1
|
Li Y, Lam SSK, Gao Y, Shore E, Anderson DW, Hode T, Martin RC. Enhancing the Immunotherapeutic Effect by IP-001 and Irreversible Electroporation in Mouse Oligometastatic Models of Pancreatic Adenocarcinoma. Ann Surg Oncol 2024:10.1245/s10434-024-16742-3. [PMID: 39739260 DOI: 10.1245/s10434-024-16742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND This study aimed to evaluate the immunotherapeutic effect of irreversible electroporation (IRE) and IP-001 in pancreatic adenocarcinoma with metastasis. METHODS Orthotopic models of pancreatic adenocarcinoma with hepatic oligometastasis were established by implantation of tumor tissues (derived from Pan02 or KPC cells) size 2 mm3 into the pancreas and left liver lobe in C57BL/6J mice. One week after implantation, the tumor-burden mice were subjected to saline control, IRE, IP-001, and IRE+IP-001. For IRE therapy (1000 V, 0.1 ms, 10 pulses administered 10 times), the pancreas tumor was treated, whereas the oligometastasis was untreated as the IRE off-target tumor. Intratumoral administration of IP-001(0.4 ml/kg) was performed. RESULTS In the KPC oligometastatic model, IRE+IP-001 therapy significantly suppressed the growth of oligometastatic tumor. Flow cytometry showed significantly increased tumor-infiltrating lymphocytes (TILs) (e.g., CD8+ cytotoxic T lymphocytes) and significantly increased monocytes/macrophages in the oligometastatic tumor tissues from IRE+IP-001 treatment compared with the sham control. Significantly decreased Treg cells and tumor-associated macrophages (TAMs) also were found in the oligometastatic tumor tissues from IRE+IP-001 treatment compared with the sham control. In the Pan02 oligometastatic model, both IRE+IP-001 therapy and IRE+anti-PD-L1 immunotherapy significantly suppressed the growth of oligometastatic tumor, which was associated with the increased CD8+ cytotoxic T lymphocytes. However, increased monocytes/macrophages were found in the mice that had IRE+IP-001 therapy, but not in the mice that had IRE+anti-PD-L1 immunotherapy. CONCLUSION The study provided compelling evidence for the efficacy of IRE&IP-001 therapy in suppressing pancreatic tumors, including off-target oligometastatic lesions. The observed off-target effect underscores the importance of systemic immune activation in achieving effective tumor control.
Collapse
Affiliation(s)
- Yan Li
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA.
| | | | - Yonglin Gao
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Emily Shore
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | | | | | - Robert C Martin
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Aksoy SA, Earl J, Grahovac J, Karakas D, Lencioni G, Sığırlı S, Bijlsma MF. Organoids, tissue slices and organotypic cultures: Advancing our understanding of pancreatic ductal adenocarcinoma through in vitro and ex vivo models. Semin Cancer Biol 2024; 109:10-24. [PMID: 39730107 DOI: 10.1016/j.semcancer.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses of all common solid cancers. For the large majority of PDAC patients, only systemic therapies with very limited efficacy are indicated. In addition, immunotherapies have not brought the advances seen in other cancer types. Several key characteristics of PDAC contribute to poor treatment outcomes, and in this review, we will discuss how these characteristics are best captured in currently available ex vivo or in vitro model systems. For instance, PDAC is hallmarked by a highly desmoplastic and immune-suppressed tumor microenvironment that impacts disease progression and therapy resistance. Also, large differences in tumor biology exist between and within tumors, complicating treatment decisions. Furthermore, PDAC has a very high propensity for locally invasive and metastatic growth. The use of animal models is often not desirable or feasible and several in vitro and ex vivo model systems have been developed, such as organotypic cocultures and tissue slices, among others. However, the absence of a full host organism impacts the ability of these models to accurately capture the characteristics that contribute to poor outcomes in PDAC. We will discuss the caveats and advantages of these model systems in the context of PDAC's key characteristics and provide recommendations on model choice and the possibilities for optimization. These considerations should be of use to researchers aiming to study PDAC in the in vitro setting.
Collapse
Affiliation(s)
- Secil Ak Aksoy
- Bursa Uludag University, Faculty of Medicine, Department of Medical Microbiology, Bursa, Turkey
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Biomodels and Biomodels Platform Hospital Ramón y Cajal-IRYCIS, Carretera Colmenar Km 9,100, Madrid 28034, Spain; The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Jelena Grahovac
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Didem Karakas
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Giulia Lencioni
- Department of Biology, University of Pisa, Pisa, Italy; Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Sıla Sığırlı
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Yu J, An N, Zhu J, Zhu B, Zhang G, Chen K, Zhou Y, Ye T, Li G. AVL-armed oncolytic vaccinia virus promotes viral replication and boosts antitumor immunity via increasing ROS levels in pancreatic cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200878. [PMID: 39431173 PMCID: PMC11488421 DOI: 10.1016/j.omton.2024.200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024]
Abstract
Pancreatic malignant neoplasm is an extremely deadly malignancy well known for its resistance to traditional therapeutic approaches. Enhanced treatments are imperative for individuals diagnosed with pancreatic cancer (PC). Recent investigations have shed light on the wide-ranging anticancer properties of genetic therapy facilitated by oncolytic vaccinia virus. To illuminate the precise impacts of Aphrocallistes vastus lectin-armed oncolytic vaccinia virus (oncoVV-AVL) on PC, AsPC-1 and PANC-1 cells underwent treatment with oncoVV-AVL. Our findings revealed that oncoVV-AVL possesses the capacity to heighten oncolytic effects on PC cells and incite the production of diverse cytokines like tumor necrosis factor-α, interleukin-6 (IL-6), IL-8, and interferon-I (IFN-I), without triggering antiviral responses. Additionally, oncoVV-AVL can significantly elevate the levels of ROS in PC cells, initiating an oxidative stress response that promotes viral replication, apoptosis, and autophagy. Moreover, in xenograft tumor models, oncoVV-AVL notably restrained PC growth, enhanced IFN-γ levels in the bloodstream, and reprogrammed macrophages. Our investigation indicates that oncoVV-AVL boosts the efficacy of antitumor actions against PC tumors by orchestrating reactive oxygen species-triggered viral replication, fostering M1 polarization, and reshaping the tumor microenvironment to transform cold PC tumors into hot ones. These findings imply that oncoVV-AVL could present a novel therapeutic approach for treating PC tumors.
Collapse
Affiliation(s)
- Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan An
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jili Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Borong Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Co IL, Fomina A, Nurse M, McGuigan AP. Applications and evolution of 3D cancer-immune cell models. Trends Biotechnol 2024; 42:1615-1627. [PMID: 39025680 DOI: 10.1016/j.tibtech.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
Collapse
Affiliation(s)
- Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Aleksandra Fomina
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Michelle Nurse
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
5
|
Cheng K, Li X, Lv W, Zhao G, Zhou R, Chang C, Yang H, Li R, Li Z, Chen Y, Yi C, Yan O, Xiao C, Zhang Y, Xiong J, Huang Z, Shao W, You X, Guo W, He D, Ling W, Wang R, Tian B, Zhao C, Cao D. Spatial interactions of immune cells as potential predictors to efficacy of toripalimab plus chemotherapy in locally advanced or metastatic pancreatic ductal adenocarcinoma: a phase Ib/II trial. Signal Transduct Target Ther 2024; 9:321. [PMID: 39582060 PMCID: PMC11586424 DOI: 10.1038/s41392-024-02031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Advanced pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Immunotherapy alone offers limited efficacy, but it is still unknown whether its combination with chemotherapy could offer synergistic anti-tumor effects. This phase Ib/II study evaluated the safety and efficacy of combining toripalimab with the gemcitabine plus nab-paclitaxel (GnP) regimen as first-line treatment for locally advanced or metastatic PDAC and explored predictive biomarkers (ChiCTR2000032293). The primary endpoints were safety and overall survival (OS). The secondary outcomes were objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS). Immune-related biomarkers including programmed death-ligand 1 (PD-L1) expression, genetic status, cytokine levels, and spatial features of the tumor immune microenviroment (TIME) were investigated. Neither serious treatment-related adverse events nor grade 4 immune-related adverse events were reported. Among the 72 patients, the median OS was 8.9 months, 12-month OS rate was 31.9%, with median PFS of 5.6 months, ORR of 33.3%, and DCR of 90.3%. Higher PD-L1 expression, without liver metastases were associated with higher ORR, however these factors could not effectively distinguish responders and non-responders. Importantly, dendritic cells - T helper cells - cytotoxic T lymphocytes (DC-Th-CTL) enriched immune niche and their spatial interactions were dominant predictors of response based on TIME analysis using a cyclic multiplex tissue staining assay, with an area under the curve value of 0.8. Overall, GnP plus toripalimab exhibited good safety and differentiated efficacy in selected population, and the spatial interactions of DC-Th-CTL represent promising predictors to efficacy of immunochemotherapy in locally advanced or metastatic PDAC.
Collapse
Affiliation(s)
- Ke Cheng
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoying Li
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wanrui Lv
- Department of Oncology, Meishan City People's Hospital, Meishan, Sichuan, China
| | - Gang Zhao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruihan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center, West China Hospital, Chengdu, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heqi Yang
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruizhen Li
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Li
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Chen
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Yi
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ouying Yan
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center, West China Hospital, Chengdu, Sichuan, China
| | - Yi Zhang
- Pancreatic Division, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of General Surgery, ChengDu ShangJing NanFu Hospital, Chengdu, Sichuan, China
| | - Junjie Xiong
- Pancreatic Division, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zixin Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Xin You
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenhao Guo
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Du He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwu Ling
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bole Tian
- Pancreatic Division, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center, West China Hospital, Chengdu, Sichuan, China.
| | - Dan Cao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Thomas ME, Jie E, Kim AM, Mayberry TG, Cowan BC, Luechtefeld HD, Wakefield MR, Fang Y. Exploring the role of antigen-presenting cancer-associated fibroblasts and CD74 on the pancreatic ductal adenocarcinoma tumor microenvironment. Med Oncol 2024; 42:15. [PMID: 39585543 DOI: 10.1007/s12032-024-02564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has proven to be a formidable cancer primarily due to its tumor microenvironment (TME). This highly desmoplastic, hypoxic, and pro-inflammatory environment has not only been shown to facilitate the growth and metastasis of PDAC but has also displayed powerful immunosuppressive capabilities. A critical cell involved in the development of the PDAC TME is the fibroblast, specifically the antigen-presenting cancer-associated fibroblast (apCAF). The pro-inflammatory environment of PDAC induces the proliferation of apCAFs, promoting immunosuppression through immune cell inactivation, immune response regulation, and expression of CD74. In conjunction with apCAFs and tumor cells, CD74 serves as a versatile promoter of PDAC by preventing tumor antigen-expression on tumor cells, upregulating the expression of immunosuppressive chemical mediators, and activating proliferative pathways to induce PDAC malignancy. This review will highlight critical mediators and pathways that promote the PDAC stroma and TME with its hypoxic and immunosuppressive properties. Further, we will highlight the nature of apCAFs and CD74, their specific roles in the PDAC TME, and their potential as targets for immunotherapy.
