1
|
Gomena J, Modena D, Cordella P, Vári B, Ranđelović I, Borbély A, Bottani M, Vári-Mező D, Halmos G, Juhász É, Steinkühler C, Tóvári J, Mező G. In vitro and in vivo evaluation of Bombesin-MMAE conjugates for targeted tumour therapy. Eur J Med Chem 2024; 277:116767. [PMID: 39146832 DOI: 10.1016/j.ejmech.2024.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. The upregulation of the bombesin receptor 2 (BB2) in several malignancies and the advantages offered by peptide drug conjugates over antibody drug conjugates in terms of production and tumour targeting motivated us to synthesise and test bombesin conjugates armed with the tubulin binder monomethyl auristatin E. The widely used Val-Cit-PABC was initially included as cathepsin cleavable self-immolative linker for the release of the free drug. However, the poor stability of the Val-Cit-conjugates in mouse plasma encouraged us to consider the optimised alternatives Glu-Val-Cit-PABC and Glu-Gly-Cit-PABC. Conjugate BN-EVcM1, featuring Glu-Val-Cit-PABC, combined suitable stability (t(½) in mouse and human plasma: 8.4 h and 4.6 h, respectively), antiproliferative activity in vitro (IC50 = 29.6 nM on the human prostate cancer cell line PC-3) and the full release of the free payload within 24 h. Three conjugates, namely BN-EGcM1, BN-EVcM1 and BN-EVcM2, improved the accumulation of MMAE in PC-3 human prostate cancer xenograft mice models, compared to the administration of the free drug. Among them, BN-EVcM1 also stood out for the significantly extended survival of mice in in vivo acute efficacy studies and for the significant inhibition of the growth of a PC-3 tumour in mice in both acute and chronic efficacy studies.
Collapse
Affiliation(s)
- Jacopo Gomena
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary; Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary
| | - Daniela Modena
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Paola Cordella
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Balázs Vári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; KINETO Lab Ltd., 1037, Budapest, Hungary
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, 1117, Budapest, Hungary
| | - Michela Bottani
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - Diána Vári-Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary; Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary; School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085, Budapest, Hungary
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032, Debrecen, Hungary
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Christian Steinkühler
- Italfarmaco S.p.A., Preclinical R&D Department, 20092, Cinisello Balsamo (Milan), Italy
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary
| | - Gábor Mező
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, 1117, Budapest, Hungary; HUN-REN-ELTE Research Group of Peptide Chemistry, 1117, Budapest, Hungary.
| |
Collapse
|
2
|
Aloj L, Mansi R, De Luca S, Accardo A, Tesauro D, Morelli G. Radiolabeled peptides and their expanding role in clinical imaging and targeted cancer therapy. J Pept Sci 2024; 30:e3607. [PMID: 38710638 DOI: 10.1002/psc.3607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024]
Abstract
There is an expanding body of evidence showing that synthetic peptides in combination with radioactive isotopes can be utilized for medical purposes. This area is of particular interest in oncology where applications in diagnosis and therapy are at different stages of development. We review the contributions in this area by the group originally founded by Carlo Pedone in Naples many years ago. We highlight the work of this group in the context of other developments in this area, focusing on three biologically relevant receptor systems: somatostatin, gastrin-releasing peptide, and cholecystokinin-2/gastrin receptors. We focus on key milestones, state of the art, and challenges in this area of research as well as the current and future outlook for expanding clinical applications.
Collapse
Affiliation(s)
- Luigi Aloj
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging (IBB), CNR, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Diego Tesauro
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
3
|
Bibika M, Kanellopoulos P, Rouchota M, Loudos G, Nock BA, Krenning EP, Maina T. Diagnosis of Prostate Cancer with a Neurotensin-Bombesin Radioligand Combination-First Preclinical Results. Pharmaceutics 2024; 16:1223. [PMID: 39339259 PMCID: PMC11435135 DOI: 10.3390/pharmaceutics16091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The concept of radiotheranostics relies on the overexpression of a biomolecular target on malignant cells to direct diagnostic/therapeutic radionuclide-carriers specifically to cancer lesions. The concomitant expression of more than one target in pathological lesions may be elegantly exploited to improve diagnostic sensitivity and therapeutic efficacy. Toward this goal, we explored a first example of a combined application of [99mTc]Tc-DT11 (DT11, N4-Lys(MPBA-PEG4)-Arg-Arg-Pro-Tyr-Ile-Leu-OH; NTS1R-specific) and [99mTc]Tc-DB7(DB7, N4-PEG2-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt; GRPR-specific) in prostate cancer models. Methods: Accordingly, the behavior of [99mTc]Tc-DT11 was compared with that of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture in prostate adenocarcinoma PC-3 cells and xenografts in mice. The impact of stabilizing both radiotracers by Entresto®, as a source of the potent neprilysin inhibitor sacubitrilat, was also investigated. Results: The PC-3 cell binding of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture surpassed that of [99mTc]Tc-DT11. Likewise, the PC-3 tumor uptake of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture at 4 h post-injection was superior (7.70 ± 0.89%IA/g) compared with [99mTc]Tc-DT11 (4.23 ± 0.58%IA/g; p < 0.0001). Treatment with Entresto® led to further enhancement of the tumor uptake (to 11.57 ± 1.92%IA/g; p < 0.0001). Conclusions: In conclusion, this first preclinical study on prostate cancer models revealed clear advantages of dual NTS1R/GRPR targeting, justifying further assessment of this promising concept in other cancer models.
