1
|
Santourlidis S, Araúzo-Bravo MJ, Erichsen L, Bendhack ML. Epigenetics Meets CAR-T-Cell Therapy to Fight Cancer. Cancers (Basel) 2024; 16:1941. [PMID: 38792020 PMCID: PMC11119853 DOI: 10.3390/cancers16101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Based on the impressive success of Car-T-cell therapy in the treatment of hematological malignancies, a broad application for solid tumors also appears promising. However, some important hurdles need to be overcome. One of these is certainly the identification of specific target antigens on cancer cells. Hypomethylation is a characteristic epigenetic aberration in many tumor entities. Genome-wide screenings for consistent DNA hypomethylations in tumors enable the identification of aberrantly upregulated transcripts, which might result in cell surface proteins. Thus, this approach provides a new perspective for the discovery of potential new Car-T-cell target antigens for almost every tumor entity. First, we focus on this approach as a possible treatment for prostate cancer.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany;
| | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lars Erichsen
- Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany;
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| |
Collapse
|
2
|
Singh CK, Fernandez S, Chhabra G, Zaemisch GR, Nihal A, Swanlund J, Ansari N, Said Z, Chang H, Ahmad N. The role of collagen triple helix repeat containing 1 (CTHRC1) in cancer development and progression. Expert Opin Ther Targets 2024; 28:419-435. [PMID: 38686865 PMCID: PMC11189736 DOI: 10.1080/14728222.2024.2349686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Chandra K. Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sofia Fernandez
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Ayaan Nihal
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jenna Swanlund
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Naveed Ansari
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Zan Said
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Liu YJ, Du J, Li J, Tan XP, Zhang Q. CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review). Oncol Lett 2023; 25:266. [PMID: 37216164 PMCID: PMC10193374 DOI: 10.3892/ol.2023.13852] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/01/2023] [Indexed: 05/24/2023] Open
Abstract
Collagen triple helix repeat containing 1 (CTHRC1) is a gene discovered in 2005; it is highly conserved, and no homologous proteins have been disclosed thus far. A number of studies have shown that CTHRC1 is present in normal tissues and organs, and it has vital functions in physiological processes, including participating in the regulation of metabolism, arterial remodeling, bone formation and myelination of the peripheral nervous system. It has been reported that abnormal expression of CTHRC1 is involved in the carcinogenesis of various human organs, such as the breast, colon, pancreas, lung, stomach and liver. Therefore, the present review aims to collate all known findings and results on the regulation of CTHRC1 expression and related signaling pathways. To conclude, this review also provides a hypothesis of the functional mechanism of this gene.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Li
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiao-Ping Tan
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qing Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
- Medical College of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
4
|
Tang BF, Yan RC, Wang SW, Zeng ZC, Du SS. Maternal embryonic leucine zipper kinase in tumor cell and tumor microenvironment: Emerging player and promising therapeutic opportunities. Cancer Lett 2023; 560:216126. [PMID: 36933780 DOI: 10.1016/j.canlet.2023.216126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other proteins, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.
Collapse
Affiliation(s)
- Bu-Fu Tang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Ruo-Chen Yan
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Wei Wang
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China
| | - Shi-Suo Du
- Department of Radiation Oncology, Fudan University Zhongshan Hospital, Fenglin Road 188, 200030, Shanghai, China.
| |
Collapse
|
5
|
Vitale G, Caraglia M, Jung V, Kamradt J, Gentilini D, Di Martino MT, Dicitore A, Abate M, Tagliaferri P, Itro A, Ferro M, Balsamo R, De Sio M, Facchini G, Persani L, Schmitt K, Saar M, Stöckle M, Unteregger G, Zappavigna S. Molecular Characterization of Cancer Associated Fibroblasts in Prostate Cancer. Cancers (Basel) 2022; 14:2943. [PMID: 35740605 PMCID: PMC9221001 DOI: 10.3390/cancers14122943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Stromal components surrounding epithelial cancer cells seem to play a pivotal role during epithelial-to-mesenchymal transition (EMT), tumor invasion, and metastases. To identify the molecular mechanisms underlying tumor-stroma interactions may yield novel therapeutic targets for prostate cancer. METHODS Gene expression profile of prostate-cancer associated fibroblast (PCAF) and prostate non-cancer associated fibroblast (PNAF) cells isolated from radical prostatectomy was performed by Illumina, analyzed, and further processed by Ingenuity®: IPA® software. qRT-PCR was performed on an independent set of 17 PCAF, 12 PNAF, and 12 fibroblast cell lines derived from patients with benign prostatic hyperplasia (BPHF). RESULTS Using microarray analysis, we found six upregulated genes and two downregulated genes in PCAFs compared to PNAFs. To validate microarray results, we performed qRT-PCR for the most significantly regulated genes involved in the modulation of proliferation and androgen resistance on an independent set of PNAF, PCAF, and BHPF samples. We confirmed the increased expression of SCARB1, MAPK3K1, and TGF-β as well as the decreased expression of S100A10 in PCAFs compared to PNAFs and BPHFs. CONCLUSIONS These results provide strong evidence that the observed changes in the gene expression profile of PCAFs can contribute to functional alteration of adjacent prostate cancer cells.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy; (G.V.); (A.D.); (L.P.)
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano (IRCCS), Cusano Milanino, 20095 Milan, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L Vanvitelli”, 80138 Naples, Italy; (M.C.); (M.A.); (A.I.)
| | - Volker Jung
- Clinic of Urology and Pediatric Urology, University of Saarland, 66421 Homburg, Germany; (V.J.); (J.K.); (M.S.); (M.S.); (G.U.)
| | - Jörn Kamradt
- Clinic of Urology and Pediatric Urology, University of Saarland, 66421 Homburg, Germany; (V.J.); (J.K.); (M.S.); (M.S.); (G.U.)
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano (IRCCS), 20095 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.T.D.M.); (P.T.)
| | - Alessandra Dicitore
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy; (G.V.); (A.D.); (L.P.)
| | - Marianna Abate
- Department of Precision Medicine, University of Campania “L Vanvitelli”, 80138 Naples, Italy; (M.C.); (M.A.); (A.I.)
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (M.T.D.M.); (P.T.)
| | - Annalisa Itro
- Department of Precision Medicine, University of Campania “L Vanvitelli”, 80138 Naples, Italy; (M.C.); (M.A.); (A.I.)
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology-IRCCS, 20132 Milan, Italy;
| | | | - Marco De Sio
- Urology Unit, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gaetano Facchini
- UOC of Medical Oncology, ASL NA 2 Nord, “S.M. delle Grazie” Hospital, 80078 Pozzuoli, Italy;
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20133 Milan, Italy; (G.V.); (A.D.); (L.P.)
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano (IRCCS), 20095 Milan, Italy
| | - Kai Schmitt
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany;
| | - Matthias Saar
- Clinic of Urology and Pediatric Urology, University of Saarland, 66421 Homburg, Germany; (V.J.); (J.K.); (M.S.); (M.S.); (G.U.)
| | - Michael Stöckle
- Clinic of Urology and Pediatric Urology, University of Saarland, 66421 Homburg, Germany; (V.J.); (J.K.); (M.S.); (M.S.); (G.U.)
| | - Gerhard Unteregger
- Clinic of Urology and Pediatric Urology, University of Saarland, 66421 Homburg, Germany; (V.J.); (J.K.); (M.S.); (M.S.); (G.U.)
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “L Vanvitelli”, 80138 Naples, Italy; (M.C.); (M.A.); (A.I.)
| |
Collapse
|