1
|
West-Szymanski DC, Zhang Z, Cui XL, Kowitwanich K, Gao L, Deng Z, Dougherty U, Williams C, Merkle S, He C, Zhang W, Bissonnette M. 5-Hydroxymethylated Biomarkers in Cell-Free DNA Predict Occult Colorectal Cancer up to 36 Months Before Diagnosis in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. JCO Precis Oncol 2024; 8:e2400277. [PMID: 39393034 DOI: 10.1200/po.24.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 10/13/2024] Open
Abstract
PURPOSE Using the prostate, lung, colorectal, and ovarian (PLCO) Cancer Screening Trial samples, we identified cell-free DNA (cfDNA) candidate biomarkers bearing the epigenetic mark 5-hydroxymethylcytosine (5hmC) that detected occult colorectal cancer (CRC) up to 36 months before clinical diagnosis. MATERIALS AND METHODS We performed the 5hmC-seal assay and sequencing on ≤8 ng cfDNA extracted from PLCO study participant plasma samples, including n = 201 cases (diagnosed with CRC within 36 months of blood collection) and n = 401 controls (no cancer diagnosis on follow-up). We conducted association studies and machine learning modeling to analyze the genome-wide 5hmC profiles within training and validation groups that were randomly selected at a 2:1 ratio. RESULTS We successfully obtained 5hmC profiles from these decades-old samples. A weighted Cox model of 32 5hmC-modified gene bodies showed a predictive detection value for CRC as early as 36 months before overt tumor diagnosis (training set AUC, 77.1% [95% CI, 72.2 to 81.9] and validation set AUC, 72.8% [95% CI, 65.8 to 79.7]). Notably, the 5hmC-based predictive model showed comparable performance regardless of sex and race/ethnicity, and significantly outperformed risk factors such as age and obesity (assessed as BMI). Finally, when splitting cases at median weighted prediction scores, Kaplan-Meier analyses showed significant risk stratification for CRC occurrence in both the training set (hazard ratio, [HR], 3.3 [95% CI, 2.6 to 5.8]) and validation set (HR, 3.1 [95% CI, 1.8 to 5.8]). CONCLUSION Candidate 5hmC biomarkers and a scoring algorithm have the potential to predict CRC occurrence despite the absence of clinical symptoms and effective predictors. Developing a minimally invasive clinical assay that detects 5hmC-modified biomarkers holds promise for improving early CRC detection and ultimately patient outcomes.
Collapse
Affiliation(s)
- Diana C West-Szymanski
- Department of Chemistry, The University of Chicago, Chicago, IL
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Xiao-Long Cui
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Lu Gao
- Department of Chemistry, The University of Chicago, Chicago, IL
- Department of Medicine, The University of Chicago, Chicago, IL
| | - Zifeng Deng
- Department of Medicine, The University of Chicago, Chicago, IL
| | | | | | | | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | |
Collapse
|
2
|
Soloveva NA, Novikova SE, Farafonova TE, Tikhonova OV, Zgoda VG, Archakov AI. Proteome of plasma extracellular vesicles as a source of colorectal cancer biomarkers. BIOMEDITSINSKAIA KHIMIIA 2024; 70:356-363. [PMID: 39324200 DOI: 10.18097/pbmc20247005356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The search for minimally invasive methods for diagnostics of colorectal cancer (CRC) is the most important task for early diagnostics of the disease and subsequent successful treatment. Human plasma represents the main type of biological material used in the clinical practice; however, the complex dynamic range of substances circulating in it complicates determination of CRC protein markers by the mass spectrometric (MS) method. Studying the proteome of extracellular vesicles (EVs) isolated from human plasma represents an attractive approach for the discovery of tissue-secreted CRC markers. We performed shotgun mass spectrometry analysis of EV samples obtained from plasma of CRC patients and healthy volunteers. This MS analysis resulted in identification of 370 proteins (which were registered by at least two peptides). Stable isotope-free relative quantitation identified 55 proteins with altered abundance in EV samples obtained from plasma samples of CRC patients as compared to healthy controls. Among the EV proteins isolated from blood plasma we found components involved in cell adhesion and the VEGFA-VEGFR2 signaling pathway (TLN1, HSPA8, VCL, MYH9, and others), as well as proteins expressed predominantly by gastrointestinal tissues (polymeric immunoglobulin receptor, PIGR). The data obtained using the shotgun proteomic profiling may be added to the panel for targeted MS analysis of EV-associated protein markers, previously developed using CRC cell models.