Collapse
Affiliation(s)
- Maria Bibika
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| | | | - Maritina Rouchota
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - George Loudos
- BIOEMTECH, Lefkippos Attica Technology Park NCSR "Demokritos", 15310 Athens, Greece
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| | - Eric P Krenning
- Cyclotron Rotterdam BV, Erasmus MC, 3015 CE Rotterdam, The Netherlands
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341 Athens, Greece
| |
Collapse
|
4
|
Zou Y, Huang M, Hu M, Wang H, Chen W, Tian R. Radiopharmaceuticals Targeting Gastrin-Releasing Peptide Receptor for Diagnosis and Therapy of Prostate Cancer. Mol Pharm 2024; 21:4199-4216. [PMID: 39219355 DOI: 10.1021/acs.molpharmaceut.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The high incidence and heavy disease burden of prostate cancer (PC) require accurate and comprehensive assessment for appropriate disease management. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) cannot detect PSMA-negative lesions, despite its key role in PC disease management. The overexpression of gastrin-releasing peptide receptor (GRPR) in PC lesions reportedly performs as a complementary target for the diagnosis and therapy of PC. Radiopharmaceuticals derived from the natural ligands of GRPR have been developed. These radiopharmaceuticals enable the visualization and quantification of GRPR within the body, which can be used for disease assessment and therapeutic guidance. Recently developed radiopharmaceuticals exhibit improved pharmacokinetic parameters without deterioration in affinity. Several heterodimers targeting GRPR have been constructed as alternatives because of their potential to detect tumor lesions with a low diagnostic efficiency of single target detection. Moreover, some GRPR-targeted radiopharmaceuticals have entered clinical trials for the initial staging or biochemical recurrence detection of PC to guide disease stratification and therapy, indicating considerable potential in PC disease management. Herein, we comprehensively summarize the progress of radiopharmaceuticals targeting GRPR. In particular, we discuss the impact of ligands, chelators, and linkers on the distribution of radiopharmaceuticals. Furthermore, we summarize a potential design scheme to facilitate the advancement of radiopharmaceuticals and, thus, prompt clinical translation.
Collapse
Affiliation(s)
- Yuheng Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mingxing Hu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Nagy Á, Abouzayed A, Kanellopoulos P, Landmark F, Bezverkhniaia E, Tolmachev V, Orlova A, Eriksson Karlström A. Evaluation of ABD-Linked RM26 Conjugates for GRPR-Targeted Drug Delivery. ACS OMEGA 2024; 9:36122-36133. [PMID: 39220525 PMCID: PMC11359615 DOI: 10.1021/acsomega.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Targeting the gastrin-releasing peptide receptor (GRPR) with the bombesin analogue RM26, a 9 aa peptide, has been a promising strategy for cancer theranostics, with recent success in radionuclide imaging of prostate cancer. However, therapeutic application of the short peptide RM26 would require a longer half-life to prevent fast clearance from the circulation. Conjugation to an albumin-binding domain (ABD) is a viable strategy to extend the in vivo half-life of peptides and proteins. We previously reported an ABD-fused RM26 peptide targeting GRPR (ABD-RM26 Gen 1) that showed prolonged and stable tumor uptake over 144 h; however, the observed high kidney uptake indicated that the conjugate's binding to albumin was reduced and that this could be an obstacle for its use as a delivery system for targeted therapy, especially for radiotherapy. Here, we have designed, produced, and preclinically evaluated a series of novel ABD-RM26 conjugates with the aim of improving the conjugate's binding to albumin and decreasing the kidney uptake. We developed three second-generation constructs with varying formats, differing in the relative positions of the targeting moieties and the radionuclide chelator. The produced conjugates were radiolabeled with indium-111 and evaluated in vitro and in vivo. All constructs displayed improved biophysical characteristics, biodistribution, and lower kidney uptake compared to previously reported first-generation molecules. The ABD-RM26 Gen 2A conjugate showed the best biodistribution profile with a nearly 6-fold reduction in kidney uptake. However, the ABD-RM26 Gen 2A conjugate's binding to GRPR was compromised. This conjugate's assembly of albumin- and GRPR-binding moieties might be used for further development of drug conjugates for targeted therapy/radiotherapy of GRPR-expressing cancers.
Collapse
Affiliation(s)
- Ábel Nagy
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
| | | | - Fredrika Landmark
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Ekaterina Bezverkhniaia
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
- Research
Centrum for Oncotheranostics, Research School of Chemistry and Applied
Biomedical Sciences, Tomsk Polytechnic University, 634009 Tomsk, Russia
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and Pathology, Uppsala
University, 752 37 Uppsala, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, 752 37 Uppsala, Sweden
- Science for
Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Amelie Eriksson Karlström
- Department
of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Dalm S, Duan H, Iagaru A. Gastrin Releasing Peptide Receptors-targeted PET Diagnostics and Radionuclide Therapy for Prostate Cancer Management: Preclinical and Clinical Developments of the Past 5 Years. PET Clin 2024; 19:401-415. [PMID: 38644111 DOI: 10.1016/j.cpet.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Each tumor has its own distinctive molecular identity. Treatment, therefore, should be tailored to this unique cancer phenotype. Theragnostics uses the same compound for targeted imaging and treatment, radiolabeled to an appropriate radionuclide, respectively. Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer, and radiolabeled GRPR antagonists have shown high diagnostic performance at staging and biochemical recurrence. Several GRPR-targeting theragnostic compounds have been developed preclinically. Their translation into clinics is underway with 4 clinical trials recruiting participants with GRPR-expressing tumors.
Collapse
Affiliation(s)
- Simone Dalm
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Heying Duan
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, 300 Pasteur Drive, H2200, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Lawal IO, Abubakar SO, Ndlovu H, Mokoala KMG, More SS, Sathekge MM. Advances in Radioligand Theranostics in Oncology. Mol Diagn Ther 2024; 28:265-289. [PMID: 38555542 DOI: 10.1007/s40291-024-00702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Theranostics with radioligands (radiotheranostics) has played a pivotal role in oncology. Radiotheranostics explores the molecular targets expressed on tumor cells to target them for imaging and therapy. In this way, radiotheranostics entails non-invasive demonstration of the in vivo expression of a molecular target of interest through imaging followed by the administration of therapeutic radioligand targeting the tumor-expressed molecular target. Therefore, radiotheranostics ensures that only patients with a high likelihood of response are treated with a particular radiotheranostic agent, ensuring the delivery of personalized care to cancer patients. Within the last decades, a couple of radiotheranostics agents, including Lutetium-177 DOTATATE (177Lu-DOTATATE) and Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA), were shown to prolong the survival of cancer patients compared to the current standard of care leading to the regulatory approval of these agents for routine use in oncology care. This recent string of successful approvals has broadened the interest in the development of different radiotheranostic agents and their investigation for clinical translation. In this work, we present an updated appraisal of the literature, reviewing the recent advances in the use of established radiotheranostic agents such as radioiodine for differentiated thyroid carcinoma and Iodine-131-labeled meta-iodobenzylguanidine therapy of tumors of the sympathoadrenal axis as well as the recently approved 177Lu-DOTATATE and 177Lu-PSMA for differentiated neuroendocrine tumors and advanced prostate cancer, respectively. We also discuss the radiotheranostic agents that have been comprehensively characterized in preclinical studies and have shown some clinical evidence supporting their safety and efficacy, especially those targeting fibroblast activation protein (FAP) and chemokine receptor 4 (CXCR4) and those still being investigated in preclinical studies such as those targeting poly (ADP-ribose) polymerase (PARP) and epidermal growth factor receptor 2.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.