Collapse
Affiliation(s)
- Michael E Thomas
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA
| | - Emily Jie
- Department of Psychology, Iowa State University, Ames, IA, 50011, USA
| | - Austin M Kim
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA
| | - Trenton G Mayberry
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Braydon C Cowan
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Harrison D Luechtefeld
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology and Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA, 50266, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
7
|
Fu K, Su J, Zhou Y, Chen X, Hu X. The role of epigenetic regulation in pancreatic ductal adenocarcinoma progression and drug response: an integrative genomic and pharmacological prognostic prediction model. Front Pharmacol 2024; 15:1498031. [PMID: 39640482 PMCID: PMC11618540 DOI: 10.3389/fphar.2024.1498031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with poor prognosis. Epigenetic dysregulation plays a crucial role in PDAC progression, but its comprehensive landscape and clinical implications remain unclear. Methods We integrated single-cell RNA sequencing, bulk RNA sequencing, and clinical data from multiple public databases. Single-cell analysis was performed using Seurat and hdWGCNA packages to reveal cell heterogeneity and epigenetic features. Weighted gene co-expression network analysis (WGCNA) identified key epigenetic modules. A machine learning-based prognostic model was constructed using multiple algorithms, including Lasso and Random Survival Forest. We further analyzed mutations, immune microenvironment, and drug sensitivity associated with the epigenetic risk score. Results Single-cell analysis revealed distinct epigenetic patterns across different cell types in PDAC. WGCNA identified key modules associated with histone modifications and DNA methylation. Our machine learning model, based on 17 epigenetic genes, showed robust prognostic value (AUC >0.7 for 1-, 3-, and 5-year survival) and outperformed existing models. High-risk patients exhibited distinct mutation patterns, including higher frequencies of KRAS and TP53 mutations. Low-risk patients showed higher immune and stromal scores, with increased infiltration of CD8+ T cells and M2 macrophages. Drug sensitivity analysis revealed differential responses to various therapeutic agents between high- and low-risk groups, with low-risk patients showing higher sensitivity to EGFR and MEK inhibitors. Conclusion Our study provides a comprehensive landscape of epigenetic regulation in PDAC at single-cell resolution and establishes a robust epigenetics-based prognostic model. The integration of epigenetic features with mutation profiles, immune microenvironment, and drug sensitivity offers new insights into PDAC heterogeneity and potential therapeutic strategies. These findings pave the way for personalized medicine in PDAC management and highlight the importance of epigenetic regulation in cancer research.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Hu
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
van Eijck CWF, Ju J, van 't Land FR, Verheij M, Li Y, Stubbs A, Doukas M, Lila K, Heij LR, Wiltberger G, Alonso L, Malats N, Groot Koerkamp B, Vietsch EE, van Eijck CHJ. The tumor immune microenvironment in resected treatment-naive pancreatic cancer patients with long-term survival. Pancreatology 2024; 24:1057-1065. [PMID: 39218754 DOI: 10.1016/j.pan.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Presently, only a fraction of patients undergo successful surgical resection, the most effective treatment. Enhancing treatment strategies necessitates a deep comprehension of the factors underlying extended survival after surgical resection in patients. METHODS This study aims to identify the important factors of PDAC patients' long-term survival with metatranscriptomics and multiplex immunofluorescence (IF) staining analyses. Specifically, differences in tumor immune microenvironment (TIME) were investigated between treatment-naïve PDAC short-term survivors (STS, overall survival <6 months) and long-term survivors (LTS, overall survival >5 years). RESULTS As a result, we detected 589 over-expressed genes, including HOXB9, CDA, and HOXB8, and 507 under-expressed genes, including AMY2B, SCARA5, and SLC2A2 in LTS. Most of the Reactome overbiological pathways enriched in our data were over-expressed in LTS, such as RHO GTPase Effectors and Cell Cycle Checkpoints. Eleven microbiomes significantly differed between LTS and STS, including Sphingopyxis and Capnocytophaga. Importantly, we demonstrate that the TIME profile with an increased abundance of memory B cells and the reduction of M0 and pro-tumoral M2 macrophages are associated with a good prognosis in PDAC. CONCLUSIONS In this study, we delved into the TIME with metatranscriptomics and IF staining analyses to understand the prerequisite of prolonged survival in PDAC patients. In LTS, several biological pathways were overexpressed, and specific microbiomes were identified. Furthermore, apparent differences in driven immune factors were found that provide valuable insights into developing new treatment strategies.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Freek R van 't Land
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Maaike Verheij
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Michael Doukas
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Lara R Heij
- Institute of Pathology, Medical Center University Duisburg-Essen, Essen, Germany; Department of Surgery and Transplantation, University Hospital Essen, Germany; Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bas Groot Koerkamp
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Eveline E Vietsch
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
9
|
Jin L, Qian D, Tang X, Huang Y, Zou J, Wu Z. SMYD2 Imparts Gemcitabine Resistance to Pancreatic Adenocarcinoma Cells by Upregulating EVI2A. Mol Biotechnol 2024; 66:2920-2933. [PMID: 37812330 DOI: 10.1007/s12033-023-00908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
Although gemcitabine (GEM) is the first‑line drug for advanced pancreatic adenocarcinoma (PAAD), the development of GEM resistance severely limits the effectiveness of this chemotherapy. This study investigated the mechanisms of ecotropic viral integration site 2 A (EVI2A) for resistance to GEM and immune evasion in PAAD. GEM resistance-related biomarkers were predicted using GEO datasets, and GEM-resistant PAAD cells were generated. EVI2A was found expressed highly in GEM-resistant PAAD cells. Gain-of-function analyses revealed that EVI2A encouraged the proliferation and motility of GEM-resistant cells and prevented apoptosis. In addition, EVI2A reduced T cell effector activation. SMYD2 was overexpressed in GEM-resistant cells, and SMYD2 enhanced H3K36me2 modification of EVI2A, thereby promoting EVI2A expression. SMYD2 reduced the sensitivity of GEM-resistant cells, which was reversed by EVI2A knockdown. SMYD2 increased the amount of M2 macrophages (co-cultured with PAAD cells) and decreased T cell effector activation (co-cultured with macrophage supernatant), and the number of M2 macrophages was decreased and T cell effectors were activated following EVI2A knockdown. Our findings indicate that EVI2A, manipulated by the SMYD2-H3K36me2 epigenetic axis, promoted GEM resistance and M2 macrophage-mediated immune evasion in PAAD. Therefore, EVI2A might represent a therapeutic target for overcoming GEM resistance and immunosuppressive environment in PAAD.
Collapse
Affiliation(s)
- Lei Jin
- Department of Gastroenterology, The Second Affiliated Hospital of Wannan Medical College, No. 10, Kangfu Road, Jinghu District, Wuhu, 241000, Anhui, People's Republic of China.
| | - Daohai Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Xiaolei Tang
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, People's Republic of China
| |
Collapse
|
10
|
Sidiropoulos DN, Shin SM, Wetzel M, Girgis AA, Bergman D, Danilova L, Perikala S, Shu DH, Montagne JM, Deshpande A, Leatherman J, Dequiedt L, Jacobs V, Ogurtsova A, Mo G, Yuan X, Lvovs D, Stein-O'Brien G, Yarchoan M, Zhu Q, Harper EI, Weeraratna AT, Kiemen AL, Jaffee EM, Zheng L, Ho WJ, Anders RA, Fertig EJ, Kagohara LT. Spatial multi-omics reveal intratumoral humoral immunity niches associated with tertiary lymphoid structures in pancreatic cancer immunotherapy pathologic responders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.613714. [PMID: 39386736 PMCID: PMC11463490 DOI: 10.1101/2024.09.22.613714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is a rapidly progressing cancer that responds poorly to immunotherapies. Intratumoral tertiary lymphoid structures (TLS) have been associated with rare long-term PDAC survivors, but the role of TLS in PDAC and their spatial relationships within the context of the broader tumor microenvironment remain unknown. We generated a spatial multi-omics atlas encompassing 26 PDAC tumors from patients treated with combination immunotherapies. Using machine learning-enabled H&E image classification models and unsupervised gene expression matrix factorization methods for spatial transcriptomics, we characterized cellular states within TLS niches spanning across distinct morphologies and immunotherapies. Unsupervised learning generated a TLS-specific spatial gene expression signature that significantly associates with improved survival in PDAC patients. These analyses demonstrate TLS-associated intratumoral B cell maturation in pathological responders, confirmed with spatial proteomics and BCR profiling. Our study also identifies spatial features of pathologic immune responses, revealing TLS maturation colocalizing with IgG/IgA distribution and extracellular matrix remodeling. GRAPHICAL ABSTRACT HIGHLIGHTS Integrated multi-modal spatial profiling of human PDAC tumors from neoadjuvant immunotherapy clinical trials reveal diverse spatial niches enriched in TLS.TLS maturity is influenced by tumor location and the cellular neighborhoods in which TLS immune cells are recruited.Unsupervised machine learning of genome-wide signatures on spatial transcriptomics data characterizes the TLS-enriched TME and associates TLS transcriptomes with survival outcomes in PDAC.Interactions of spatially variable gene expression patterns showed TLS maturation is coupled with immunoglobulin distribution and ECM remodeling in pathologic responders.Intratumoral plasma cell and immunoglobin gene expression spatial dynamics demonstrate trafficking of TLS-driven humoral immunity in the PDAC TME. Significance We report a spatial multi-omics atlas of PDAC tumors from a series of immunotherapy neoadjuvant clinical trials. Intratumorally, pathologic responders exhibit mature TLS that propagate plasma cells into malignant niches. Our findings offer insights on the role of TLS-associated humoral immunity and stromal remodeling during immunotherapy treatment.
Collapse
|
11
|
Brugiapaglia S, Spagnolo F, Intonti S, Novelli F, Curcio C. Fighting Pancreatic Cancer with a Vaccine-Based Winning Combination: Hope or Reality? Cells 2024; 13:1558. [PMID: 39329742 PMCID: PMC11430323 DOI: 10.3390/cells13181558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma (PDA) represents the fourth leading cause of cancer-related mortality in the USA. Only 20% of patients present surgically resectable and potentially curable tumors at diagnosis, while 80% are destined for poor survival and palliative chemotherapy. Accordingly, the advancement of innovative and effective therapeutic strategies represents a pivotal medical imperative. It has been demonstrated that targeting the immune system represents an effective approach against several solid tumors. The immunotherapy approach encompasses a range of strategies, including the administration of antibodies targeting checkpoint molecules (immune checkpoint inhibitors, ICIs) to disrupt tumor suppression mechanisms and active immunization approaches that aim to stimulate the host's immune system. While vaccines have proved effective against infectious agents, vaccines for cancer remain an unfulfilled promise. Vaccine-based therapy targeting tumor antigens has the potential to be a highly effective strategy for initiating and maintaining T cell recognition, enhancing the immune response, and ultimately promoting cancer treatment success. In this review, we examined the most recent clinical trials that employed diverse vaccine types to stimulate PDA patients' immune systems, either independently or in combination with chemotherapy, radiotherapy, ICIs, and monoclonal antibodies with the aim of ameliorating PDA patients' quality of life and extend their survival.