Collapse
Affiliation(s)
- N A Soloveva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Li Y, Liu L. UKLF/PCBP2 axis governs the colorectal cancer development by transcriptionally activating SLC39A4. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119755. [PMID: 38768927 DOI: 10.1016/j.bbamcr.2024.119755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors with limited treatment options. Therefore, there is an urgent need to investigate new therapeutic targets against CRC. Ubiquitous Kruppel-like factor (UKLF) is involved in various cancer processes, but its effect and detailed molecular mechanism in CRC are not yet fully understood. Here, this study aimed to investigate the function and mechanism of UKLF in the development of CRC. The results showed that UKLF was highly expressed in CRC tissues from clinical patients and its high expression was related to poor prognosis. UKLF promoted cell proliferation, migration and invasion, and inhibited cell apoptosis. The promotion effect of UKLF on tumor growth was further confirmed in vivo. As far as the mechanism was concerned, poly (C) binding protein 2 (PCBP2) was verified to bind to the 3'-UTR of UKLF mRNA and enhance its mRNA stability. Moreover, UKLF modulated the expression of solute carrier family 39 member 4 (SLC39A4) at the transcriptional level. Taken together, these findings elucidated the regulatory mechanism of UKLF and uncovered the importance of the PCBP2/UKLF/SLC39A4 pathway. The targeting of UKLF may be a novel direction for molecular-targeted CRC therapy.
Collapse
Affiliation(s)
- Yunze Li
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China
| | - Lina Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
4
|
Virdee PS, Collins KK, Friedemann Smith C, Yang X, Zhu S, Roberts SE, Roberts N, Oke JL, Bankhead C, Perera R, Hobbs FDR, Nicholson BD. The Association between Blood Test Trends and Undiagnosed Cancer: A Systematic Review and Critical Appraisal. Cancers (Basel) 2024; 16:1692. [PMID: 38730644 PMCID: PMC11083147 DOI: 10.3390/cancers16091692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Clinical guidelines include monitoring blood test abnormalities to identify patients at increased risk of undiagnosed cancer. Noting blood test changes over time may improve cancer risk stratification by considering a patient's individual baseline and important changes within the normal range. We aimed to review the published literature to understand the association between blood test trends and undiagnosed cancer. MEDLINE and EMBASE were searched until 15 May 2023 for studies assessing the association between blood test trends and undiagnosed cancer. We used descriptive summaries and narratively synthesised studies. We included 29 articles. Common blood tests were haemoglobin (24%, n = 7), C-reactive protein (17%, n = 5), and fasting blood glucose (17%, n = 5), and common cancers were pancreatic (29%, n = 8) and colorectal (17%, n = 5). Of the 30 blood tests studied, an increasing trend in eight (27%) was associated with eight cancer types, and a decreasing trend in 17 (57%) with 10 cancer types. No association was reported between trends in 11 (37%) tests and breast, bile duct, glioma, haematological combined, liver, prostate, or thyroid cancers. Our review highlights trends in blood tests that could facilitate the identification of individuals at increased risk of undiagnosed cancer. For most possible combinations of tests and cancers, there was limited or no evidence.
Collapse
Affiliation(s)
- Pradeep S. Virdee
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - Kiana K. Collins
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - Claire Friedemann Smith
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - Xin Yang
- St Edmund Hall, University of Oxford, Oxford OX1 4AR, UK;
| | - Sufen Zhu
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - Sophie E. Roberts
- Medical Sciences Division, St Peters College, University of Oxford, Oxford OX1 2DL, UK;
| | - Nia Roberts
- Bodleian Health Care Libraries, Oxford OX3 7DQ, UK;
| | - Jason L. Oke
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - Clare Bankhead
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - Rafael Perera
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - FD Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| | - Brian D. Nicholson
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK; (K.K.C.); (C.F.S.); (S.Z.); (J.L.O.); (C.B.); (R.P.); (F.R.H.); (B.D.N.)
