1
|
Laila UE, Zhao ZL, Liu H, Xu ZX. Aspirin in Cancer Therapy: Pharmacology and Nanotechnology Advances. Int J Nanomedicine 2025; 20:2327-2365. [PMID: 40017626 PMCID: PMC11866938 DOI: 10.2147/ijn.s505636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Aspirin, a non-steroidal anti-inflammatory drug (NSAID), has garnered significant attention for its anti-cancer potential. This review explores the pharmacological properties, chemical dynamics, and evolving therapeutic applications of aspirin, with an emphasis on its integration into advanced cancer therapies. Aspirin demonstrates broad-spectrum efficacy across diverse cancer types by modulating signaling pathways such as COX-dependent and COX-independent mechanisms, including Wnt, NF-κB, β-catenin/TCF, and IL-6/STAT3. Recent advancements highlight the role of nanotechnology in enhancing aspirin's targeted delivery, therapeutic effectiveness, and patient outcomes. Nanoparticle-based formulations, including liposomes, solid lipid nanoparticles, and mesoporous silica nanoparticles, offer improved solubility, stability, and bioavailability, enabling controlled drug release and tumor-specific targeting. These innovations reduce systemic toxicity and enhance therapeutic effects, paving the way for aspirin's integration into personalized cancer treatments. Ongoing clinical studies reinforce its safety profile, underscoring aspirin's role in cancer pharmacotherapy. This review calls for continued research into aspirin's repurposing in combination therapies and novel delivery systems to maximize its therapeutic potential.
Collapse
Affiliation(s)
- Umm E Laila
- School of Life Sciences, Henan University, Kaifeng, Henan Province, 475001, People’s Republic of China
| | - Zi Lon Zhao
- School of Life Sciences, Henan University, Kaifeng, Henan Province, 475001, People’s Republic of China
| | - Huai Liu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, 475001, People’s Republic of China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, 475001, People’s Republic of China
| |
Collapse
|
2
|
Pandey M, Rajput M, Singh P, Shukla M, Zhu B, Koshiol J. Aspirin and Cancer Survival: An Analysis of Molecular Mechanisms. Cancers (Basel) 2024; 16:223. [PMID: 38201650 PMCID: PMC10778469 DOI: 10.3390/cancers16010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The benefit of aspirin on cancer survival is debated. Data from randomized clinical trials and cohort studies are discordant, although a meta-analysis shows a clear survival advantage when aspirin is added to the standard of care. However, the mechanism by which aspirin improves cancer survival is not clear. A PubMed search was carried out to identify articles reporting genes and pathways that are associated with aspirin and cancer survival. Gene ontology and pathway enrichment analysis was carried out using web-based tools. Gene-gene and protein-protein interactions were evaluated. Crosstalk between pathways was identified and plotted. Forty-one genes were identified and classified into primary genes (PTGS2 and PTGES2), genes regulating cellular proliferation, interleukin and cytokine genes, and DNA repair genes. The network analysis showed a rich gene-gene and protein-protein interaction between these genes and proteins. Pathway enrichment showed the interleukin and cellular transduction pathways as the main pathways involved in aspirin-related survival, in addition to DNA repair, autophagy, extracellular matrix, and apoptosis pathways. Crosstalk of PTGS2 with EGFR, JAK/AKT, TP53, interleukin/TNFα/NFκB, GSK3B/BRCA/PARP, CXCR/MUC1, and WNT/CTNNB pathways was identified. The results of the present study demonstrate that aspirin improves cancer survival by the interplay of 41 genes through a complex mechanism. PTGS2 is the primary target of aspirin and impacts cancer survival through six primary pathways: the interleukin pathway, extracellular matrix pathway, signal transduction pathway, apoptosis pathway, autophagy pathway, and DNA repair pathway.