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Ferdinando Spagnolo
- School of Advanced Defence Studies, Defence Research & Analysis Institute, Piazza della Rovere 83, 00165 Rome, Italy
| | - Simona Intonti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44bis, 10126 Turin, Italy
| |
Collapse
|
12
|
Netto D, Frizziero M, Foy V, McNamara MG, Backen A, Hubner RA. Systemic Therapy for Metastatic Pancreatic Cancer-Current Landscape and Future Directions. Curr Oncol 2024; 31:5206-5223. [PMID: 39330013 PMCID: PMC11430697 DOI: 10.3390/curroncol31090385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant cause of cancer-associated mortality, with a rising global incidence. A paucity of strong predictive risk factors mean screening programmes are difficult to implement. Historically, a lack of identifiable and actionable driver mutations, coupled with a relatively immunosuppressed tumour microenvironment, has led to a reliance on cytotoxic chemotherapy. The NAPOLI-3 trial has reported data supporting consideration of NALIRIFOX as a new first-line standard of care. Kirsten Rat Sarcoma Virus (KRAS) G12D mutations are present in >90% of all PDAC's; exciting breakthroughs in small molecule inhibitors targeting KRAS G12D may open new modalities of treatment, and therapies targeting multiple KRAS mutations are also in early clinical trials. Although immunotherapy strategies to date have been disappointing, combination with chemotherapy and/or small molecule inhibitors hold promise and warrant further exploration.
Collapse
Affiliation(s)
- Daniel Netto
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Melissa Frizziero
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Victoria Foy
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX, UK
| | - Mairéad G McNamara
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alison Backen
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Richard A Hubner
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
13
|
Poyia F, Neophytou CM, Christodoulou MI, Papageorgis P. The Role of Tumor Microenvironment in Pancreatic Cancer Immunotherapy: Current Status and Future Perspectives. Int J Mol Sci 2024; 25:9555. [PMID: 39273502 PMCID: PMC11395109 DOI: 10.3390/ijms25179555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Pancreatic cancer comprises different subtypes, where most cases include ductal adenocarcinoma (PDAC). It is one of the deadliest tumor types, with a poor prognosis. In the majority of patients, the disease has already spread by the time of diagnosis, making full recovery unlikely and increasing mortality risk. Despite developments in its detection and management, including chemotherapy, radiotherapy, and targeted therapies as well as advances in immunotherapy, only in about 13% of PDAC patients does the overall survival exceed 5 years. This may be attributed, at least in part, to the highly desmoplastic tumor microenvironment (TME) that acts as a barrier limiting perfusion, drug delivery, and immune cell infiltration and contributes to the establishment of immunologically 'cold' conditions. Therefore, there is an urgent need to unravel the complexity of the TME that promotes PDAC progression and decipher the mechanisms of pancreatic tumors' resistance to immunotherapy. In this review, we provide an overview of the major cellular and non-cellular components of PDAC TME, as well as their biological interplays. We also discuss the current state of PDAC therapeutic treatments and focus on ongoing and future immunotherapy efforts and multimodal treatments aiming at remodeling the TME to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Fotini Poyia
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Christiana M Neophytou
- Apoptosis and Cancer Chemoresistance Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Panagiotis Papageorgis
- Tumor Microenvironment, Metastasis and Experimental Therapeutics Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
14
|
Fuller RN, Morcos A, Bustillos JG, Molina DC, Wall NR. Small non-coding RNAs and pancreatic ductal adenocarcinoma: Linking diagnosis, pathogenesis, drug resistance, and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189153. [PMID: 38986720 DOI: 10.1016/j.bbcan.2024.189153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ann Morcos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joab Galvan Bustillos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Nathan R Wall
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
15
|
Minaei E, Ranson M, Aghmesheh M, Sluyter R, Vine KL. Enhancing pancreatic cancer immunotherapy: Leveraging localized delivery strategies through the use of implantable devices and scaffolds. J Control Release 2024; 373:145-160. [PMID: 38996923 DOI: 10.1016/j.jconrel.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pancreatic cancer (PC) remains the predominant type of upper gastrointestinal tract cancer, associated with heightened morbidity and a survival rate below 12%. While immunotherapy has brought about transformative changes in the standards of care for most solid tumors, its application in PC is hindered by the ''cold tumor'' microenvironment, marked by the presence of immunosuppressive cells. Modest response rates in PC are attributed, in part to, the fibrotic stroma that obstructs the delivery of systemic immunotherapy. Furthermore, the occurrence of immune-related adverse events (iRAEs) often necessitates the use of sub-therapeutic doses or treatment discontinuation. In the pursuit of innovative approaches to enhance the effectiveness of immunotherapy for PC, implantable drug delivery devices and scaffolds emerge as promising strategies. These technologies offer the potential for sustained drug delivery directly to the tumor site, overcoming stromal barriers, immunosuppression, T cell exclusion, immunotherapy resistance, optimizing drug dosage, and mitigating systemic toxicity. This review offers a comprehensive exploration of pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of PC, accompanied by a critical analysis of the challenges the microenvironment presents to the development of successful combinational immunotherapy approaches. Despite efforts, these approaches have thus far fallen short in enhancing treatment outcomes for PDAC. The review will subsequently delve into the imperative need for refining delivery strategies, providing an examination of past and ongoing studies in the field of localized immunotherapy for PDAC. Addressing these issues will lay the groundwork for the development of effective new therapies, thereby enhancing treatment response, patient survival, and overall quality of life for individuals diagnosed with PDAC.
Collapse
Affiliation(s)
- E Minaei
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - M Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - M Aghmesheh
- Nelune Comprehensive Cancer Centre, Bright Building, Prince of Wales Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - K L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
16
|
Xu D, Jia M, Yang F, Zhang X, Jiang K. Analyzing the role of TM4SF1 expression in pancreatic adenocarcinoma: understanding prognostic implications and therapeutic opportunities. J Gastrointest Oncol 2024; 15:1760-1776. [PMID: 39279979 PMCID: PMC11399867 DOI: 10.21037/jgo-24-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy characterized by aggressive growth and poor prognosis. Understanding the molecular mechanisms underlying PAAD is crucial for developing effective therapies. This study aimed to explore the role of TM4SF1 and other key genes in PAAD progression, their prognostic implications, and therapeutic opportunities. Methods Differential gene expression analysis was performed using PAAD and normal tissue samples to identify upregulated genes, with TM4SF1 emerging as significantly elevated in PAAD. Functional enrichment analysis elucidated associated signaling pathways. A prognostic model comprising BPIFB4, PLEKHN1, CPTP, DVL1, and DDR1 was developed using least absolute shrinkage and selection operator (LASSO) regression and validated in an independent cohort. Genetic mutation analysis provided insights into the functional significance of identified genes. Pharmacogenomic analysis examined associations between gene expression and drug sensitivity. Experimental validation included quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses to confirm gene expression patterns and protein levels. Results Lower TM4SF1 expression correlated with enhanced anti-tumor immune activity in PAAD, suggesting a complex interplay between genetic expression and immune response. The prognostic model showed robust associations with patient survival outcomes, validated across diverse patient cohorts. Genetic mutation analysis highlighted potential therapeutic targets. Pharmacogenomic analysis revealed correlations between gene expression profiles and drug responsiveness, suggesting personalized treatment strategies. Experimental validation confirmed elevated TM4SF1 levels in tumor tissues and demonstrated its role in promoting cancer cell proliferation and colony formation. Conclusions This study advances understanding of the molecular landscape of PAAD, emphasizing TM4SF1 as a key regulator and potential therapeutic target. The integration of genetic expression, immune response dynamics, and pharmacogenomics offers a multifaceted approach to personalized treatment strategies for PAAD, paving the way for improved patient outcomes and novel therapeutic interventions. Further research is warranted to elucidate the clinical utility of targeting TM4SF1 and other identified genes in PAAD management.
Collapse
Affiliation(s)
- Dong Xu
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Gaochun People's Hospital, Nanjing, China
| | - Mingguang Jia
- Department of General Surgery, Zibo Municipal Hospital, Zibo, China
| | - Fei Yang
- Department of General Surgery, Gaochun People's Hospital, Nanjing, China
| | - Xiaohui Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center & Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Phan T, Fan D, Melstrom LG. Developing Vaccines in Pancreatic Adenocarcinoma: Trials and Tribulations. Curr Oncol 2024; 31:4855-4884. [PMID: 39329989 PMCID: PMC11430674 DOI: 10.3390/curroncol31090361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic adenocarcinoma represents one of the most challenging malignancies to treat, with dismal survival rates despite advances in therapeutic modalities. Immunotherapy, particularly vaccines, has emerged as a promising strategy to harness the body's immune system in combating this aggressive cancer. This abstract reviews the trials and tribulations encountered in the development of vaccines targeting pancreatic adenocarcinoma. Key challenges include the immunosuppressive tumor microenvironment, the heterogeneity of tumor antigens, and a limited understanding of immune evasion mechanisms employed by pancreatic cancer cells. Various vaccine platforms, including peptide-based, dendritic cell-based, and viral vector-based vaccines, have been explored in preclinical and clinical settings. However, translating promising results from preclinical models to clinical efficacy has proven elusive. In recent years, mRNA vaccines have emerged as a promising immunotherapeutic strategy in the fight against various cancers, including pancreatic adenocarcinoma. We will discuss the potential applications, opportunities, and challenges associated with mRNA vaccines in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Thuy Phan
- Department of Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Darrell Fan
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Laleh G. Melstrom
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
18
|
Li E, Cheung HCZ, Ma S. CTHRC1 + fibroblasts and SPP1 + macrophages synergistically contribute to pro-tumorigenic tumor microenvironment in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:17412. [PMID: 39075108 PMCID: PMC11286765 DOI: 10.1038/s41598-024-68109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer that accounts for over 90% of all pancreatic cancer cases. With a 5-year survival rate of only 13%, PDAC has proven to be extremely desmoplastic and immunosuppressive to most current therapies, including chemotherapy and surgical resection. In recent years, focus has shifted to understanding the tumor microenvironment (TME) around PDAC, enabling a greater understanding of biological pathways and intercellular interactions that can ultimately lead to potential for future drug targets. In this study, we leverage a combination of single-cell and spatial transcriptomics to further identify cellular populations and interactions within the highly heterogeneous TME. We demonstrate that SPP1+APOE+ tumor-associated macrophages (TAM) and CTHRC1+GREM1+ cancer-associated myofibroblasts (myCAF) not only act synergistically to promote an immune-suppressive TME through active extracellular matrix (ECM) deposition and epithelial mesenchymal transition (EMT), but are spatially colocalized and correlated, leading to worse prognosis. Our results highlight the crosstalk between stromal and myeloid cells as a significant area of study for future therapeutic targets to treat cancer.
