-situ tumor vaccine,” inducing a potential antitumor immune response to kill residual tumor cells after ablation and inhibiting local recurrence and distant metastasis. Therefore, IRE can be regarded as a potential immunomodulatory therapy, and combined with immunotherapy, it can exhibit synergistic treatment effects on malignant tumors, which provides broad application prospects for tumor treatment. This work reviewed the current status of the clinical efficacy of IRE in tumor treatment, summarized the characteristics of local and systemic immune responses induced by IRE in tumor-bearing organisms, and analyzed the specific mechanisms of the IRE-induced immune response. Moreover, we reviewed the current research progress of IRE combined with immunotherapy in the treatment of solid tumors. Based on the findings, we present deficiencies of current preclinical studies of animal models and analyze possible reasons and solutions. We also propose possible demands for clinical research. This review aimed to provide theoretical and practical guidance for the combination of IRE with immunotherapy in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Constantin A, Iovănescu V, Cazacu IM, Ungureanu BS, Copăescu C, Stroescu C, Bejinariu N, Săftoiu A. Evaluation of MMR Status and PD-L1 Expression Using Specimens Obtained by EUS-FNB in Patients with Pancreatic Ductal Adenocarcinoma (PDAC). Diagnostics (Basel) 2022; 12:294. [PMID: 35204385 PMCID: PMC8871161 DOI: 10.3390/diagnostics12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Deficient DNA mismatch repair status (dMMR)/high microsatellite instability have been shown to be predictive biomarkers for immune checkpoint inhibitor drugs which block the programmed death protein-1/programmed death ligand-1 (PD-1/PD-L1) interaction between tumor cells and activated T cells. The aim of this study was to determine the prevalence of MMR status and quantification of PD-L1 expression in pancreatic endoscopic ultrasound-guided fine-needle biopsy (EUS FNB) specimens. Immunochemistry (IHC) was performed on consecutive archived treatment-naïve formalin-fixed paraffin-embedded EUS-FNB samples. The specimens were considered to have PD-L1 expression if PD-L1 was expressed in ≥1% of tumor cells and a high level of expression if ≥50%. Tumors with absent nuclear staining of DNA mismatch repair proteins (MLH1, MSH2, MSH6, or PMS2) were classified as dMMR. A total of 28 treatment-naïve patients who underwent EUS-FNB and had a final diagnosis of pancreatic ductal adenocarcinoma (PDAC) were included in the study. All the EUS-FNB samples were adequate for the evaluation of MMR and PD-L1 expression. None of the patients with PDAC included in the study had a dMMR tumor. PD-L1 expression was identified in 39% of the cohort (n = 11). Expression thresholds of ≥1%, ≥10%, and ≥50% in tumor cells were identified in 11 (39%), 4 (14%), and 1 (4%) patients, respectively. The evaluation of MMR status and PD-L1 can be successfully performed on EUS-FNB pancreatic specimens. Furthermore, MMR expression failed to show utility in recognizing immunotherapy vulnerability in pancreatic cancer; the only recommendation for testing remains for patients with heritable cancers. Meanwhile high PD-L1 expression was correlated with poor prognosis. This association may identify a subgroup of patients where immune checkpoints inhibitors could provide therapeutic benefits, spotlighting the role of EUS-FNB in the field of immune-oncology.
Collapse
Affiliation(s)
- Alina Constantin
- Department of Gastroenterology, Ponderas Academic Hospital, 014142 Bucharest, Romania;
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| | - Vlad Iovănescu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| | - Irina Mihaela Cazacu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Bogdan Silviu Ungureanu
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| | - Cătălin Copăescu
- Department of Gastroenterology, Ponderas Academic Hospital, 014142 Bucharest, Romania;
| | - Cezar Stroescu
- Department of Surgery, St. Mary Hospital, 011172 Bucharest, Romania;
| | - Nona Bejinariu
- Santomar Oncodiagnostic, Regina Maria Histopathology Laboratory, 400350 Cluj Napoca, Romania;
| | - Adrian Săftoiu
- Department of Gastroenterology, Ponderas Academic Hospital, 014142 Bucharest, Romania;
- Research Center of Gastroenterology and Hepatology Craiova, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.I.); (I.M.C.); (B.S.U.)
| |
Collapse
|
19
|
Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel) 2021; 13:cancers13164138. [PMID: 34439292 PMCID: PMC8393975 DOI: 10.3390/cancers13164138] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality. The vast majority of patients present with unresectable, advanced stage disease, for whom standard of care chemo(radio)therapy may improve survival by several months. Immunotherapy has led to a fundamental shift in the treatment of several advanced cancers. However, its efficacy in PDAC in terms of clinical benefit is limited, possibly owing to the immunosuppressive, inaccessible tumor microenvironment. Still, various immunotherapies have demonstrated the capacity to initiate local and systemic immune responses, suggesting an immune potentiating effect. In this review, we address PDAC's immunosuppressive tumor microenvironment and immune evasion methods and discuss a wide range of immunotherapies, including immunomodulators (i.e., immune checkpoint inhibitors, immune stimulatory agonists, cytokines and adjuvants), oncolytic viruses, adoptive cell therapies (i.e., T cells and natural killer cells) and cancer vaccines. We provide a general introduction to their working mechanism as well as evidence of their clinical efficacy and immune potentiating abilities in PDAC. The key to successful implementation of immunotherapy in this disease may rely on exploitation of synergistic effects between treatment combinations. Accordingly, future treatment approaches should aim to incorporate diverse and novel immunotherapeutic strategies coupled with cytotoxic drugs and/or local ablative treatment, targeting a wide array of tumor-induced immune escape mechanisms.
Collapse
|