Collapse
Affiliation(s)
- Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India; (M.R.)
| | - Monika Rajput
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India; (M.R.)
| | - Pooja Singh
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India; (M.R.)
| | - Mridula Shukla
- RRL, Dr. Lalpath Labs Ltd., Shivpur, Varanasi 221003, India
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, RM 6-E212, Rockville, MD 20850, USA (J.K.)
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, RM 6-E212, Rockville, MD 20850, USA (J.K.)
| |
Collapse
|
3
|
Wu J, Xia C, Liu C, Zhang Q, Xia C. The role of gut microbiota and drug interactions in the development of colorectal cancer. Front Pharmacol 2023; 14:1265136. [PMID: 37680706 PMCID: PMC10481531 DOI: 10.3389/fphar.2023.1265136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human gut microbiota is a complex ecosystem regulating the host's environmental interaction. The same functional food or drug may have varying bioavailability and distinct effects on different individuals. Drugs such as antibiotics can alter the intestinal flora, thus affecting health. However, the relationship between intestinal flora and non-antibiotic drugs is bidirectional: it is not only affected by drugs; nevertheless, it can alter the drug structure through enzymes and change the bioavailability, biological activity, or toxicity of drugs to improve their efficacy and safety. This review summarizes the roles and mechanisms of antibiotics, antihypertensive drugs, nonsteroidal anti-inflammatory drugs, lipid-lowering drugs, hypoglycemic drugs, virus-associated therapies, metabolites, and dietary in modulating the colorectal cancer gut microbiota. It provides a reference for future antitumor therapy targeting intestinal microorganisms.
Collapse
Affiliation(s)
- Jinna Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Pharmacy, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Gunchick V, McDevitt RL, Choi E, Winslow K, Zalupski MM, Sahai V. Survival Analysis of 1140 Patients with Biliary Cancer and Benefit from Concurrent Renin-Angiotensin Antagonists, Statins, or Aspirin with Systemic Therapy. Oncologist 2023; 28:531-541. [PMID: 37036699 PMCID: PMC10243793 DOI: 10.1093/oncolo/oyad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/08/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Patients with advanced biliary tract cancers (BTCs) have poor prognoses and limited therapeutic options. Renin-angiotensin antagonists (ACE-I/ARBs), statins, and aspirin may have potential anti-tumorigenic effects and decrease mortality per retrospective analyses in some solid tumors. OBJECTIVE To evaluate the efficacy of ACE-Is/ARBs, statins, and/or aspirin concurrent to first-line systemic therapy in patients with advanced or metastatic BTC. METHODS Adult patients at University of Michigan with pathologic confirmation of BTC between January 2010 and December 2020 were included in this retrospective analysis. RESULTS Of 1140 patients who met eligibility, a total of 509 patients received one or more concomitant medication(s) of interest in conjunction with systemic therapy for advanced cancer. In the total cohort, the overall survival for locally advanced patients (N = 305) was 16.3 months (95% CI: 12.1-18.6), and metastatic patients (N = 512) 8.6 months (95% CI: 7.6-9.5); P < .0001. Within this concomitant medication cohort, patients with locally advanced stage (n = 132) experienced significantly longer progression-free survival (9.8 vs 4.5; P < 0.0001), and overall survival (17.4 vs 10.6; P < 0.0001) than those with metastatic (n = 297) cancer, respectively. Patients who received ACE-Is/ARBs, statins, and/or aspirin (n = 245) versus not (n = 264) concurrent with systemic anti-cancer therapy did not experience improved progression-free (5.5 vs 5.5 months; hazard ratio (HR) 1.1; P = 0.51), or overall survival (12.3 vs 12.6 months; HR 1.1; P = 0.18), respectively. CONCLUSION In contrast to prior studies, no progression free or overall survival benefit in patients with advanced BTC from concurrent use of ACE-I/ARBs, statin, and/or aspirin with systemic therapy was observed when assessed by BTC subtype or specific systemic therapy regimen.
Collapse
Affiliation(s)
- Valerie Gunchick
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Rachel L McDevitt
- College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Choi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Katherine Winslow
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark M Zalupski
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|