| | - Sofiullah O Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Stuart S More
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| |
Collapse
|
8
|
Kanellopoulos P, Bezverkhniaia E, Abouzayed A, Rosenström U, Tolmachev V, Orlova A. Two Novel [ 68Ga]Ga-Labeled Radiotracers Based on Metabolically Stable [Sar 11]RM26 Antagonistic Peptide for Diagnostic Positron Emission Tomography Imaging of GRPR-Positive Prostate Cancer. ACS OMEGA 2024; 9:18608-18616. [PMID: 38680331 PMCID: PMC11044165 DOI: 10.1021/acsomega.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Gastrin releasing peptide receptor (GRPR) is overexpressed in prostate cancer (PC-3) and can be used for diagnostic purposes. We herein present the design and preclinical evaluation of two novel NOTA/NODAGA-containing peptides suitable for labeling with the positron emission tomography (PET) radionuclide Ga-68. These analogs are based on the previously reported GRPR-antagonist DOTAGA-PEG2-[Sar11]RM26, developed for targeted radiotheraostic applications. Both NOTA-PEG2-[Sar11]RM26 and NODAGA-PEG2-[Sar11]RM26 were successfully labeled with Ga-68 and evaluated in vitro and in vivo using PC-3 cell models. Both, [68Ga]Ga-NOTA-PEG2-[Sar11]RM26 and [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 displayed high metal-chelate stability in phosphate buffered saline and against the EDTA-challenge. The two [68Ga]Ga-labeled conjugates demonstrated highly GRPR-mediated uptake in vitro and in vivo and exhibited a slow internalization over time, typical for radioantagonistis. The [natGa]Ga-loaded peptides displayed affinity in the low nanomole range for GRPR in competition binding experiments. The new radiotracers demonstrated biodistribution profiles suitable for diagnostic imaging shortly after administration with fast background clearance. Their high tumor uptake (13 ± 1 and 15 ± 3% IA/g for NOTA and NODAGA conjugates, respectively) and high tumor-to-blood ratios (60 ± 10 and 220 ± 70, respectively) 3 h pi renders them promising PET tracers for use in patients. Tumor-to-normal organ ratios were higher for [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 than for the NOTA-containing counterpart. The performance of the two radiopeptides was further supported with the PET/CT images. In conclusion, [68Ga]Ga-NODAGA-PEG2-[Sar11]RM26 is a promising PET imaging tracer for visualization of GRPR-expressing lesions with high imaging contrast shortly after administration.
Collapse
Affiliation(s)
| | | | - Ayman Abouzayed
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Ulrika Rosenström
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Vladimir Tolmachev
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala 752 37, Sweden
| | - Anna Orlova
- Department
of Medicinal Chemistry, Uppsala University, Uppsala 751 23, Sweden
- Science
for Life Laboratory, Uppsala University, Uppsala 752 37, Sweden
| |
Collapse
|
9
|
Obeid K, Kanellopoulos P, Abouzayed A, Mattsson A, Tolmachev V, Nock BA, Maina T, Orlova A. GRPR-Antagonists Carrying DOTAGA-Chelator via Positively Charged Linkers: Perspectives for Prostate Cancer Theranostics. Pharmaceutics 2024; 16:513. [PMID: 38675174 PMCID: PMC11054746 DOI: 10.3390/pharmaceutics16040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Gastrin-releasing peptide receptor (GRPR)-antagonists have served as motifs in the development of theranostic radioligands for prostate cancer. Our efforts have been focused on the development of radiolabeled RM26 (H-DPhe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) analogs, such as [111In]In-DOTAGA-PEG2-RM26. We recently showed that its Gly11/Sar11-substituted version, [111In]In-AU-RM26-M1, resisted degradation by neprilysin (NEP) while in circulation and achieved higher tumor uptake in mice. We herein introduce the following three new AU-RM26-M1 mimics labeled with In-111, with basic residues in the linker: (i) AU-RM26-M2 (PEG2-Pip), (ii) AU-RM26-M3 (PEG2-Arg), and (iii) AU-RM26-M4 (Arg-Arg-Pip). These analogs were compared in PC-3 cells and animal models vs. AU-RM26-M1 (reference). The new analogs showed high affinity and specificity for the GRPR, exhibiting an uptake and distribution pattern in PC-3 cells typical for a radiolabeled GRPR-antagonist. They showed high stability in peripheral mice blood, except for [111In]In-AU-RM26-M3. AU-RM26-M4 achieved the highest tumor uptake and promising background clearance, followed by [111In]In-RM26-M2, showing lower background levels. These findings were confirmed for [111In]In-AU-RM26-M2 and [111In]In-AU-RM26-M4 by micro-SPECT/CT at 4 and 24 h post-injection. Hence, the type of positively charged residues in the linker of AU-RM26-M1 mimics strongly influenced biological behavior. The analogs with Pip next to DPhe6 demonstrated the best overall characteristics and warrant further investigation.
Collapse
Affiliation(s)
- Karim Obeid
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (K.O.); (P.K.); (A.A.); (A.M.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (K.O.); (P.K.); (A.A.); (A.M.)
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (B.A.N.); (T.M.)
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (K.O.); (P.K.); (A.A.); (A.M.)
| | - Adam Mattsson
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (K.O.); (P.K.); (A.A.); (A.M.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden;
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (B.A.N.); (T.M.)
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15341 Athens, Greece; (B.A.N.); (T.M.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (K.O.); (P.K.); (A.A.); (A.M.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
10
|
Chambers C, Chitwood B, Smith CJ, Miao Y. Elevating theranostics: The emergence and promise of radiopharmaceutical cell-targeting heterodimers in human cancers. IRADIOLOGY 2024; 2:128-155. [PMID: 38708130 PMCID: PMC11067702 DOI: 10.1002/ird3.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 05/07/2024]
Abstract
Optimal therapeutic and diagnostic efficacy is essential for healthcare's global mission of advancing oncologic drug development. Accurate diagnosis and detection are crucial prerequisites for effective risk stratification and personalized patient care in clinical oncology. A paradigm shift is emerging with the promise of multi-receptor-targeting compounds. While existing detection and staging methods have demonstrated some success, the traditional approach of monotherapy is being reevaluated to enhance therapeutic effectiveness. Heterodimeric site-specific agents are a versatile solution by targeting two distinct biomarkers with a single theranostic agent. This review describes the innovation of dual-targeting compounds, examining their design strategies, therapeutic implications, and the promising path they present for addressing complex diseases.