| |
Collapse
|
5
|
Vidman L, Zheng R, Bodén S, Ribbenstedt A, Gunter MJ, Palmqvist R, Harlid S, Brunius C, Van Guelpen B. Untargeted plasma metabolomics and risk of colorectal cancer-an analysis nested within a large-scale prospective cohort. Cancer Metab 2023; 11:17. [PMID: 37849011 PMCID: PMC10583301 DOI: 10.1186/s40170-023-00319-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, but if discovered at an early stage, the survival rate is high. The aim of this study was to identify novel markers predictive of future CRC risk using untargeted metabolomics. METHODS This study included prospectively collected plasma samples from 902 CRC cases and 902 matched cancer-free control participants from the population-based Northern Sweden Health and Disease Study (NSHDS), which were obtained up to 26 years prior to CRC diagnosis. Using reverse-phase liquid chromatography-mass spectrometry (LC-MS), data comprising 5015 metabolic features were obtained. Conditional logistic regression was applied to identify potentially important metabolic features associated with CRC risk. In addition, we investigated if previously reported metabolite biomarkers of CRC risk could be validated in this study population. RESULTS In the univariable analysis, seven metabolic features were associated with CRC risk (using a false discovery rate cutoff of 0.25). Two of these could be annotated, one as pyroglutamic acid (odds ratio per one standard deviation increase = 0.79, 95% confidence interval, 0.70-0.89) and another as hydroxytigecycline (odds ratio per one standard deviation increase = 0.77, 95% confidence interval, 0.67-0.89). Associations with CRC risk were also found for six previously reported metabolic biomarkers of prevalent and/or incident CRC: sebacic acid (inverse association) and L-tryptophan, 3-hydroxybutyric acid, 9,12,13-TriHOME, valine, and 13-OxoODE (positive associations). CONCLUSIONS These findings suggest that although the circulating metabolome may provide new etiological insights into the underlying causes of CRC development, its potential application for the identification of individuals at higher risk of developing CRC is limited.
Collapse
Affiliation(s)
- Linda Vidman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden.
| | - Rui Zheng
- Department of Surgical Sciences, Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Stina Bodén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Anton Ribbenstedt
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg, Sweden
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Kanno K, Akutsu T, Ohdaira H, Suzuki Y, Urashima M. Effect of Vitamin D Supplements on Relapse or Death in a p53-Immunoreactive Subgroup With Digestive Tract Cancer: Post Hoc Analysis of the AMATERASU Randomized Clinical Trial. JAMA Netw Open 2023; 6:e2328886. [PMID: 37606927 PMCID: PMC10445201 DOI: 10.1001/jamanetworkopen.2023.28886] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Importance Recent meta-analyses of randomized clinical trials found that daily vitamin D3 supplementation had beneficial effects on cancer mortality, although the results are still controversial. Objective To examine whether vitamin D supplementation reduces the risk of relapse or death in a supgroup of patients with digestive tract cancer who were p53 immunoreactive. Design, Setting, and Participants This was a post hoc subgroup analysis of the AMATERASU randomized, double-blind, placebo-controlled clinical trial. This trial included patients at a single university hospital in Japan with digestive tract cancers between January 2010 and February 2018 followed up for a median (IQR) of 3.5 (2.5-5.3) years to compare the effects of vitamin D supplementation with placebo and was reported in 2019. Patients from among 417 participants in the AMATERASU trial whose residual serum samples were available were included. Data were analyzed from October 20 to November 24, 2022. Interventions Vitamin D3 (2000 IU/d) supplementation or placebo. Main Outcomes and Measures The primary outcome was 5-year relapse or death. The subgroup of patients who were p53 immunoreactive was defined by positivity for anti-p53 antibodies in serum and nuclear accumulation of p53 oncosuppressor protein in more than 99% of cancer cells, which is considered a biomarker for p53 missense mutations. Anti-p53 antibody levels were measured using chemiluminescent enzyme immune assay. Immunohistochemical staining data of p53 protein in cancer tissue in pathologic specimens were obtained from a previous study and divided into 4 grades. Results Among 392 patients with digestive tract cancer (mean [SD] age, 66 [10.7] years; 260 males [66.3%]), there were 37 patients with esophageal cancer (9.4%), 170 patients with gastric cancer (43.4%), 2 patients with small bowel cancer (0.5%), and 183 patients with colorectal cancer (46.7%). Serum anti-p53 antibody was detectable in 142 patients (36.2%), and p53-immunohistochemistry grade showed a positive association with serum anti-p53 antibody levels (coefficient = 0.19; P < .001). In the p53-immunoreactive subgroup (80 patients), relapse or death occurred in 9 of 54 patients (16.7%) in the vitamin D group and 14 of 26 patients (53.8%) in the placebo group; 5-year relapse-free survival (RFS) was significantly higher in the vitamin D group (13 patients [80.9%]) than the placebo group (1 patient [30.6%]; hazard ratio [HR], 0.27; 95% CI, 0.11-0.61; P = .002). This was significantly different from 272 patients in the non-p53 immunoreactive subgroup, in which vitamin D had no effect on 5-year RFS (vitamin D: 35 of 158 patients [22.2%] vs placebo: 24 of 114 patients [21.1%]; HR, 1.09; 95% CI, 0.65-1.84) (P for interaction = .005). Conclusions and Relevance This study found that vitamin D supplementation reduced the risk of relapse or death in the subgroup of patients with digestive tract cancer who were p53 immunoreactive. Trial Registration Identifier: UMIN000001977.