Collapse
Affiliation(s)
- Evan Li
- Worcester Academy, Worcester, MA, USA.
| | | | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Chanda B, Azophi Moffat, Shah N, Khan A, Quaye M, Fakhry J, Soma S, Nguyen A, Eroy M, Malkoochi A, Brekken R, Hasan T, Ferruzzi J, Obaid G. PD-L1 Immune Checkpoint Targeted Photoactivable Liposomes (iTPALs) Prime the Stroma of Pancreatic Tumors and Promote Self-Delivery. Adv Healthc Mater 2024; 13:e2304340. [PMID: 38324463 PMCID: PMC11281872 DOI: 10.1002/adhm.202304340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 02/09/2024]
Abstract
Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) limits the penetration and efficacy of therapies. It has been previously shown that photodynamic priming (PDP) using EGFR targeted photoactivable multi-inhibitor liposomes remediates desmoplasia in PDAC and doubles overall survival. Here, bifunctional PD-L1 immune checkpoint targeted photoactivable liposomes (iTPALs) that mediate both PDP and PD-L1 blockade are presented. iTPALs also improve phototoxicity in PDAC cells and induce immunogenic cell death. PDP using iTPALs reduces collagen density, thereby promoting self-delivery by 5.4-fold in collagen hydrogels, and by 2.4-fold in syngeneic CT1BA5 murine PDAC tumors. PDP also reduces tumor fibroblast content by 39.4%. Importantly, iTPALs also block the PD-1/PD-L1 immune checkpoint more efficiently than free α-PD-L1 antibodies. Only a single sub-curative priming dose using iTPALs provides 54.1% tumor growth inhibition and prolongs overall survival in mice by 42.9%. Overall survival directly correlates with the extent of tumor iTPAL self-delivery following PDP (Pearson's r = 0.670, p = 0.034), while no relationship is found for sham non-specific IgG constructs activated with light. When applied over multiple cycles, as is typical for immune checkpoint therapy, PDP using iTPALs promises to offer durable tumor growth delay and significant survival benefit in PDAC patients, especially when used to promote self-delivery of integrated chemo-immunotherapy regimens.
Collapse
Affiliation(s)
- Bhandari Chanda
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Azophi Moffat
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Nimit Shah
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Adil Khan
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Maxwell Quaye
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Siddharth Soma
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Austin Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ashritha Malkoochi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Rolf Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacopo Ferruzzi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
20
|
Wen DY, Chen JM, Tang ZP, Pang JS, Qin Q, Zhang L, He Y, Yang H. Noninvasive prediction of lymph node metastasis in pancreatic cancer using an ultrasound-based clinicoradiomics machine learning model. Biomed Eng Online 2024; 23:56. [PMID: 38890695 PMCID: PMC11184715 DOI: 10.1186/s12938-024-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES This study was designed to explore and validate the value of different machine learning models based on ultrasound image-omics features in the preoperative diagnosis of lymph node metastasis in pancreatic cancer (PC). METHODS This research involved 189 individuals diagnosed with PC confirmed by surgical pathology (training cohort: n = 151; test cohort: n = 38), including 50 cases of lymph node metastasis. Image-omics features were extracted from ultrasound images. After dimensionality reduction and screening, eight machine learning algorithms, including logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), random forest (RF), extra trees (ET), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and multilayer perceptron (MLP), were used to establish image-omics models to predict lymph node metastasis in PC. The best omics prediction model was selected through ROC curve analysis. Machine learning models were used to analyze clinical features and determine variables to establish a clinical model. A combined model was constructed by combining ultrasound image-omics and clinical features. Decision curve analysis (DCA) and a nomogram were used to evaluate the clinical application value of the model. RESULTS A total of 1561 image-omics features were extracted from ultrasound images. 15 valuable image-omics features were determined by regularization, dimension reduction, and algorithm selection. In the image-omics model, the LR model showed higher prediction efficiency and robustness, with an area under the ROC curve (AUC) of 0.773 in the training set and an AUC of 0.850 in the test set. The clinical model constructed by the boundary of lesions in ultrasound images and the clinical feature CA199 (AUC = 0.875). The combined model had the best prediction performance, with an AUC of 0.872 in the training set and 0.918 in the test set. The combined model showed better clinical benefit according to DCA, and the nomogram score provided clinical prediction solutions. CONCLUSION The combined model established with clinical features has good diagnostic ability and can be used to predict lymph node metastasis in patients with PC. It is expected to provide an effective noninvasive method for clinical decision-making, thereby improving the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Dong-Yue Wen
- Department of Medical Ultrasonics, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jia-Min Chen
- Department of Medical Ultrasonics, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhi-Ping Tang
- Department of Medical Ultrasonics, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jin-Shu Pang
- Department of Medical Ultrasonics, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Qiong Qin
- Department of Medical Ultrasonics, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lu Zhang
- Department of Medical Pathology, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yun He
- Department of Medical Ultrasonics, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.
| | - Hong Yang
- Department of Medical Ultrasonics, Guangxi Zhuang Autonomous Region, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
21
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Singh G, Kutcher D, Lally R, Rai V. Targeting Neoantigens in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:2101. [PMID: 38893220 PMCID: PMC11171042 DOI: 10.3390/cancers16112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and is currently the third leading cause of cancer-related death in the United States after lung and colon cancer. PDAC is estimated to be the second leading cause of cancer-related death by 2030. The diagnosis at a late stage is the underlying cause for higher mortality and poor prognosis after surgery. Treatment resistance to chemotherapy and immunotherapy results in recurrence after surgery and poor prognosis. Neoantigen burden and CD8+ T-cell infiltration are associated with clinical outcomes in PDAC and paucity of neoantigen-reactive tumor-infiltrating lymphocytes may be the underlying cause for treatment resistance for immunotherapy. This suggests a need to identify additional neoantigens and therapies targeting these neoantigens to improve clinical outcomes in PDAC. In this review, we focus on describing the pathophysiology, current treatment strategies, and treatment resistance in PDAC followed by the need to target neoantigens in PDAC.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (G.S.); (D.K.); (R.L.)
| |
Collapse
|
23
|
Ahmed J, Nishizaki D, Miyashita H, Lee S, Nesline MK, Pabla S, Conroy JM, DePietro P, Sicklick JK, Kato S, Kurzrock R. TIM-3 transcriptomic landscape with clinical and immunomic correlates in cancer. Am J Cancer Res 2024; 14:2493-2506. [PMID: 38859842 PMCID: PMC11162668 DOI: 10.62347/mqff6404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
TIM-3, an inhibitory checkpoint receptor, may invoke anti-PD-1/anti-PD-L1 immune checkpoint inhibitor (ICI) resistance. The predictive impact of TIM-3 RNA expression in various advanced solid tumors among patients treated with ICIs is yet to be determined, and their prognostic significance also remains unexplored. We investigated TIM-3 transcriptomic expression and clinical outcomes. We examined TIM-3 RNA expression data through the OmniSeq database. TIM-3 transcriptomic patterns were calibrated against a reference population (735 tumors), adjusted to internal housekeeping genes, and calculated as percentiles. Overall, 514 patients (31 cancer types; 489 patients with advanced/metastatic disease and clinical annotation) were assessed. Ninety tumors (17.5% of 514) had high (≥75th percentile RNA rank) TIM-3 expression. Pancreatic cancer had the greatest proportion of TIM-3 high expressors (36% of 55 patients). Still, there was variability within cancer types with, for instance, 12.7% of pancreatic cancers harboring low TIM-3 (<25th percentile) levels. High TIM-3 expression independently and significantly correlated with high PD-L2 RNA expression (odds ratio (OR) 9.63, 95% confidence interval (CI) 4.91-19.4, P<0.001) and high VISTA RNA expression (OR 2.71, 95% CI 1.43-5.13, P=0.002), all in multivariate analysis. High TIM-3 RNA did not correlate with overall survival (OS) from time of metastatic disease in the 272 patients who never received ICIs, suggesting that it is not a prognostic factor. However, high TIM-3 expression predicted longer median OS (but not progression-free survival) in 217 ICI-treated patients (P=0.0033; median OS, 2.84 versus 1.21 years (high versus not-high TIM-3)), albeit not retained in multivariable analysis. In summary, TIM-3 RNA expression was variable between and within malignancies, and high levels associated with high PD-L2 and VISTA checkpoints and with pancreatic cancer. Individual tumor immunomic assessment and co-targeting co-expressed checkpoints merits exploration in prospective trials as part of a precision immunotherapy strategy.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of HealthBethesda, MD, The United Sates
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | - Hirotaka Miyashita
- Dartmouth Cancer Center, Hematology and Medical OncologyLebanon, NH, The United States
| | - Suzanna Lee
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | | | | | | | - Paul DePietro
- OmniSeq Inc. (Labcorp)Buffalo, NY, The United States
| | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, University of California San DiegoSan Diego, CA, The United States
- Department of Pharmacology, University of California San DiegoSan Diego, CA, The United States
- Moores Cancer Center, University of California San DiegoLa Jolla, CA, The United States
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, University of California San Diego, Moores Cancer CenterLa Jolla, CA, The United States
| | - Razelle Kurzrock
- WIN ConsortiumParis, France
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of WisconsinMilwaukee, WI, The United States
| |
Collapse
|
24
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
25
|
Peng S, Huang H, Zhu X, Chen J, Ding X, Wang F, Chen L, Lu Z. Anlotinib plus tislelizumab for recurrent metastatic pancreas ductal adenocarcinoma with germline BRCA2 mutation: A case report. Exp Ther Med 2024; 27:178. [PMID: 38515651 PMCID: PMC10952340 DOI: 10.3892/etm.2024.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 03/23/2024] Open
Abstract
While combined immunotherapy and anti-angiogenic therapy have demonstrated efficacy in renal cell carcinoma, non-small cell lung cancer and hepatocellular carcinoma, the efficacy of first-line treatment for pancreatic ductal adenocarcinoma (PDAC) with germline BRCA2 mutation remains unproven. We described a BRCA2-mutated patient with PDAC who presented with posterior cardiac metastasis 8 months after surgery. After receiving four cycles of anlotinib combined with tislelizumab, abdominal CT scans indicated a complete response. The patient sustained this response for over 14 months on the combination regimen, with no reported adverse events. In conclusion, the combination of tislelizumab and anlotinib may offer a viable therapeutic option for recurrent metastatic BRCA2-mutated PDAC.