Collapse
Affiliation(s)
- Claudia Chambers
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Broc Chitwood
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
| | - Charles J. Smith
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
11
|
Baun C, Naghavi-Behzad M, Hildebrandt MG, Gerke O, Thisgaard H. Gastrin-releasing peptide receptor as a theranostic target in breast cancer: a systematic scoping review. Semin Nucl Med 2024; 54:256-269. [PMID: 38342656 DOI: 10.1053/j.semnuclmed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in breast cancer, making it a promising target for both imaging and therapy within a theranostic framework. Various radioligands targeting GRPR have undergone investigation in preclinical and clinical studies related to breast cancer. This systematic scoping review aimed to assess the current evidence on GRPR-targeted radioligands for diagnostic and therapeutic applications in breast cancer. The methodology followed the PRISMA-ScR protocol. The literature search was conducted in September 2023 and encompassed MEDLINE, Embase, Cochrane, and Scopus databases. We included original peer-reviewed studies focused on breast cancer patients or in vivo breast cancer models. Two reviewers performed the study selection process independently. Data were extracted, synthesized, and categorized into preclinical and clinical studies, further subdivided based on radioligand properties. A total of 35 original studies were included in the review, with three of them evaluating therapeutic outcomes. The results indicated that GRPR-radioantagonists are superior to GRPR-agonists, exhibiting preferable in vivo stability, rapid, specific tumor targeting, and enhanced retention. Both preclinical and clinical evaluations demonstrated renal excretion and high uptake in normal GRPR-expressing tissue, primarily the pancreas. A significant positive correlation was observed between GRPR and estrogen-receptor expression. In the clinical setting, GRPR-radioligands effectively detected primary tumors and, to a lesser extent, lymph node metastases. Moreover, GRPR-targeted radioantagonists successfully identified distant metastases originating from various sites in advanced metastatic disease, strongly correlated with positive estrogen receptor expression. Preclinical therapeutic evaluation of GRPR-radioligands labeled with lutetium-177 showed promising tumor responses, and none of the studies reported any observed or measured side effects, indicating a safe profile. In conclusion, the evidence presented in this review indicates a preference for GRPR-targeted antagonists over agonists, owing to their superior kinetics and promising diagnostic potential. Clinical assessments suggested diagnostic value for GRPR-targeted theranostics in breast cancer patients, particularly those with high estrogen receptor expression. Nevertheless, in the therapeutic clinical context, paying attention to the radiation dose administered to the pancreas and kidneys is crucial.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mohammad Naghavi-Behzad
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Kanellopoulos P, Mattsson A, Abouzayed A, Obeid K, Nock BA, Tolmachev V, Maina T, Orlova A. Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology. EJNMMI Radiopharm Chem 2024; 9:13. [PMID: 38366299 PMCID: PMC10873254 DOI: 10.1186/s41181-024-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1). RESULTS These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ. CONCLUSIONS These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Adam Mattsson
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Karim Obeid
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75183, Uppsala, Sweden
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
13
|
Ma Y, Gao F. Advances of radiolabeled GRPR ligands for PET/CT imaging of cancers. Cancer Imaging 2024; 24:19. [PMID: 38279185 PMCID: PMC10811881 DOI: 10.1186/s40644-024-00658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
GRPR is a type of seven-transmembrane G-protein coupled receptor that belongs to the bombesin protein receptor family. It is highly expressed in various cancers, including prostate cancer, breast cancer, lung cancer, gastrointestinal cancer, and so on. As a result, molecular imaging studies have been conducted using radiolabeled GRPR ligands for tumor diagnosis, as well as monitoring of recurrence and metastasis. In this paper, we provided a comprehensive overview of relevant literature from the past two decades, with a specific focus on the advancements made in radiolabeled GRPR ligands for imaging prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Yuze Ma
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Feng Gao
- Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
14
|
Zhang T, Lei H, Chen X, Dou Z, Yu B, Su W, Wang W, Jin X, Katsube T, Wang B, Zhang H, Li Q, Di C. Carrier systems of radiopharmaceuticals and the application in cancer therapy. Cell Death Discov 2024; 10:16. [PMID: 38195680 PMCID: PMC10776600 DOI: 10.1038/s41420-023-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Radiopharmaceuticals play a vital role in cancer therapy. The carrier of radiopharmaceuticals can precisely locate and guide radionuclides to the target, where radionuclides kill surrounding tumor cells. Effective application of radiopharmaceuticals depends on the selection of an appropriate carrier. Herein, different types of carriers of radiopharmaceuticals and the characteristics are briefly described. Subsequently, we review radiolabeled monoclonal antibodies (mAbs) and their derivatives, and novel strategies of radiolabeled mAbs and their derivatives in the treatment of lymphoma and colorectal cancer. Furthermore, this review outlines radiolabeled peptides, and novel strategies of radiolabeled peptides in the treatment of neuroendocrine neoplasms, prostate cancer, and gliomas. The emphasis is given to heterodimers, bicyclic peptides, and peptide-modified nanoparticles. Last, the latest developments and applications of radiolabeled nucleic acids and small molecules in cancer therapy are discussed. Thus, this review will contribute to a better understanding of the carrier of radiopharmaceuticals and the application in cancer therapy.