Collapse
Affiliation(s)
- Kazuki Kanno
- Division of Molecular Epidemiology, the Jikei University School of Medicine, Tokyo, Japan
| | - Taisuke Akutsu
- Division of Molecular Epidemiology, the Jikei University School of Medicine, Tokyo, Japan
| | - Hironori Ohdaira
- Department of Surgery, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Yutaka Suzuki
- Department of Surgery, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Mitsuyoshi Urashima
- Division of Molecular Epidemiology, the Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Chan FKL, Wong MCS, Chan AT, East JE, Chiu HM, Makharia GK, Weller D, Ooi CJ, Limsrivilai J, Saito Y, Hang DV, Emery JD, Makmun D, Wu K, Ali RAR, Ng SC. Joint Asian Pacific Association of Gastroenterology (APAGE)-Asian Pacific Society of Digestive Endoscopy (APSDE) clinical practice guidelines on the use of non-invasive biomarkers for diagnosis of colorectal neoplasia. Gut 2023:gutjnl-2023-329429. [PMID: 37019620 DOI: 10.1136/gutjnl-2023-329429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
Screening for colorectal cancer (CRC) is effective in reducing CRC related mortality. Current screening methods include endoscopy based and biomarker based approaches. This guideline is a joint official statement of the Asian Pacific Association of Gastroenterology (APAGE) and the Asian Pacific Society of Digestive Endoscopy (APSDE), developed in response to the increasing use of, and accumulating supportive evidence for the role of, non-invasive biomarkers for the diagnosis of CRC and its precursor lesions. A systematic review of 678 publications and a two stage Delphi consensus process involving 16 clinicians in various disciplines was undertaken to develop 32 evidence based and expert opinion based recommendations for the use of faecal immunochemical tests, faecal based tumour biomarkers or microbial biomarkers, and blood based tumour biomarkers for the detection of CRC and adenoma. Comprehensive up-to-date guidance is provided on indications, patient selection and strengths and limitations of each screening tool. Future research to inform clinical applications are discussed alongside objective measurement of research priorities. This joint APAGE-APSDE practice guideline is intended to provide an up-to-date guide to assist clinicians worldwide in utilising non-invasive biomarkers for CRC screening; it has particular salience for clinicians in the Asia-Pacific region.
Collapse
Affiliation(s)
- Francis K L Chan
- Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Martin C S Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Health Education and Health Promotion, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James E East
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Gastroenterology and Hepatology, Mayo Clinic Healthcare, London, UK
| | - Han-Mo Chiu
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - David Weller
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | | | - Julajak Limsrivilai
- Internal Medicine, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Dao V Hang
- Hanoi Medical University, Hanoi, Vietnam
| | - Jon D Emery
- Department of General Practice, The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Melbourne, Victoria, Australia
| | | | - Kaichun Wu
- Xijing Hospital of Digestive Diseases, Xijing Hospital, Xian, China
| | | | - Siew C Ng
- Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
8
|
NCR, an Inflammation and Nutrition Related Blood-Based Marker in Colon Cancer Patients: A New Promising Biomarker to Predict Outcome. Diagnostics (Basel) 2022; 13:diagnostics13010116. [PMID: 36611408 PMCID: PMC9818830 DOI: 10.3390/diagnostics13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Colorectal carcinoma (CRC) is a heterogeneous disease, and differences in outcomes have been reported among patients diagnosed with the same disease stage. Prognostic and predictive biomarkers provide information for patient risk stratification and guide treatment selection. Although numerous studies have analyzed the effects of systemic inflammatory factors on CRC outcomes, clinical significance remains to be elucidated. In particular, the treatment strategy of colon cancer patients is different from that of rectal cancer due to outcome and recurrence differences. The identification of patients with a poor prognosis who might benefit from intensive treatment approaches is clinically necessary. Methods: This study aimed to evaluate the value of different blood-based markers and assess the significance of our newly developed inflammatory-nutrition-related biomarker (NCR = BMI × albumin/CRP) in patients with colon cancer. A two-stage design was used with 212 patients with colon cancer (CC) in the discovery cohort (n = 159) and in an external validation cohort (n = 53). Results: A lower preoperative NCR level was significantly correlated with a worse prognosis, sidedness, undifferentiated histology, nodal involvement, and advanced UICC stage. We compared the NCR with other established prognostic indices and showed that the NCR is a more reliable indicator of a poor prognosis for patients with CC. Patients with low NCR levels experienced a significantly shorter Overall Survival (OS) than patients with high levels. Multivariate analysis confirmed preoperative NCR levels as an independent predictor for overall survival with a hazard ratio of 3.3 (95% confidence interval 1.628−6.709, p < 0.001). Finally, we confirmed the predictive value of the NCR in an independent validation cohort and confirmed NCR as an independent prognostic factor for OS. Conclusion: Taken together, we discovered a new prognostic index (NCR) based on BMI, albumin, and CRP levels as an independent prognostic predictor of OS in patients with colon cancer. In all UICC stages, our newly developed NCR marker is able to distinguish patients with better and worse prognoses. We, therefore, propose that NCR may serve as a supplement to the TNM staging system to optimize the risk stratification in CC patients towards personalized oncology. In particular, NCR can be used in clinical trials to stratify patients with UICC II and III tumors and help better select patients who might benefit from adjuvant treatment.