Collapse
Affiliation(s)
- Sujuan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Hongxiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xie Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jinhong Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xinjing Ding
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Fen Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Zhihui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
26
|
Timmer FEF, Geboers B, Ruarus AH, Vroomen LGPH, Schouten EAC, van der Lei S, Vos DJW, Dijkstra M, Schulz HH, Bakker J, van den Bemd BAT, van den Tol PM, Puijk RS, Lissenberg-Witte BI, de Gruijl TD, de Vries JJJ, Lagerwaard FJ, Scheffer HJ, Bruynzeel AME, Meijerink MR. MRI-guided stereotactic ablative body radiotherapy versus CT-guided percutaneous irreversible electroporation for locally advanced pancreatic cancer (CROSSFIRE): a single-centre, open-label, randomised phase 2 trial. Lancet Gastroenterol Hepatol 2024; 9:448-459. [PMID: 38513683 DOI: 10.1016/s2468-1253(24)00017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is an aggressive disease with a dismal prognosis. Stage III locally advanced pancreatic cancer is considered unresectable and current palliative chemotherapy regimens only modestly improve survival. Guidelines suggest chemoradiation or stereotactic ablative body radiotherapy (SABR) could be beneficial in certain circumstances. Other local treatments such as irreversible electroporation could enhance patient outcomes by extending survival while preserving quality of life. We aimed to compare the efficacy and safety of MRI-guided SABR versus CT-guided percutaneous irreversible electroporation following standard FOLFIRINOX chemotherapy. METHODS CROSSFIRE was an open-label, randomised phase 2 superiority trial conducted at the Amsterdam University Medical Centre (Amsterdam, Netherlands). Eligible patients were aged 18 years or older with confirmed histological and radiological stage III locally advanced pancreatic cancer. The maximum tumour diameter was 5 cm and patients had to be pretreated with three to eight cycles of FOLFIRINOX. Patients were randomly assigned (1:1) to MRI-guided SABR (five fractions of 8 Gy delivered on non-consecutive days) or CT-guided percutaneous irreversible electroporation using a computer-generated variable block randomisation model. The primary endpoint was overall survival from randomisation, assessed in the intention-to-treat population. Safety was assessed in the per-protocol population. A prespecified interim futility analysis was done after inclusion of half the original sample size, with a conditional probability of less than 0·2 resulting in halting of the study. The trial was registered at ClinicalTrials.gov, NCT02791503. FINDINGS Between May 1, 2016, and March 31, 2022, 68 patients were enrolled and randomly assigned to SABR (n=34) or irreversible electroporation (n=34), of whom 64 were treated according to protocol. Of the 68 participants, 36 (53%) were male and 32 (47%) were female, with a median age of 65 years (IQR 57-70). Median overall survival from randomisation was 16·1 months (95% CI 12·1-19·4) in the SABR group versus 12·5 months (10·9-17·0) in the irreversible electroporation group (hazard ratio [HR] 1·39 [95% CI 0·84-2·30]; p=0·21). The conditional probability to demonstrate superiority of either technique was 0·13; patient accrual was therefore stopped early for futility. 20 (63%) of 32 patients in the SABR group versus 19 (59%) of 32 patients in the irreversible electroporation group had adverse events (p=0·8) and five (16%) patients in the SABR group versus eight (25%) in the irreversible electroporation group had grade 3-5 adverse events (p=0·35). The most common grade 3-4 adverse events were cholangitis (two [6%] in the SABR group vs one [3%] in the irreversible electroporation group), abdominal pain (one [3%] vs two [6%]), and pancreatitis (none vs two [6%]). One (3%) patient in the SABR group and one (3%) in the irreversible electroporation group died from a treatment-related adverse event. INTERPRETATION CROSSFIRE did not identify a difference in overall survival or incidence of adverse events between MRI-guided SABR and CT-guided percutaneous irreversible electroporation after FOLFIRINOX. Future studies should further assess the added value of local ablative treatment over chemotherapy alone. FUNDING Adessium Foundation, AngioDynamics.
Collapse
Affiliation(s)
- Florentine E F Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Laurien G P H Vroomen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Evelien A C Schouten
- Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, Netherlands
| | - Susan van der Lei
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Danielle J W Vos
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hannah H Schulz
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Joyce Bakker
- Department of Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Bente A T van den Bemd
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Robbert S Puijk
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Radiology and Nuclear Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Birgit I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan J J de Vries
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Radiology and Nuclear Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Radiology and Nuclear Medicine, Northwest Clinics, Alkmaar, Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Bots STF, Harryvan TJ, Groeneveldt C, Kinderman P, Kemp V, van Montfoort N, Hoeben RC. Preclinical evaluation of the gorilla-derived HAdV-B AdV-lumc007 oncolytic adenovirus 'GoraVir' for the treatment of pancreatic ductal adenocarcinoma. Mol Oncol 2024; 18:1245-1258. [PMID: 38037840 PMCID: PMC11076997 DOI: 10.1002/1878-0261.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/27/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy which shows unparalleled therapeutic resistance due to its genetic and cellular heterogeneity, dense stromal tissue, and immune-suppressive tumour microenvironment. Oncolytic virotherapy has emerged as a new treatment modality which uses tumour-specific viruses to eliminate cancerous cells. Non-human primate adenoviruses of the human adenovirus B (HAdV-B) species have demonstrated considerable lytic potential in human cancer cells as well as limited preexisting neutralizing immunity in humans. Previously, we have generated a new oncolytic derivative of the gorilla-derived HAdV-B AdV-lumc007 named 'GoraVir'. Here, we show that GoraVir displays oncolytic efficacy in pancreatic cancer cells and pancreatic-cancer-associated fibroblasts. Moreover, it retains its lytic potential in monoculture and co-culture spheroids. In addition, we established the ubiquitously expressed complement receptor CD46 as the main entry receptor for GoraVir. Finally, a single intratumoural dose of GoraVir was shown to delay tumour growth in a BxPC-3 xenograft model at 10 days post-treatment. Collectively, these data demonstrate that the new gorilla-derived oncolytic adenovirus is a potent oncolytic vector candidate that targets both pancreatic cancer cells and tumour-adjacent stroma.
Collapse
Affiliation(s)
- Selas T. F. Bots
- Department of Cell and Chemical BiologyLeiden University Medical CenterThe Netherlands
| | - Tom J. Harryvan
- Department of Gastroenterology and HepatologyLeiden University Medical CenterThe Netherlands
| | | | - Priscilla Kinderman
- Department of Gastroenterology and HepatologyLeiden University Medical CenterThe Netherlands
| | - Vera Kemp
- Department of Cell and Chemical BiologyLeiden University Medical CenterThe Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and HepatologyLeiden University Medical CenterThe Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical BiologyLeiden University Medical CenterThe Netherlands
| |
Collapse
|
28
|
Silva LGDO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF. New avenues for the treatment of immunotherapy-resistant pancreatic cancer. World J Gastrointest Oncol 2024; 16:1134-1153. [PMID: 38660642 PMCID: PMC11037047 DOI: 10.4251/wjgo.v16.i4.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its extremely aggressive nature and ranks 14th in the number of new cancer cases worldwide. However, due to its complexity, it ranks 7th in the list of the most lethal cancers worldwide. The pathogenesis of PC involves several complex processes, including familial genetic factors associated with risk factors such as obesity, diabetes mellitus, chronic pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 are linked to the appearance of malignant cells that generate pancreatic lesions and, consequently, cancer. In this context, some therapies are used for PC, one of which is immunotherapy, which is extremely promising in various other types of cancer but has shown little response in the treatment of PC due to various resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is therefore clear that the tumor microenvironment (TME) has a huge impact on the resistance process, since cellular and non-cellular elements create an immunosuppressive environment, characterized by a dense desmoplastic stroma with cancer-associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immunosuppressive cells. Linked to this are genetic mutations in TP53 and immunosuppressive factors that act on T cells, resulting in a shortage of CD8+ T cells and limited expression of activation markers such as interferon-gamma. In this way, finding new strategies that make it possible to manipulate resistance mechanisms is necessary. Thus, techniques such as the use of TME modulators that block receptors and stromal molecules that generate resistance, the use of genetic manipulation in specific regions, such as microRNAs, the modulation of extrinsic and intrinsic factors associated with T cells, and, above all, therapeutic models that combine these modulation techniques constitute the promising future of PC therapy. Thus, this study aims to elucidate the main mechanisms of resistance to immunotherapy in PC and new ways of manipulating this process, resulting in a more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.
Collapse
Affiliation(s)
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana dos Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
29
|
Bhandari K, Ding WQ. Protein Arginine Methyltransferases in Pancreatic Ductal Adenocarcinoma: New Molecular Targets for Therapy. Int J Mol Sci 2024; 25:3958. [PMID: 38612768 PMCID: PMC11011826 DOI: 10.3390/ijms25073958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.
Collapse
Affiliation(s)
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, BMSB401A, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA;
| |
Collapse
|
30
|
Enzler T, Nguyen A, Misleh J, Cline VJ, Johns M, Shumway N, Paulson S, Siegel R, Larson T, Messersmith W, Richards D, Chaves J, Pierce E, Zalupski M, Sahai V, Orr D, Ruste SA, Haun A, Kawabe T. A multicenter, randomized phase 2 study to establish combinations of CBP501, cisplatin and nivolumab for ≥3rd-line treatment of patients with advanced pancreatic adenocarcinoma. Eur J Cancer 2024; 201:113950. [PMID: 38422585 DOI: 10.1016/j.ejca.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND There is no standard of care for ≥ 3rd-line treatment of metastatic pancreatic adenocarcinoma (PDAC). CBP501 is a novel calmodulin-binding peptide that has been shown to enhance the influx of platinum agents into tumor cells and tumor immunogenicity. This study aimed to (1) confirm efficacy of CBP501/cisplatin/nivolumab for metastatic PDAC observed in a previous phase 1 study, (2) identify combinations that yield 35% 3-month progression-free survival rate (3MPFS) and (3) define the contribution of CBP501 to the effects of combination therapy. METHODS CBP501 16 or 25 mg/m2 (CBP(16) or CBP(25)) was combined with 60 mg/m2 cisplatin (CDDP) and 240 mg nivolumab (nivo), administered at 3-week intervals. Patients were randomized 1:1:1:1 to (1) CBP(25)/CDDP/nivo, (2) CBP(16)/CDDP/nivo, (3) CBP(25)/CDDP and (4) CDDP/nivo, with randomization stratified by ECOG PS and liver metastases. A Fleming two-stage design was used, yielding a one-sided type I error rate of 2.5% and 80% power when the true 3MPFS is 35%. RESULTS Among 36 patients, 3MPFS was 44.4% in arms 1 and 2, 11.1% in arm 3% and 33.3% in arm 4. Two patients achieved a partial response in arm 1 (ORR 22.2%; none in other arms). Median PFS and OS were 2.4, 2.1, 1.5 and 1.5 months and 6.3, 5.3, 3.7 and 4.9 months, respectively. Overall, all treatment combinations were well tolerated. Most treatment-related adverse events were grade 1-2. CONCLUSIONS The combination CBP(25)/(16)/CDDP/nivo demonstrated promising signs of efficacy and a manageable safety profile for the treatment of advanced PDAC. CLINICAL TRIAL REGISTRATION NCT04953962.