Collapse
Affiliation(s)
- Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Boyi Yu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730000, China
| | - Xiaodong Jin
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
15
|
Beloborodov E, Iurova E, Sugak D, Rastorgueva E, Pogodina E, Fomin A, Viktorov D, Slesarev S, Saenko Y. Stabilizing Scaffold for Short Peptides Based on Knottins. Curr Cancer Drug Targets 2024; 24:1275-1285. [PMID: 38357956 DOI: 10.2174/0115680096285288240118090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Bombesin (BBN) is a short peptide with a high affinity for receptors that are expressed on the surface of various types of cancer cells. However, a full length BBN molecule has low in vivo stability. OBJECTIVE In our study, we propose the use of peptide toxins, derived from animal and plant toxins, as scaffold molecules to enhance the bioavailability and stability of bombesin. These peptides possess a unique structure known as an inhibitory cystine knot. METHODS We synthesized structures in which short bombesin was incorporated into various domains of arthropod and plant toxins using solid-phase peptide synthesis. The stability under different conditions was assessed through high-performance liquid chromatography, and binding to cell cultures expressing the bombesin receptor was analyzed. Additionally, toxicity to cell cultures was evaluated using fluorescence microscopy. RESULTS The data obtained demonstrated that placing the short peptide between the first and second cysteine residues in arachnid toxins results in increased in vitro stability and bioavailability, as well as low cytotoxicity. CONCLUSION Arachnid toxins with an inhibitory cystine knot can be considered as a scaffold for increasing the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Evgenii Beloborodov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Elena Iurova
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Dmitrii Sugak
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Eugenia Rastorgueva
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
- Department of General and Clinical Pharmacology and Microbiology, Faculty of Medicine, Ulyanovsk State University, Ulyanovsk, Russia
| | - Evgeniya Pogodina
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Aleksandr Fomin
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Denis Viktorov
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| | - Sergei Slesarev
- Department of Biology, Ecology and Natural Resources Management, Faculty of Ecology, Ulyanovsk State University, Ulyanovsk, Russia
| | - Yury Saenko
- Laboratory of Research and Development of Peptide Drugs and Vaccines, S.P. Kapitsa Technological Research Institute, Ulyanovsk State University, Ulyanovsk, Russia
| |
Collapse
|
16
|
D’Onofrio A, Engelbrecht S, Läppchen T, Rominger A, Gourni E. GRPR-targeting radiotheranostics for breast cancer management. Front Med (Lausanne) 2023; 10:1250799. [PMID: 38020178 PMCID: PMC10657217 DOI: 10.3389/fmed.2023.1250799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Breast Cancer (BC) is the most common cancer worldwide and, despite the advancements made toward early diagnosis and novel treatments, there is an urgent need to reduce its mortality. The Gastrin-Releasing Peptide Receptor (GRPR) is a promising target for the development of theranostic radioligands for luminal BC with positive estrogen receptor (ER) expression, because GRPR is expressed not only in primary lesions but also in lymph nodes and distant metastasis. In the last decades, several GRPR-targeting molecules have been evaluated both at preclinical and clinical level, however, most of the studies have been focused on prostate cancer (PC). Nonetheless, given the relevance of non-invasive diagnosis and potential treatment of BC through Peptide Receptor Radioligand Therapy (PRRT), this review aims at collecting the available preclinical and clinical data on GRPR-targeting radiopeptides for the imaging and therapy of BC, to better understand the current state-of-the-art and identify future perspectives and possible limitations to their clinical translation. In fact, since luminal-like tumors account for approximately 80% of all BC, many BC patients are likely to benefit from the development of GRPR-radiotheranostics.
Collapse
Affiliation(s)
| | | | | | | | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
18
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
19
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
20
|
Yang YQ, Sun RF, Ge P, Li WX, Zhang X, Zhang J, Ye L, Zhang N, Wang SY, Lv MQ, Zhou DX. GRPR down-regulation inhibits spermatogenesis through Ca 2+ mediated by PLCβ/IP3R signaling pathway in long-term formaldehyde-exposed rats. Food Chem Toxicol 2023; 179:113998. [PMID: 37604300 DOI: 10.1016/j.fct.2023.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Formaldehyde (FA), which is known as an air pollutant, has been proven to induce male infertility. However, the underlying mechanism of FA-induced male infertility remains elusive. In this study, 24 male SD rats were exposed to different levels of FA (0, 0.5, 2.46, and 5 mg/m3) for eight consecutive weeks. Through HE staining and sperm smear, we observed that FA exposure resulted in spermatogenic injury and the sperm quality decreased in rats. The qRT-PCR and Western blot analysis further revealed that GRPR was down-regulated in testicular tissues of FA-exposed rats as well as primary spermatogenic cells. Meanwhile, ZDOCK uncovered an interaction between GRPR and PLCβ. In addition, the CCK8, Fluo 3-AM and Flow cytometry results showed that FA exposure suppressed the expression of GRPR, PLCβ and IP3R, consequently reducing the Ca2+ concentration in spermatogenic cells, inducing apoptosis and inhibiting proliferation of spermatogenic cells. Moreover, rescue experiments confirmed that promoting GRPR could improve intracellular Ca2+ concentration by upregulating PLCβ and IP3R, partially reducing the apoptosis and promoting the proliferation of FA-treated spermatogenic cells. These findings revealed that GRPR participates in spermatogenesis through Ca2+ mediated by the PLCβ/IP3R signaling pathway in FA-exposed rats.
Collapse
Affiliation(s)
- Yan-Qi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Pan Ge
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Wen-Xing Li
- Department of SURGICAL Oncology, Xi'an Jiaotong University Medical College First Affiliated Hospital, 277 West Yanta Road, Shaanxi, 710061, China
| | - Xiang Zhang
- Department of Electrocardiographic Diagnosis, Xi'an Children's Hospital, Xi'an, 710003, China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Lu Ye
- Medical School, Xi'an Jiaotong University, Shaanxi, 710061, China; Xi'an Fourth Hospital, Shaanxi, 710061, China
| | - Nan Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Si-Yu Wang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China
| | - Mo-Qi Lv
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China.
| | - Dang-Xia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Shaanxi, 710061, China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Shaanxi, 710061, China.
| |
Collapse
|
21
|
Vorster M, Hadebe BP, Sathekge MM. Theranostics in breast cancer. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1236565. [PMID: 39355052 PMCID: PMC11440857 DOI: 10.3389/fnume.2023.1236565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2024]
Abstract
Introduction Breast cancer is a complex disease and constitutes the leading cause of cancer in women globally. Conventional treatment modalities include surgery, chemotherapy, radiation therapy, and hormonal therapy; all of these have their limitations and often result in significant side effects or toxicity. Targeted radionuclide therapy based on a theranostic approach has been successfully applied in several malignancies, such as prostate cancer, thyroid cancer, and neuro-endocrine tumours. Several studies have also highlighted the potential of theranostic applications in breast cancer. Aim This review aims to provide an overview of the most promising current and future theranostic approaches in breast cancer. Discussion The discussion includes pre-clinical as well as clinical data on some of the most successful targets used to date. Examples of potential theranostic approaches include those targeting the Human epidermal growth factor receptor 2 (HER2) expression, angiogenesis, aspects of the tumour microenvironment, Gastrin-releasing peptide receptor (GRPR), Prostate-specific membrane antigen (PSMA) and Chemokine receptor 4 (CXCR-4) expression. Several challenges to widespread clinical implementation remain, which include regulatory approval, access to the various radiopharmaceuticals and imaging technology, cost-effectiveness, and the absence of robust clinical data. Conclusion Theranostic approaches have the potential to greatly improve diagnosis, treatment, and outcomes for patients with breast cancer. More research is needed to fully explore the potential of such approaches and to identify the best potential targets, considering feasibility, costs, efficacy, side effects and outcomes.