Collapse
|
9
|
Breeur M, Ferrari P, Dossus L, Jenab M, Johansson M, Rinaldi S, Travis RC, His M, Key TJ, Schmidt JA, Overvad K, Tjønneland A, Kyrø C, Rothwell JA, Laouali N, Severi G, Kaaks R, Katzke V, Schulze MB, Eichelmann F, Palli D, Grioni S, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Olsen KS, Sandanger TM, Nøst TH, Quirós JR, Bonet C, Barranco MR, Chirlaque MD, Ardanaz E, Sandsveden M, Manjer J, Vidman L, Rentoft M, Muller D, Tsilidis K, Heath AK, Keun H, Adamski J, Keski-Rahkonen P, Scalbert A, Gunter MJ, Viallon V. Pan-cancer analysis of pre-diagnostic blood metabolite concentrations in the European Prospective Investigation into Cancer and Nutrition. BMC Med 2022; 20:351. [PMID: 36258205 PMCID: PMC9580145 DOI: 10.1186/s12916-022-02553-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiological studies of associations between metabolites and cancer risk have typically focused on specific cancer types separately. Here, we designed a multivariate pan-cancer analysis to identify metabolites potentially associated with multiple cancer types, while also allowing the investigation of cancer type-specific associations. METHODS We analysed targeted metabolomics data available for 5828 matched case-control pairs from cancer-specific case-control studies on breast, colorectal, endometrial, gallbladder, kidney, localized and advanced prostate cancer, and hepatocellular carcinoma nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. From pre-diagnostic blood levels of an initial set of 117 metabolites, 33 cluster representatives of strongly correlated metabolites and 17 single metabolites were derived by hierarchical clustering. The mutually adjusted associations of the resulting 50 metabolites with cancer risk were examined in penalized conditional logistic regression models adjusted for body mass index, using the data-shared lasso penalty. RESULTS Out of the 50 studied metabolites, (i) six were inversely associated with the risk of most cancer types: glutamine, butyrylcarnitine, lysophosphatidylcholine a C18:2, and three clusters of phosphatidylcholines (PCs); (ii) three were positively associated with most cancer types: proline, decanoylcarnitine, and one cluster of PCs; and (iii) 10 were specifically associated with particular cancer types, including histidine that was inversely associated with colorectal cancer risk and one cluster of sphingomyelins that was inversely associated with risk of hepatocellular carcinoma and positively with endometrial cancer risk. CONCLUSIONS These results could provide novel insights for the identification of pathways for cancer development, in particular those shared across different cancer types.