Collapse
Affiliation(s)
- T Enzler
- Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA.
| | - A Nguyen
- Comprehensive Cancer Centers of Nevada, Henderson, NV, USA
| | - J Misleh
- Medical Hematology Oncology Consultants PA, Newark, DE, USA
| | - V J Cline
- Texas Oncology - Austin Midtown, Austin, TX, USA
| | - M Johns
- Oncology Hematology Care Eastgate, Cincinnati, OH, USA
| | - N Shumway
- Texas Oncology-San Antonio Stone Oak, San Antonio, TX, USA
| | - S Paulson
- Texas Oncology - Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA
| | - R Siegel
- Illinois Cancer Specialists, Arlington Heights, IL, USA
| | - T Larson
- Minnseota Oncology Hematology PA, Minneapolis, MN, USA
| | - W Messersmith
- University of Colorado Cancer Center, Aurora, CO, USA
| | - D Richards
- Texas Oncology - Northeast Texas Cancer and Research Institute, Tyler, TX, USA
| | - J Chaves
- Northwest Medical Specialties, PLLC, Tacoma, WA, USA
| | - E Pierce
- Ochsner MD Anderson Cancer Center, New Orleans, LA, USA
| | - M Zalupski
- Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - V Sahai
- Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - D Orr
- Mary Crowley Cancer Research, Dallas, TX, USA
| | - S A Ruste
- Medical Affairs, Veristat LLC, Toronto Canada
| | - A Haun
- Medical Affairs, Veristat LLC, Toronto Canada
| | - T Kawabe
- CanBas Co., Ltd., Numazu, Shizuoka, Japan
| |
Collapse
|
31
|
Wei H, Ren H. Precision treatment of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 585:216636. [PMID: 38278471 DOI: 10.1016/j.canlet.2024.216636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous tumor comprising pancreatic cancer cells, fibroblasts, immune cells, vascular epithelial cells, and other cells in the mesenchymal tissue. PDAC is difficult to treat because of the complexity of the tissue components; therefore, achieving therapeutic effects with a single therapeutic method or target is problematic. Recently, precision therapy has provided new directions and opportunities for treating PDAC using genetic information from an individual's disease to guide treatment. It selects and applies appropriate therapeutic methods for each patient, with an aim to minimize medical damage and costs, while maximizing patient benefits. Molecular targeted therapy is effective in most clinical studies; however, it has been ineffective in large-scale randomized controlled trials of PDAC, mainly because the enrolled populations were not stratified on a molecular basis. Molecular stratification allows the identification of the PDAC population being treated, optimizing therapeutic effect. However, a systematic review of precision therapies for patients with highly heterogeneous PDAC backgrounds has not been conducted. Here, we review the molecular background and current potential therapeutic targets related to PDAC and provide new directions for PDAC precision therapy.
Collapse
Affiliation(s)
- Hongyun Wei
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; Key Laboratory of Pancreatic Diseases, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| | - He Ren
- Key Laboratory of Pancreatic Diseases, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| |
Collapse
|
32
|
Delle Cave D. Emerging Therapeutic Options in Pancreatic Cancer Management. Int J Mol Sci 2024; 25:1929. [PMID: 38339207 PMCID: PMC10855952 DOI: 10.3390/ijms25031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a 5-year survival rate of <8% [...].
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, 80131 Naples, Italy
| |
Collapse
|
33
|
Chintapula U, Oh D, Perez C, Davis S, Ko J. Anti-cancer bioactivity of sweet basil leaf derived extracellular vesicles on pancreatic cancer cells. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e142. [PMID: 38939903 PMCID: PMC11080924 DOI: 10.1002/jex2.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 06/29/2024]
Abstract
Most living organisms secrete tiny lipid bilayer particles encapsulating various biomolecular entities, including nucleic acids and proteins. These secreted extracellular vesicles (EVs) are shown to aid in communication between cells and their environment. EVs are mainly involved in the signalling and manipulation of physiological processes. Plant EVs display similar functional activity as seen in mammalian EVs. Medicinal plants have many bioactive constituents with potential applications in cancer treatment. Particularly, Basil (Ocimum basilicum), has wide therapeutic properties including anti-inflammatory, anti-cancer, and anti-infection, among others. In this study, we focused on using EVs purified from Apoplast Washing Fluid (AWF) of Basil plant leaves as a biological therapeutic agent against cancer. Characterization of Basil EVs revealed a size range of 100-250 nm, which were later assessed for their cell uptake and apoptosis inducing abilities in pancreatic cancer cells. Basil plant EVs (BasEVs) showed a significant cytotoxic effect on pancreatic cancer cell line MIA PaCa-2 at a concentration of 80 and 160 μg/mL in cell viability, as well as clonogenic assays. Similarly, RT-PCR and western blot analysis has shown up regulation in apoptotic gene and protein expression of Bax, respectively, in BasEV treatment groups compared to untreated controls of MIA PaCa-2. Overall, our results suggest that EVs from basil plants have potent anti-cancer effects in pancreatic cancer cells and can serve as a drug delivery system, demanding an investigation into the therapeutic potential of other medicinal plant EVs.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Daniel Oh
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Cristina Perez
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sachin Davis
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
34
|
Mahalingam D, Harb W, Patnaik A, Bullock A, Watnick RS, Vincent MY, Chen JJ, Wang S, Pestana H, Chao J, Mahoney J, Cieslewicz M, Watnick J. First-in-human phase I dose escalation trial of the first-in-class tumor microenvironment modulator VT1021 in advanced solid tumors. COMMUNICATIONS MEDICINE 2024; 4:10. [PMID: 38218979 PMCID: PMC10787778 DOI: 10.1038/s43856-024-00433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND VT1021 is a cyclic peptide that induces the expression of thrombospondin-1 (TSP-1) in myeloid-derived suppressor cells (MDSCs) recruited to the tumor microenvironment (TME). TSP-1 reprograms the TME via binding to CD36 and CD47 to induce tumor and endothelial cell apoptosis as well as immune modulation in the TME. METHODS Study VT1021-01 (ClinicalTrials.gov ID NCT03364400) used a modified 3 + 3 design. The primary objective was to determine the recommended Phase 2 dose (RP2D) in patients with advanced solid tumors. Safety, tolerability, and pharmacokinetics (PK) were assessed. Patients were dosed twice weekly intravenously in 9 cohorts (0.5-15.6 mg/kg). Safety was evaluated using CTCAE version 5.0 and the anti-tumor activity was evaluated by RECIST version 1.1. RESULTS The RP2D of VT1021 is established at 11.8 mg/kg. VT1021 is well tolerated with no dose-limiting toxicities reported (0/38). The most frequent drug-related adverse events are fatigue (15.8%), nausea (10.5%), and infusion-related reactions (10.5%). Exposure increases proportionally from 0.5 to 8.8 mg/kg. The disease control rate (DCR) is 42.9% with 12 of 28 patients deriving clinical benefit including a partial response (PR) in one thymoma patient (504 days). CONCLUSIONS VT1021 is safe and well-tolerated across all doses tested. RP2D has been selected for future clinical studies. PR and SD with tumor shrinkage are observed in multiple patients underscoring the single-agent potential of VT1021. Expansion studies in GBM, pancreatic cancer and other solid tumors at the RP2D have been completed and results will be communicated in a separate report.
Collapse
Affiliation(s)
| | - Wael Harb
- Horizon Oncology Center, Lafayette, IN, USA
| | - Amita Patnaik
- South Texas Accelerated Research Therapeutics, San Antonio, TX, USA
| | | | | | | | | | | | | | - Judy Chao
- Vigeo Therapeutics, Cambridge, MA, USA
| | | | | | | |
Collapse
|
35
|
Chen Y, Wang J, Huang Y, Wu J, Wang Y, Chen A, Guo Q, Zhang Y, Zhang S, Wang L, Zou X, Li X. An oncolytic system produces oxygen selectively in pancreatic tumor cells to alleviate hypoxia and improve immune activation. Pharmacol Res 2024; 199:107053. [PMID: 38176529 DOI: 10.1016/j.phrs.2023.107053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Hypoxia is one of the important reasons for the poor therapeutic efficacy of current pancreatic cancer treatment, and the dense stroma of pancreatic cancer restricts the diffusion of oxygen within the tumor. METHODS A responsive oxygen-self-supplying adv-miRT-CAT-KR (adv-MCK) cascade reaction system to improve hypoxia in pancreatic cancer is constructed. We utilized various experiments at multiple levels (cells, organoids, in vivo) to investigate its effect on pancreatic cancer and analyzed the role of immune microenvironment changes in it through high-throughput sequencing. RESULTS The adv-MCK system is an oncolytic adenovirus system expressing three special components of genes. The microRNA (miRNA) targets (miRTs) enable adv-MCK to selectively replicate in pancreatic cancer cells. Catalase catalyzes the overexpressed hydrogen peroxide in pancreatic cancer cells to generate endogenous oxygen, which is catalyzed by killerRed to generate singlet oxygen (1O2) and further to enhance the oncolytic effect. Meanwhile, the adv-MCK system can specifically improve hypoxia in pancreatic cancer, exert antitumor effects in combination with photodynamic therapy, and activate antitumor immunity, especially by increasing the level of γδ T cells in the tumor microenvironment. CONCLUSION The responsive oxygen-self-supplying adv-MCK cascade reaction system combined with photodynamic therapy can improve the hypoxic microenvironment of pancreatic cancer and enhance antitumor immunity, which provides a promising alternative treatment strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jialun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jianzhuang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yue Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
36
|
Kotelnikov AG, Egorov VI. [Pancreaticoduodenectomy combined with multivisceral resections]. Khirurgiia (Mosk) 2024:77-83. [PMID: 39584518 DOI: 10.17116/hirurgia202411177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Locally advanced tumors of the stomach, colon and hepatopancreatobiliary zone comprise more than 20% of all cancers. Treatment of these patients is difficult, since tumors have complications in more than 70% of cases. Appropriate treatment poses difficulties due to functional state of these patients. Despite the success of drug therapy, multivisceral R0 resections including pancreaticoduodenectomy for locally advanced tumors of the stomach, right half of the colon and hepatopancreatobiliary organs, are the only way to improve survival of such patients. This review is devoted to the largest studies of multivisceral resections, including pancreaticoduodenectomy for locally advanced cancer of the stomach, right half of the colon and hepatopancreatobiliary tumors. The immediate and long-term results of treatment, as well as prognostic factors of survival are presented. Currently, all available articles are presented by case reports or series of cases. Meta-analysis of several retrospective studies is rare. The indications for such extensive surgical interventions are not defined. Prospective and randomized studies are almost impossible due to extremely heterogeneous groups.