Collapse
Affiliation(s)
- M. Vorster
- Department of Nuclear Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - B. P. Hadebe
- Department of Nuclear Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - M. M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
22
|
Abouzayed A, Kanellopoulos P, Gorislav A, Tolmachev V, Maina T, Nock BA, Orlova A. Preclinical Characterization of a Stabilized Gastrin-Releasing Peptide Receptor Antagonist for Targeted Cancer Theranostics. Biomolecules 2023; 13:1134. [PMID: 37509170 PMCID: PMC10377574 DOI: 10.3390/biom13071134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Radiolabeled gastrin-releasing peptide receptor (GRPR) antagonists have shown great promise for the theranostics of prostate cancer; however, their suboptimal metabolic stability leaves room for improvements. It was recently shown that the replacement of Gly11 with Sar11 in the peptidic [D-Phe6,Leu13-NHEt,des-Met14]BBN(6-14) chain stabilized the [99mTc]Tc-DB15 radiotracer against neprilysin (NEP). We herein present DOTAGA-PEG2-(Sar11)RM26 (AU-RM26-M1), after Gly11 to Sar11-replacement. The impact of this replacement on the metabolic stability and overall biological performance of [111In]In-AU-RM26-M1 was studied using a head-to-head comparison with the unmodified reference [111In]In-DOTAGA-PEG2-RM26. In vitro, the cell uptake of [111In]In-AU-RM26-M1 could be significantly reduced in the presence of a high-excess GRPR-blocker that demonstrated its specificity. The cell uptake of both radiolabeled GRPR antagonists increased with time and was superior for [111In]In-AU-RM26-M1. The dissociation constant reflected strong affinities for GRPR (500 pM for [111In]In-AU-RM26-M1). [111In]In-AU-RM26-M1 showed significantly higher stability in peripheral mice blood at 5 min pi (88 ± 8% intact) than unmodified [111In]In-DOTAGA-PEG2-RM26 (69 ± 2% intact; p < 0.0001). The administration of a NEP inhibitor had no significant impact on the Sar11-compound (91 ± 2% intact; p > 0.05). In vivo, [111In]In-AU-RM26-M1 showed high and GRPR-mediated uptake in the PC-3 tumors (7.0 ± 0.7%IA/g vs. 0.9 ± 0.6%IA/g in blocked mice) and pancreas (2.2 ± 0.6%IA/g vs. 0.3 ± 0.2%IA/g in blocked mice) at 1 h pi, with rapid clearance from healthy tissues. The tumor uptake of [111In]In-AU-RM26-M1 was higher than for [111In]In-DOTAGA-PEG2-RM26 (at 4 h pi, 5.7 ± 1.8%IA/g vs. 3 ± 1%IA/g), concordant with its higher stability. The implanted PC-3 tumors were visualized with high contrast in mice using [111In]In-AU-RM26-M1 SPECT/CT. The Gly11 to Sar11-substitution stabilized [111In]In-DOTAGA-PEG2-(Sar11)RM26 against NEP without negatively affecting other important biological features. These results support the further evaluation of AU-RM26-M1 for prostate cancer theranostics after labeling with clinically relevant radionuclides.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Alisa Gorislav
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
23
|
Burkett BJ, Bartlett DJ, McGarrah PW, Lewis AR, Johnson DR, Berberoğlu K, Pandey MK, Packard AT, Halfdanarson TR, Hruska CB, Johnson GB, Kendi AT. A Review of Theranostics: Perspectives on Emerging Approaches and Clinical Advancements. Radiol Imaging Cancer 2023; 5:e220157. [PMID: 37477566 PMCID: PMC10413300 DOI: 10.1148/rycan.220157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Theranostics is the combination of two approaches-diagnostics and therapeutics-applied for decades in cancer imaging using radiopharmaceuticals or paired radiopharmaceuticals to image and selectively treat various cancers. The clinical use of theranostics has increased in recent years, with U.S. Food and Drug Administration (FDA) approval of lutetium 177 (177Lu) tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) and 177Lu-prostate-specific membrane antigen vector-based radionuclide therapies. The field of theranostics has imminent potential for emerging clinical applications. This article reviews critical areas of active clinical advancement in theranostics, including forthcoming clinical trials advancing FDA-approved and emerging radiopharmaceuticals, approaches to dosimetry calculations, imaging of different radionuclide therapies, expanded indications for currently used theranostic agents to treat a broader array of cancers, and emerging ideas in the field. Keywords: Molecular Imaging, Molecular Imaging-Cancer, Molecular Imaging-Clinical Translation, Molecular Imaging-Target Development, PET/CT, SPECT/CT, Radionuclide Therapy, Dosimetry, Oncology, Radiobiology © RSNA, 2023.
Collapse
Affiliation(s)
- Brian J. Burkett
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - David J. Bartlett
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Patrick W. McGarrah
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Akeem R. Lewis
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Derek R. Johnson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Kezban Berberoğlu
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Mukesh K. Pandey
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Annie T. Packard
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Thorvardur R. Halfdanarson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Carrie B. Hruska
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - Geoffrey B. Johnson
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| | - A. Tuba Kendi
- From the Department of Radiology (B.J.B., D.J.B., D.R.J., M.K.P.,
A.T.P., C.B.H., G.B.J., A.T.K.) and Division of Medical Oncology (P.W.M.,
A.R.L., T.R.H.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and
Department of Nuclear Medicine, Anadolu Medical Center, Gebze/Kocaeli, Turkey
(K.B.)
| |
Collapse
|
24
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
25
|
Bailly T, Bodin S, Goncalves V, Denat F, Morgat C, Prignon A, Valverde IE. Modular One-Pot Strategy for the Synthesis of Heterobivalent Tracers. ACS Med Chem Lett 2023; 14:636-644. [PMID: 37197474 PMCID: PMC10184157 DOI: 10.1021/acsmedchemlett.3c00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023] Open
Abstract
Bivalent ligands, i.e., molecules having two ligands covalently connected by a linker, have been gathering attention since the first description of their pharmacological potential in the early 80s. However, their synthesis, particularly of labeled heterobivalent ligands, can still be cumbersome and time-consuming. We herein report a straightforward procedure for the modular synthesis of labeled heterobivalent ligands (HBLs) using dual reactive 3,6-dichloro-1,2,4,5-tetrazine as a starting material and suitable partners for sequential SNAr and inverse electron-demand Diels-Alder (IEDDA) reactions. This assembly method conducted in a stepwise or in a sequential one-pot manner provides quick access to multiple HBLs. A conjugate combining ligands toward the prostate-specific membrane antigen (PSMA) and the gastrin-releasing peptide receptor (GRPR) was radiolabeled, and its biological activity was assessed in vitro and in vivo (receptor binding affinity, biodistribution, imaging) as an illustration that the assembly methodology preserves the tumor targeting properties of the ligands.