Collapse
Affiliation(s)
- Marie Breeur
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Pietro Ferrari
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Mattias Johansson
- Genetics Branch, International Agency for Research on Cancer, 69372 CEDEX 08, Lyon, France
| | - Sabina Rinaldi
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Mathilde His
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Tim J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Julie A Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital and Aarhus University, DK-8200, Aarhus N, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center Diet, Genes and Environment Nutrition and Biomarkers, DK-2100, Copenhagen, Denmark
| | - Cecilie Kyrø
- Danish Cancer Society Research Center Diet, Genes and Environment Nutrition and Biomarkers, DK-2100, Copenhagen, Denmark
| | - Joseph A Rothwell
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, 94800, Villejuif, France
| | - Nasser Laouali
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, 94800, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, CESP U1018, "Exposome and Heredity" team, Gustave Roussy, 94800, Villejuif, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Verena Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558, Nuthetal, Germany
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Domenico Palli
- Institute of Cancer Research, Prevention and Clinical Network (ISPRO), 50139, Florence, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, 80131, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE-ONLUS, 97100, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology Città della Salute e della Scienza University-Hospital, 10126, Turin, Italy
| | - Bas Bueno-de-Mesquita
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720, BA, Bilthoven, The Netherlands
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | | | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT The Arctic University of Norway, N-9037, Tromsø, Norway
| | - J Ramón Quirós
- Public Health Directorate, 33006, Oviedo, Asturias, Spain
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Miguel Rodríguez Barranco
- Escuela Andaluza de Salud Pública (EASP), 18011, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012, Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
| | - María-Dolores Chirlaque
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, 30003, Murcia, Spain
| | - Eva Ardanaz
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029, Madrid, Spain
- Navarra Public Health Institute, 31003, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Malte Sandsveden
- Department of Clinical Sciences Malmö Lund University, SE-214 28, Malmö, Sweden
| | - Jonas Manjer
- Departement of Surgery, Skåne University Hospital Malmö, Lund University, SE-214 28, Malmö, Sweden
| | - Linda Vidman
- Department of Radiation Sciences, Oncology Umeå University, SE-901 87, Umeå, Sweden
| | - Matilda Rentoft
- Department of Radiation Sciences, Oncology Umeå University, SE-901 87, Umeå, Sweden
| | - David Muller
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Hector Keun
- Department of Surgery and Cancer, Cancer Metabolism and Systems Toxicology Group, Division of Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Augustin Scalbert
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France
| | - Vivian Viallon
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, NME Branch, 69372 CEDEX 08, Lyon, France.
| |
Collapse
|
10
|
Ose J, Gigic B, Hardikar S, Lin T, Himbert C, Warby CA, Peoples AR, Lindley CL, Boehm J, Schrotz-King P, Figueiredo JC, Toriola AT, Siegel EM, Li CI, Ulrich A, Schneider M, Shibata D, Ulrich CM. Presurgery Adhesion Molecules and Angiogenesis Biomarkers Are Differently Associated with Outcomes in Colon and Rectal Cancer: Results from the ColoCare Study. Cancer Epidemiol Biomarkers Prev 2022; 31:1650-1660. [PMID: 35667092 PMCID: PMC9509698 DOI: 10.1158/1055-9965.epi-22-0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cell-to-cell adhesion and angiogenesis are hallmarks of cancer. No studies have examined associations of adhesion molecules and angiogenesis biomarkers with clinical outcomes in colorectal cancer. METHODS In presurgery serum from n = 426 patients with colorectal cancer (stage I-III), we investigated associations of CRP, SAA, adhesion molecules (sICAM-1, sVCAM-1), and angiogenesis markers (VEGF-A and VEGF-D) with overall survival (OS), disease-free survival (DFS), and risk of recurrence. We computed HRs and 95% confidence intervals; adjusted for age, sex, BMI, stage, site, and study site, stratified by tumor site in exploratory analyses. RESULTS N = 65 (15%) were deceased, and 39 patients (14%) had a recurrence after a median follow-up of 31 months. We observed significant associations of biomarkers with OS, DFS, and risk of recurrence on a continuous scale and comparing top to bottom tertile, with HRs ranging between 1.19 and 13.92. CRP was associated with risk of death and recurrence in patients in the top tertile compared with patients in the bottom tertile, for example, risk of recurrence HRQ3-Q1: 13.92 (1.72-112.56). Significant heterogeneity between biomarkers and clinical outcomes was observed in stratified analysis by tumor site for CRP, SAA, sICAM-1, sVCAM-1, and VEGF-D. VEGF-D was associated with a 3-fold increase in risk of death for rectal cancer (HRlog2: 3.26; 95% CI, 1.58-6.70) compared with no association for colon cancer (HRlog2: 0.78; 95% CI, 0.35-1.73; Pheterogenity = 0.01). CONCLUSIONS Adhesion molecules and angiogenesis biomarkers are independent prognostic markers for colorectal cancer, with differences by tumor site. IMPACT There is need for tailored treatment for colon and rectal cancer.