Collapse
Affiliation(s)
| | - V I Egorov
- Kazan State Medical University, Kazan, Russia
- Sigal Republican Clinical Oncological Dispensary, Kazan, Russia
| |
Collapse
|
37
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
38
|
Fyfe J, Dye D, Razak NBA, Metharom P, Falasca M. Immune evasion on the nanoscale: Small extracellular vesicles in pancreatic ductal adenocarcinoma immunity. Semin Cancer Biol 2023; 96:36-47. [PMID: 37748738 DOI: 10.1016/j.semcancer.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer alarmingly expanding in our modern societies that is still proving to be very challenging to counteract. This disease constitutes a quintessential example of the multiple interactions existing between the tumour and its surrounding microenvironment. In particular, PDAC is characterized by a very immunosuppressive environment that favours cancer growth and makes this cancer type very resistant to immunotherapy. The primary tumour releases many factors that influence both the microenvironment and the immune landscape. Extracellular vesicles (EVs), recently identified as indispensable entities ensuring cell-to-cell communication in both physiological and pathological processes, seem to play a pivotal function in ensuring the delivery of these factors to the tumour-surrounding tissues. In this review, we summarize the present understanding on the crosstalk among tumour cells and the cellular immune microenvironment emphasizing the pro-malignant role played by extracellular vesicles. We also discuss how a greater knowledge of the roles of EVs in tumour immune escape could be translated into clinical applications.
Collapse
Affiliation(s)
- Jordan Fyfe
- Metabolic Signalling Group, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Danielle Dye
- Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Pat Metharom
- Platelet Research Laboratory, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health and Innovation Research Institute [1], Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia; University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
39
|
Bogut A, Stojanovic B, Jovanovic M, Dimitrijevic Stojanovic M, Gajovic N, Stojanovic BS, Balovic G, Jovanovic M, Lazovic A, Mirovic M, Jurisevic M, Jovanovic I, Mladenovic V. Galectin-1 in Pancreatic Ductal Adenocarcinoma: Bridging Tumor Biology, Immune Evasion, and Therapeutic Opportunities. Int J Mol Sci 2023; 24:15500. [PMID: 37958483 PMCID: PMC10650903 DOI: 10.3390/ijms242115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most challenging malignancies to treat, with a complex interplay of molecular pathways contributing to its aggressive nature. Galectin-1 (Gal-1), a member of the galectin family, has emerged as a pivotal player in the PDAC microenvironment, influencing various aspects from tumor growth and angiogenesis to immune modulation. This review provides a comprehensive overview of the multifaceted role of Galectin-1 in PDAC. We delve into its contributions to tumor stroma remodeling, angiogenesis, metabolic reprogramming, and potential implications for therapeutic interventions. The challenges associated with targeting Gal-1 are discussed, given its pleiotropic functions and complexities in different cellular conditions. Additionally, the promising prospects of Gal-1 inhibition, including the utilization of nanotechnology and theranostics, are highlighted. By integrating recent findings and shedding light on the intricacies of Gal-1's involvement in PDAC, this review aims to provide insights that could guide future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| | | | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Goran Balovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
| | - Milan Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Aleksandar Lazovic
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Milos Mirovic
- Department of Surgery, General Hospital of Kotor, 85330 Kotor, Montenegro;
| | - Milena Jurisevic
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| |
Collapse
|
40
|
Timmer FEF, Geboers B, Scheffer HJ, Bakker J, Ruarus AH, Dijkstra M, van der Lei S, Boon R, Nieuwenhuizen S, van den Bemd BAT, Schouten EAC, van den Tol PM, Puijk RS, de Vries JJJ, de Gruijl TD, Meijerink MR. Tissue Resistance Decrease during Irreversible Electroporation of Pancreatic Cancer as a Biomarker for the Adaptive Immune Response and Survival. J Vasc Interv Radiol 2023; 34:1777-1784.e4. [PMID: 37391072 DOI: 10.1016/j.jvir.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
PURPOSE To correlate irreversible electroporation (IRE) procedural resistance changes with survival outcomes and the IRE-induced systemic immune response in patients with locally advanced pancreatic cancer (LAPC). MATERIALS AND METHODS Data on IRE procedural tissue resistance (R) features and survival outcomes were collected from patients with LAPC treated within the context of 2 prospective clinical trials in a single tertiary center. Preprocedural and postprocedural peripheral blood samples were prospectively collected for immune monitoring. The change (ie, decrease) in R during the first 10 test pulses (ΔR10p) and during the total procedure (ΔRtotal) were calculated. Patients were divided in 2 groups on the basis of the median change in R (large ΔR vs small ΔR) and compared for differences in overall survival (OS) and progression-free survival and immune cell subsets. RESULTS A total of 54 patients were included; of these, 20 underwent immune monitoring. Linear regression modeling showed that the first 10 test pulses reflected the change in tissue resistance during the total procedure appropriately (P < .001; R2 = 0.91). A large change in tissue resistance significantly correlated with a better OS (P = .026) and longer time to disease progression (P = .045). Furthermore, a large change in tissue resistance was associated with CD8+ T cell activation through significant upregulation of Ki-67+ (P = .02) and PD-1+ (P = .047). Additionally, this subgroup demonstrated significantly increased expression of CD80 on conventional dendritic cells (cDC1; P = .027) and PD-L1 on immunosuppressive myeloid-derived suppressor cells (P = .039). CONCLUSIONS IRE procedural resistance changes may serve as a biomarker for survival and IRE-induced systemic CD8+ T cell and cDC1 activation.
Collapse
Affiliation(s)
- Florentine E F Timmer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Bart Geboers
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Hester J Scheffer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Joyce Bakker
- Department of Medical Oncology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alette H Ruarus
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Madelon Dijkstra
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Susan van der Lei
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Rianne Boon
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sanne Nieuwenhuizen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Bente A T van den Bemd
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Evelien A C Schouten
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | | | - Robbert S Puijk
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Onze Lieve Vrouwen Gasthuis, Amsterdam, the Netherlands
| | - Jan J J de Vries
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Martijn R Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers (UMC), location Vrije Universiteit, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Ye J, Suizu F, Yamakawa K, Mukai Y, Kato M, Yoneyama H, Yahagi N, Matsuda Y. Silencing of tumoral carbohydrate sulfotransferase 15 reactivates lymph node pancreatic cancer T cells in mice. Eur J Immunol 2023; 53:e2250160. [PMID: 37248998 DOI: 10.1002/eji.202250160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Limited intratumoral T-cell infiltration in pancreatic ductal adenocarcinoma (PDAC) is an obstacle to immunotherapy, yet the efficient approach to enhance tumor-infiltrating T cells is not fully established. Here, we show that tumor-specific knockdown of carbohydrate sulfotransferase 15 (CHST15), a tumor stromal proteoglycan-synthetic enzyme, suppresses tumor growth in a T-cell-dependent manner in a murine model of PDAC. Silencing of tumoral CHST15 unexpectedly expanded CD4+ and CD8+ T cells in tumor draining LN (TDLN), leading to accelerated accumulation of EdU+ proliferating CD4+ and CD8+ T cells and granzyme B+ CD8+ T cells in the tumor. RNA expression analysis indicated that tumoral CHST15 knockdown (KD) downregulated matrix remodeling-related genes, while upregulated anti-tumor T-cell activity-related genes in both tumor and TDLN. CHST15 KD significantly diminished intratumoral and TDLN Ly6C/G+ myeloid-derived suppressor cells prior to TDLN T-cell expansion, suggesting that tumoral CHST15 remotely regulated myeloid-derived suppressor cell mediated T-cell suppression in the TDLN. Our findings illustrate a novel immunotherapeutic potential of tumoral CHST15 blockage by reactivating T cells in immune suppressive TDLN of PDAC.
Collapse
Affiliation(s)
- Juanjuan Ye
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Futoshi Suizu
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keiko Yamakawa
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuri Mukai
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Motohiko Kato
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | | | - Naohisa Yahagi
- Division of Research and Development for Minimally Invasive Treatment, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
42
|
Chouari T, La Costa FS, Merali N, Jessel MD, Sivakumar S, Annels N, Frampton AE. Advances in Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:4265. [PMID: 37686543 PMCID: PMC10486452 DOI: 10.3390/cancers15174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for up to 95% of all pancreatic cancer cases and is the seventh-leading cause of cancer death. Poor prognosis is a result of late presentation, a lack of screening tests and the fact some patients develop resistance to chemotherapy and radiotherapy. Novel therapies like immunotherapeutics have been of recent interest in pancreatic cancer. However, this field remains in its infancy with much to unravel. Immunotherapy and other targeted therapies have yet to yield significant progress in treating PDAC, primarily due to our limited understanding of the disease immune mechanisms and its intricate interactions with the tumour microenvironment (TME). In this review we provide an overview of current novel immunotherapies which have been studied in the field of pancreatic cancer. We discuss their mechanisms, evidence available in pancreatic cancer as well as the limitations of such therapies. We showcase the potential role of combining novel therapies in PDAC, postulate their potential clinical implications and the hurdles associated with their use in PDAC. Therapies discussed with include programmed death checkpoint inhibitors, Cytotoxic T-lymphocyte-associated protein 4, Chimeric Antigen Receptor-T cell therapy, oncolytic viral therapy and vaccine therapies including KRAS vaccines, Telomerase vaccines, Gastrin Vaccines, Survivin-targeting vaccines, Heat-shock protein (HSP) peptide complex-based vaccines, MUC-1 targeting vaccines, Listeria based vaccines and Dendritic cell-based vaccines.
Collapse
Affiliation(s)
- Tarak Chouari
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Francesca Soraya La Costa
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
| | - Nabeel Merali
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham B15 2TT, UK;
| | - Nicola Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
| | - Adam E. Frampton
- Hepato-Pancreato-Biliary Department, Royal Surrey NHS Foundation Trust, Guildford GU2 7XX, UK; (T.C.); (F.S.L.C.); (N.M.)
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.-D.J.); (N.A.)
- The Minimal Access Therapy Training Unit, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
43
|
Taylor IP, Lopez JA. Oncolytic adenoviruses and the treatment of pancreatic cancer: a review of clinical trials. J Cancer Res Clin Oncol 2023; 149:8117-8129. [PMID: 37031291 PMCID: PMC10374677 DOI: 10.1007/s00432-023-04735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) remains a common and difficult cancer to treat. Surgical resection and chemotherapy are standard of care and clinical outcomes remain poor. Oncolytic adenoviruses are a unique approach to the treatment of this challenging cancer, aiming to overcome the features of this disease that pose the key obstacles to standard therapies. This paper provides a detailed review of the clinical trials of conditionally-replicative adenoviruses in pancreatic cancer to date, with a brief summary of the past preclinical literature and future prospects of this therapy. METHODS MEDLINE, Embase, and clinicaltrials.gov were searched from inception to December 23rd 2022 for clinical trials of conditionally-replicative adenoviruses used in patients with pancreatic ductal adenocarcinoma. Primary features for review included patient demographics, treatment protocol including dose and administration route, adverse events, patient responses and survival rates. RESULTS The six published clinical trials suggest that objective clinical responses can be achieved with a tolerable level of side effects, even at high viral doses. The more clinically adaptable intravenous route of administration also appears to be as well tolerated as the more challenging intratumoural injections. CONCLUSION Published clinical trials provide data of the safety and some signs of oncolytic activity of conditionally-replicative adenoviruses in patients with pancreatic cancer. Importantly, on the latest trials, the easier intravenous route of administration seems to be well tolerated and safe, providing the opportunity for further clinical evaluation. It is hoped that the ongoing clinical trials will yield more promising results of this therapeutic approach against a currently intractable disease.