Collapse
Affiliation(s)
- Thibaud Bailly
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne, 21000 Dijon, France
| | - Sacha Bodin
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Victor Goncalves
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne, 21000 Dijon, France
| | - Franck Denat
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne, 21000 Dijon, France
| | - Clément Morgat
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Nuclear
Medicine Department, University Hospital
of Bordeaux, Bordeaux F-33000, France
| | - Aurélie Prignon
- UMS28
Laboratoire d’Imagerie Moléculaire Positonique (LIMP), Sorbonne Université, Paris 75020, France
| | - Ibai E. Valverde
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne, 21000 Dijon, France
- Mailing
Address: Ibai E. Valverde,
Institut de Chimie Moléculaire de L’Université
de Bourgogne, UMR 6302, Univ. Bourgogne Franche-Comté, 9, Avenue
Alain Savary, 21078 Dijon Cedex, France; , Phone: +33 380 39 90 48
| |
Collapse
|
26
|
Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel) 2023; 16:ph16050674. [PMID: 37242457 DOI: 10.3390/ph16050674] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
27
|
Verhoeven M, Handula M, van den Brink L, de Ridder CMA, Stuurman DC, Seimbille Y, Dalm SU. Pre- and Intraoperative Visualization of GRPR-Expressing Solid Tumors: Preclinical Profiling of Novel Dual-Modality Probes for Nuclear and Fluorescence Imaging. Cancers (Basel) 2023; 15:cancers15072161. [PMID: 37046825 PMCID: PMC10093582 DOI: 10.3390/cancers15072161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Image-guided surgery using a gastrin-releasing peptide receptor (GRPR)-targeting dual-modality probe could improve the accuracy of the resection of various solid tumors. The aim of this study was to further characterize our four previously developed GRPR-targeting dual-modality probes that vary in linker structures and were labeled with indium-111 and sulfo-cyanine 5. Cell uptake studies with GRPR-positive PC-3 cells and GRPR-negative NCI-H69 cells confirmed receptor specificity. Imaging and biodistribution studies at 4 and 24 h with 20 MBq/1 nmol [111In]In-12-15 were performed in nude mice bearing a PC-3 and NCI-H69 xenograft, and showed that the probe with only a pADA linker in the backbone had the highest tumor-to-organ ratios (T/O) at 24 h after injection (T/O > 5 for, e.g., prostate, muscle and blood). For this probe, a dose optimization study with three doses (0.75, 1.25 and 1.75 nmol; 20 MBq) revealed that the maximum image contrast was achieved with the lowest dose. Subsequently, the probe was successfully used for tumor excision in a simulated image-guided surgery setting. Moreover, it demonstrated binding to tissue sections of human prostate, breast and gastro-intestinal stromal tumors. In summary, our findings demonstrate that the developed dual-modality probe has the potential to aid in the complete surgical removal of GRPR-positive tumors.
Collapse
Affiliation(s)
- Marjolein Verhoeven
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Maryana Handula
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Lilian van den Brink
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Corrina M. A. de Ridder
- Department of Experimental Urology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Debra C. Stuurman
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Life Sciences Division, TRIUMF, Vancouver, BC V6T 2A3, Canada
| | - Simone U. Dalm
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
28
|
[ 99mTc]Tc-HYNIC-RM2: A potential SPECT probe targeting GRPR expression in prostate cancers. Nucl Med Biol 2023; 118-119:108331. [PMID: 36933456 DOI: 10.1016/j.nucmedbio.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Elevated density of gastrin releasing peptide receptors (GRPR) in prostate cancer has led to exploration of several radiolabeled peptides for imaging and staging of the disease. The GRPR antagonist peptide RM2 has been successfully conjugated with several chelators and radiolabeled with gallium-68. The goal of this study was to synthesize a 99mTc-labeled probe and investigate its potential for SPECT imaging of prostate cancer. Towards this HYNIC-RM2 peptide conjugate was synthesized, radiolabeled with 99mTc and evaluated in GRPR-positive PC3 tumor xenografts. METHODS HYNIC-RM2 was manually synthesized by standard Fmoc solid phase strategy and radiolabeled with 99mTc. In vitro cell studies were performed in GRPR-positive human prostate carcinoma (PC3) cells. Metabolic stability studies of [99mTc]Tc-HYNIC-RM2 were performed in normal mice in the presence as well as absence of neutral endopeptidase (NEP) inhibitor, phosphoramidon (PA). Biodistribution and imaging studies of [99mTc]Tc-HYNIC-RM2 were performed in SCID mice bearing PC3-xenograft. RESULTS [99mTc]Tc-HYNIC-RM2 exhibited high binding affinity in low nanomolar range (Kd = 1.83 ± 0.31 nM). Metabolic stability studies in mice indicated that in the absence of PA, radiolabeled peptide was about 65 % intact in the blood at 15 min p.i., whereas proportion of intact radiolabeled peptide was enhanced to 90 % on co-administration of PA. Biodistribution studies in PC3 tumor bearing mice demonstrated high tumor uptake (8.02 ± 0.9%ID/g and 6.13 ± 0.44%ID/g at 1 h and 3 h p.i.). Co-administration of PA with the radiolabeled peptide resulted in further enhancement of tumor uptake (14.24 ± 0.76 % ID/g and 11.71 ± 0.59%ID/g at 1 h and 3 h p.i.). SPECT/CT images of [99mTc]Tc-HYNIC-RM2 could clearly visualize the tumor. Significant (p < 0.001) reduction in the tumor uptake with a co-injected blocking dose of unlabeled peptide ascertained the GRPR specificity of [99mTc]Tc-HYNIC-RM2. CONCLUSION Encouraging results obtained in biodistribution and imaging studies indicate the potential of [99mTc]Tc-HYNIC-RM2 for further exploration as GRPR targeting agent.