Collapse
Affiliation(s)
- Jennifer Ose
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Sheetal Hardikar
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Tengda Lin
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Caroline Himbert
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Anita R Peoples
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | | | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | | | - Erin M Siegel
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | | | | | - David Shibata
- University of Tennessee Health Science Center, Memphis, TN
| | - Cornelia M Ulrich
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| |
Collapse
|
11
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Sun X, Shu XO, Lan Q, Laszkowska M, Cai Q, Rothman N, Wen W, Zheng W, Shu X. Prospective Proteomic Study Identifies Potential Circulating Protein Biomarkers for Colorectal Cancer Risk. Cancers (Basel) 2022; 14:3261. [PMID: 35805033 PMCID: PMC9265260 DOI: 10.3390/cancers14133261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Proteomics-based technologies are emerging tools used for cancer biomarker discovery. Limited prospective studies have been conducted to evaluate the role of circulating proteins in colorectal cancer (CRC) development. METHODS A two-stage case-control proteomics study nested in the Shanghai Women's Health Study was conducted. A total of 1104 circulating proteins were measured in the discovery phase, consisting of 100 incident CRC cases and 100 individually matched controls. An additional 60 case-control pairs were selected for validation. Protein profiling at both stages was completed using the Olink platforms. Conditional logistic regression was used to evaluate the associations between circulating proteins and CRC risk. The elastic net method was employed to develop a protein score for CRC risk. RESULTS In the discovery set, 27 proteins showed a nominally significant association with CRC risk, among which 22 were positively and 5 were inversely associated. Six of the 27 protein markers were significantly associated with CRC risk in the validation set. In the analysis of pooled discovery and validation sets, odds ratios (ORs) per standard deviation (SD) increase in levels of these proteins were 1.54 (95% confidence interval (CI): 1.15-2.06) for CD79B; 1.71 (95% CI: 1.24-2.34) for DDR1; 2.04 (95% CI: 1.39-3.01) for EFNA4; 1.54 (95% CI: 1.16-2.02) for FLRT2; 2.09 (95% CI: 1.47-2.98) for LTA4H and 1.88 (95% CI: 1.35-2.62) for NCR1. Sensitivity analyses showed consistent associations for all proteins with the exclusion of cases diagnosed within the first two years after the cohort enrollment, except for CD79B. Furthermore, a five-protein score was developed based on the six proteins identified and showed significant associations with CRC risk in both discovery and validation sets (Discovery: OR1-SD = 2.46, 95% CI: 1.53-3.95; validation: OR1-SD = 4.16, 95% CI: 1.92-8.99). CONCLUSIONS A panel of five protein markers was identified as potential biomarkers for CRC risk. Our findings provide novel insights into the etiology of CRC and may facilitate the risk assessment of the malignancy.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
- Department of Epidemiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD 20850, USA; (Q.L.); (N.R.)
| | - Monika Laszkowska
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD 20850, USA; (Q.L.); (N.R.)
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (X.-O.S.); (Q.C.); (W.W.); (W.Z.)
| | - Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA; (X.S.); (M.L.)
| |
Collapse
|
13
|
Role of the Ghrelin System in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23105380. [PMID: 35628187 PMCID: PMC9141034 DOI: 10.3390/ijms23105380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
The ghrelin system contains several components (e.g., ghrelin with growing number of alternative peptides, growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT) and participates in regulation of a number of key processes of gastrointestinal (GI) tract cancer progression, including cell proliferation, migration, invasion, apoptosis, inflammation, and angiogenesis. However, its exact role in promoting or inhibiting cancer progression is still unclear. Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Molecular studies suggest an autocrine/paracrine mechanism for the secretion of ghrelin in colorectal carcinogenesis and its contribution to its initial stages. However, the signalling pathways of CRC development involving the ghrelin system are poorly understood. Potential mechanisms of colon carcinogenesis involving components of the ghrelin system were previously described in an animal model and in in vitro studies. However, the diagnostic–prognostic role of serum ghrelin concentrations, tissue expression, or genetic changes of this system in various stages of CRC progression remains an open case. Thus, the aim of this study is to discuss the role of the ghrelin system in colon carcinogenesis, diagnostics and CRC prognostics, as well as the results of studies on the use of ghrelin and its analogues in the therapy of CRC-related syndromes (e.g., cachexia and sarcopenia).
Collapse
|
14
|
hsa_circ_0001955 Promotes Colorectal Cancer Progression by Regulating miR-583/FGF21 Axis. JOURNAL OF ONCOLOGY 2022; 2022:4288474. [PMID: 35602296 PMCID: PMC9117020 DOI: 10.1155/2022/4288474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022]
Abstract
Objective Hsa_circ_0001955 presents significant upregulation in colorectal cancer (CRC) tissues. However, its role in CRC remains unclear. Thus, we attempted to clarify functions of hsa_circ_0001955 on CRC. Methods qRT-PCR was performed to examine hsa_circ_0001955, miR-583, and FGF21 levels. Western blotting was conducted to measure FGF21 protein expression. CCK-8, flow cytometry, and Ki-67 immunohistochemical staining and TUNEL assays were conducted to assess proliferation and apoptosis in vitro and in vivo, respectively. Cell invasion and migration were assessed by Transwell assay. Tumor-bearing mouse model and HE staining were used to assess inflammatory injury. Luciferase reporter system and RNA pull-down were conducted to evaluate the regulation between miR-583 and hsa_circ_0001955 or FGF21. Results We found that hsa_circ_0001955 showed characteristics of upregulated circRNA in CRC. Further analysis indicated that hsa_circ_0001955 elevation facilitated CRC cell malignancy in vitro and promoted tumor growth in vivo. Furthermore, hsa_circ_0001955 was a miR-583 sponge and FGF21 was directly targeted by miR-583. In addition, we found that downregulation of miR-583 promoted hsa_circ_0001955-mediated CRC cell malignancy in vitro. In contrast, FGF21 elevation promoted miR-583-regulated CRC cell malignancy in vitro. Conclusion We demonstrated that hsa_circ_0001955 facilitated CRC progression via miR-583/FGF21 axis, suggesting that hsa_circ_0001955 may provide a novel insight for therapy of CRC.