Collapse
Affiliation(s)
- Isobel P. Taylor
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, Australia
| |
Collapse
|
44
|
Herpels M, Ishihara J, Sadanandam A. The clinical terrain of immunotherapies in heterogeneous pancreatic cancer: unravelling challenges and opportunities. J Pathol 2023; 260:533-550. [PMID: 37550956 DOI: 10.1002/path.6171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer and has abysmal survival rates. In the past two decades, immunotherapeutic agents with success in other cancer types have gradually been trialled against PDACs at different stages of cancer progression, either as a monotherapy or in combination with chemotherapy. Unfortunately, to this day, chemotherapy still prolongs the survival rates the most and is prescribed in clinics despite the severe side effects in other cancer types. The low success rates of immunotherapy against PDAC have been attributed most frequently to its complex and multi-faceted tumour microenvironment (TME) and low mutational burden. In this review, we give a comprehensive overview of the immunotherapies tested in PDAC clinical trials thus far, their limitations, and potential explanations for their failure. We also discuss the existing classification of heterogenous PDACs into cancer, cancer-associated fibroblast, and immune subtypes and their potential opportunity in patient selection as a form of personalisation of PDAC immunotherapy. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Melanie Herpels
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Global Oncology, Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Translational Immunotherapy, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| |
Collapse
|
45
|
Testoni SGG, Minici C, Benetti E, Clemente F, Boselli D, Sciorati C, De Monte L, Petrone MC, Enderle M, Linzenbold W, Protti MP, Manfredi A, De Cobelli F, Reni M, Falconi M, Capurso G, Arcidiacono PG, Della-Torre E. Immunomodulatory Effects of Endoscopic Ultrasound-Guided Thermal Ablation in Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3704. [PMID: 37509365 PMCID: PMC10378428 DOI: 10.3390/cancers15143704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Immunological consequences of endoscopic ultrasound (EUS)-local thermal ablation (LTA) for pancreatic ductal adenocarcinoma (PDAC) have not been extensively assessed. We aimed to explore EUS-LTA effects on the systemic immune response in PDAC. Peripheral blood was collected from 10 treatment-naïve patients with borderline resectable and locally advanced PDAC, randomly allocated to Nab-paclitaxel plus Gemcitabine chemotherapy (CT-arm, n = 5) or EUS-LTA with HybridTherm Probe plus CT (HTP + CT-arm, n = 5). Twenty healthy donors were included as controls. Flow-cytometry and multiplex assays were used to profile immune cell subsets and measure serum cytokines/chemokines, respectively. At baseline, PDAC patients showed increased circulating monocytes and lower circulating lymphocytes and CD19+ B cells counts compared to healthy controls. After 4 months, CT induced decrease of B regulatory cells, CD4+ cytotoxic T cells and IL-1β. The addition of EUS-HTP to CT selectively decreased the serum levels of APRIL/TNFSF13 as well as T regulatory cells, total, classic and inflammatory monocytes. Serum levels of APRIL/TNFSF13 and total, classic and inflammatory monocytes counts at baseline were associated with worse overall survival. EUS-HTP has the potential to selectively impact on immune cells and cytokines associated with poor outcomes in PDAC.
Collapse
Affiliation(s)
- Sabrina Gloria Giulia Testoni
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Claudia Minici
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Elisa Benetti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesca Clemente
- Tumor Immunology Unit, Division of Immunology, Transplantation, and Infectious Disease, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Daniela Boselli
- FRACTAL (Flow Cytometry Resource, Advanced Cytometry Technical Applications Laboratory), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Clara Sciorati
- Division of Immunology, Transplantation & Infectious Diseases, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Lucia De Monte
- Tumor Immunology Unit, Division of Immunology, Transplantation, and Infectious Disease, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Maria Chiara Petrone
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Markus Enderle
- Department of Research and Basic Technologies, Erbe Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen, Germany
| | - Walter Linzenbold
- Department of Research and Basic Technologies, Erbe Elektromedizin GmbH, Waldhörnlestraße 17, 72072 Tübingen, Germany
| | - Maria Pia Protti
- Tumor Immunology Unit, Division of Immunology, Transplantation, and Infectious Disease, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Manfredi
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Massimo Falconi
- Division of Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Gabriele Capurso
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreatico-Biliary Endoscopy and Endosonography Division, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| | - Emanuel Della-Torre
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Pancreas Translational & Clinical Research Center, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
46
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
47
|
Mercanti L, Sindaco M, Mazzone M, Di Marcantonio MC, Piscione M, Muraro R, Mincione G. PDAC, the Influencer Cancer: Cross-Talk with Tumor Microenvironment and Connected Potential Therapy Strategies. Cancers (Basel) 2023; 15:2923. [PMID: 37296886 PMCID: PMC10251917 DOI: 10.3390/cancers15112923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of death by cancer in the world. What makes this pathological condition particularly lethal is a combination of clinical and molecular heterogeneity, lack of early diagnostic indexes, and underwhelming results from current therapeutic protocols. A major cause of PDAC chemoresistance seems to lie in the ability of cancer cells to spread out and fill the pancreatic parenchyma, exchanging nutrients, substrates, and even genetic material with cells from the surrounding tumor microenvironment (TME). Several components can be found in the TME ultrastructure, including collagen fibers, cancer-associated fibroblasts, macrophages, neutrophils, mast cells, and lymphocytes. Cross-talk between PDAC and TME cells results in the latter being converted into cancer-favoring phenotypes; this behavior could be compared to an influencer guiding followers into supporting his activity. Moreover, TME could be a potential target for some of the newest therapeutic strategies; these include the use of pegvorhyaluronidase-α and CAR-T lymphocytes against HER2, FAP, CEA, MLSN, PSCA, and CD133. Other experimental therapy options are being currently studied, aiming to interfere with the KRAS pathway, DNA-repairing proteins, and apoptosis resistance in PDAC cells. Hopefully these new approaches will grant better clinical outcomes in future patients.
Collapse
Affiliation(s)
- Leonardo Mercanti
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Sindaco
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | | | - Raffaella Muraro
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy; (L.M.); (M.S.); (M.M.)
| |
Collapse
|
48
|
Koh EK, Lee HR, Son WC, Park GY, Kim J, Bae JH, Park YS. Combinatorial immunotherapy with gemcitabine and ex vivo-expanded NK cells induces anti-tumor effects in pancreatic cancer. Sci Rep 2023; 13:7656. [PMID: 37169953 PMCID: PMC10175562 DOI: 10.1038/s41598-023-34827-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023] Open
Abstract
Pancreatic cancer is difficult to diagnose at the initial stage and is often discovered after metastasis to nearby organs. Gemcitabine is currently used as a standard treatment for pancreatic cancer. However, since chemotherapy for pancreatic cancer has not yet reached satisfactory therapeutic results, adjuvant chemotherapy methods are attempted. It can be expected that combining immune cell therapy with existing anticancer drug combination treatment will prevent cancer recurrence and increase survival rates. We isolated natural killer (NK) cells and co-cultured them with strongly activated autologous peripheral blood mononuclear cells (PBMCs) as feeder cells, activated using CD3 antibody, IFN-r, IL-2, and γ-radiation. NK cells expanded in this method showed greater cytotoxicity than resting NK cells, when co-cultured with pancreatic cancer cell lines. Tumor growth was effectively inhibited in a pancreatic cancer mouse xenograft model. Therapeutic efficacy was increased by using gemcitabine and erlotinib in combination. These findings suggest that NK cells cultured by the method proposed here have excellent anti-tumor activity. We demonstrate that activated NK cells can efficiently inhibit pancreatic tumors when used in combination with gemcitabine-based therapy.
Collapse
Affiliation(s)
- Eun-Kyoung Koh
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - Hong-Rae Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Ga-Young Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Juhee Kim
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea
| | - Jae-Ho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, 50612, South Korea.
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 46033, South Korea.
| |
Collapse
|
49
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
50
|
Digomann D, Strack J, Heiduk M, Plesca I, Rupp L, Reiche C, Nicolaus S, Beer C, Sommer U, Schmitz M, Distler M, Weitz J, Seifert AM, Seifert L. VISTA Ligation Reduces Antitumor T-Cell Activity in Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15082326. [PMID: 37190254 DOI: 10.3390/cancers15082326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Immunotherapy has shown promising results in multiple solid tumors and hematological malignancies. However, pancreatic ductal adenocarcinoma (PDAC) has been largely refractory to current clinical immunotherapies. The V-domain Ig suppressor of T-cell activation (VISTA) inhibits T-cell effector function and maintains peripheral tolerance. Here, we determine VISTA expression in nontumorous pancreatic (n = 5) and PDAC tissue using immunohistochemistry (n = 76) and multiplex immunofluorescence staining (n = 67). Additionally, VISTA expression on tumor-infiltrating immune cells and matched blood samples (n = 13) was measured with multicolor flow cytometry. Further, the effect of recombinant VISTA on T-cell activation was investigated in vitro, and VISTA blockade was tested in an orthotopic PDAC mouse model in vivo. PDAC showed significantly higher VISTA expression compared to that of a nontumorous pancreas. Patients with a high density of VISTA-expressing tumor cells had reduced overall survival. The VISTA expression of CD4+ and CD8+ T cells was increased after stimulation and particularly after a coculture with tumor cells. We detected a higher level of proinflammatory cytokine (TNFα and IFNγ) expression by CD4+ and CD8+ T cells, which was reversed with the addition of recombinant VISTA. A VISTA blockade reduced tumor weights in vivo. The VISTA expression of tumor cells has clinical relevance, and its blockade may be a promising immunotherapeutic strategy for PDAC.
Collapse
Affiliation(s)
- David Digomann
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Johannes Strack
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Max Heiduk
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Charlotte Reiche
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Simone Nicolaus
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Carolin Beer
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marc Schmitz
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, 69120 Heidelberg, Germany
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, 69120 Heidelberg, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, 69120 Heidelberg, Germany
| | - Adrian M Seifert
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, 69120 Heidelberg, Germany
| | - Lena Seifert
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Dresden, 69120 Heidelberg, Germany
- Else Kröner Clinician Scientist Professor for "Translational Tumor Immunological Research", 01307 Dresden, Germany
| |
Collapse
|