Collapse
|
15
|
Zou Y, Xu Y, Chen X, Wu Y, Fu L, Lv Y. Research Progress on Leucine-Rich Alpha-2 Glycoprotein 1: A Review. Front Pharmacol 2022; 12:809225. [PMID: 35095520 PMCID: PMC8797156 DOI: 10.3389/fphar.2021.809225] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Leucine-rich alpha⁃2 glycoprotein 1 (LRG1) is an important member of the leucine-rich repetitive sequence protein family. LRG1 was mainly involved in normal physiological activities of the nervous system, such as synapse formation, synapse growth, the development of nerve processes, neurotransmitter transfer and release, and cell adhesion molecules or ligand-binding proteins. Also, LRG1 affected the development of respiratory diseases, hematological diseases, endocrine diseases, tumor diseases, eye diseases, cardiovascular diseases, rheumatic immune diseases, infectious diseases, etc. LRG1 was a newly discovered important upstream signaling molecule of transforming growth factor⁃β (TGF⁃β) that affected various pathological processes through the TGF⁃β signaling pathway. However, research on LRG1 and its involvement in the occurrence and development of diseases was still in its infancy and the current studies were mainly focused on proteomic detection and basic animal experimental reports. We could reasonably predict that LRG1 might act as a new direction and strategy for the treatment of many diseases.
Collapse
Affiliation(s)
- Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Xiaofeng Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,College of Pharmacy, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Reiner BC, Crist RC, Borner T, Doyle RP, Hayes MR, De Jonghe BC. Single nuclei RNA sequencing of the rat AP and NTS following GDF15 treatment. Mol Metab 2021; 56:101422. [PMID: 34942400 PMCID: PMC8749158 DOI: 10.1016/j.molmet.2021.101422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/04/2022] Open
Abstract
Objective Growth differentiation factor 15 (GDF15) is known to play a role in feeding, nausea, and body weight, with action through the GFRAL-RET receptor complex in the area postrema (AP) and nucleus tractus solitarius (NTS). To further elucidate the underlying cell type-specific molecular mechanisms downstream of GDF15 signaling, we used a single nuclei RNA sequencing (snRNAseq) approach to profile AP and NTS cellular subtype-specific transcriptomes after systemic GDF15 treatment. Methods AP and NTS micropunches were used for snRNAseq from Sprague Dawley rats 6 h following GDF15 or saline injection, and Seurat was used to identify cellular subtypes and cell type-specific alterations in gene expression that were due to the direct and secondary effects of systemic GDF15 treatment. Results Using the transcriptome profile of ∼35,000 individual AP/NTS nuclei, we identified 19 transcriptomically distinct cellular subtypes, including a single population Gfral and Ret positive excitatory neurons, representing the primary site of action for GDF15. A total of ∼600 cell type-specific differential expression events were identified in neurons and glia, including the identification of transcriptome alterations specific to the direct effects of GDF15 in the Gfral-Ret positive excitatory neurons and shared transcriptome alterations across neuronal and glial cell types. Downstream analyses identified shared and cell type-specific alterations in signaling pathways and upstream regulatory mechanisms of the observed transcriptome alterations. Conclusions These data provide a considerable advance in our understanding of AP and NTS cell type-specific molecular mechanisms associated with GDF15 signaling. The identified cellular subtype-specific regulatory mechanism and signaling pathways likely represent important targets for future pharmacotherapies. GDF15 directly alters transcription in Gfral- and Ret-positive excitatory neurons. GDF15 indirectly alters transcription in other neuronal and glial populations. Cell type-specific expression changes identify regulatory and signaling mechanisms.
Collapse
Affiliation(s)
- Benjamin C Reiner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tito Borner
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Robert P Doyle
- Syracuse University, Department of Chemistry, 111 College Place, Syracuse, New York 13244
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Bart C De Jonghe
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biobehavioral Health Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|