Collapse
|
29
|
Phase I Trial of [99mTc]Tc-maSSS-PEG2-RM26, a Bombesin Analogue Antagonistic to Gastrin-Releasing Peptide Receptors (GRPRs), for SPECT Imaging of GRPR Expression in Malignant Tumors. Cancers (Basel) 2023; 15:cancers15061631. [PMID: 36980517 PMCID: PMC10046460 DOI: 10.3390/cancers15061631] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in prostate cancer (PCa) and in hormone-driven breast cancer (BCa). The aim of this phase I clinical trial was to evaluate safety, biodistribution, and dosimetry after the administration of the recently developed GRPR-targeting antagonistic bombesin analogue [99mTc]Tc-maSSS-PEG2-RM26 in PCa and BCa patients. Planar and whole-body SPECT/CT imaging was performed in six PCa patients and seven BCa patients 2, 4, 6, and 24 h post the intravenous administration of 40 µg of [99mTc]Tc-maSSS-PEG2-RM26 (600–700 MBq). No adverse events or pathological changes were observed. The rapid blood clearance of [99mTc]Tc-maSSS-PEG2-RM26 was observed with predominantly hepatobiliary excretion. The effective doses were 0.0053 ± 0.0007 for male patients and 0.008 ± 0.003 mSv/MBq for female patients. The accumulation of [99mTc]Tc-maSSS-PEG2-RM26 in tumors was observed in four out of six PCa and in seven out of seven BCa patients. In four BCa patients, a high uptake of the agent into the axillary lymph nodes was detected. Immunohistochemistry revealed positive GRPR expression in 60% of primary PCa, 71.4% of BCa tumors, and 50% of examined BCa lymph nodes. In conclusion, a single administration of [99mTc]Tc-maSSS-PEG2-RM26 was safe and well tolerated. [99mTc]Tc-maSSS-PEG2-RM26 SPECT may be useful for tumor detection in PCa and BCa patients, pending further studies.
Collapse
|
30
|
Gomena J, Vári B, Oláh-Szabó R, Biri-Kovács B, Bősze S, Borbély A, Soós Á, Ranđelović I, Tóvári J, Mező G. Targeting the Gastrin-Releasing Peptide Receptor (GRP-R) in Cancer Therapy: Development of Bombesin-Based Peptide-Drug Conjugates. Int J Mol Sci 2023; 24:3400. [PMID: 36834815 PMCID: PMC9967152 DOI: 10.3390/ijms24043400] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.
Collapse
Affiliation(s)
- Jacopo Gomena
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Rita Oláh-Szabó
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Beáta Biri-Kovács
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Adina Borbély
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, 1117 Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- KINETO Lab Ltd., 1037 Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Gábor Mező
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| |
Collapse
|
31
|
Kunos CA, Fabian D, Napier D, Stonecypher MS, Duncan RM, Hurt J. Human gastrin- releasing peptide receptor expression in women with uterine cervix cancer. Front Oncol 2023; 13:1126426. [PMID: 36761980 PMCID: PMC9905715 DOI: 10.3389/fonc.2023.1126426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction 212Pb-DOTAM-GRPR1 is a pharmaceutical radioimmunoconjugate consisiting of an α-particle-emitting radionuclide lead-212 (212Pb), a metal chelator DOTAM (1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane), and a gastrin-releasing peptide receptor (GRPR)-targeted antagonist currently being evaluated as therapy in uterine cervix and other cancer types. Previous studies have revealed that a variable proportion of uterine cervix cancer tumors overexpress the radiopharmaceutical target GRPR when assessed by cell proportion and staining intensity immunoreactive scores (IRS). Tumor response to 212Pb-DOTAM-GRPR1 strongly associates with GRPR overexpression, and therefore, it seems reasonable to assess uterine cervix cancer GRPR immunoreactivity for greater insight into the feasibility of using 212Pb-DOTAM-GRPR1 as a radiopharmaceutical treatment. Methods We examined a series of 33 uterine cervix cancer paraffin-embedded tumors in order to establish whether this tumor type overexpresses GRPR at an IRS score of 6 or higher, as 212Pb-DOTAM-GRPR1 is currently being evaluated in clinical trials against tumors showing such a level of expression. Results The results show that five of five (100%) primary adenocarcinomas and 10 of 16 (63%) primary squamous cell tumors overexpress GRPR at an IRS score of 6 or higher. Discussion The frequency of overexpression in this study suggests that 212Pb-DOTAM-GRPR1 radiopharmaceutical treatment may be useful in the management of persistent, recurrent, or metastatic uterine cervix cancer patients. A phase I clinical trial involving patients with metastatic uterine cervix cancer is currently underway (NCT05283330).
Collapse
Affiliation(s)
- Charles A. Kunos
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States,*Correspondence: Charles A. Kunos,
| | - Denise Fabian
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
| | - Dana Napier
- Biospecimen Procurement & Translational Pathology, University of Kentucky, Lexington, KY, United States
| | | | - Ravyn M. Duncan
- Molecular Pathology Laboratory Network, Inc., Maryville, TN, United States
| | | |
Collapse
|
32
|
D’Onofrio A, Silva F, Gano L, Raposinho P, Fernandes C, Sikora A, Wyczółkowska M, Mikołajczak R, Garnuszek P, Paulo A. Bioorthogonal Chemistry Approach for the Theranostics of GRPR-Expressing Cancers. Pharmaceutics 2022; 14:pharmaceutics14122569. [PMID: 36559063 PMCID: PMC9785946 DOI: 10.3390/pharmaceutics14122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Several gastrin-releasing peptide receptor (GRPR) antagonists with improved in vivo behavior have been recently developed and tested in the clinic. However, despite the generally mild side effects of peptide receptor radionuclide therapy (PRRT), toxicity has been observed due to high doses delivered to nontarget tissues, especially in the kidneys and pancreas. Previous experiences with radiolabeled peptides opened a unique opportunity to explore GRPR pretargeting using clickable bombesin antagonists. Toward this goal, we used clickable DOTA-like radiocomplexes which have been previously evaluated by our group. We functionalized a potent GRPR antagonist with a clickable TCO moiety using two different linkers. These precursors were then studied to select the compound with the highest GRPR binding affinity and the best pharmacokinetics to finally explore the advantages of the devised pretargeting approach. Our results provided an important proof of concept toward the development of bioorthogonal approaches to GRPR-expressing cancers, which are worth investigating further to improve the in vivo results. Moreover, the use of clickable GRPR antagonists and DOTA/DOTAGA derivatives allows for fine-tuning of their pharmacokinetics and metabolic stability, leading to a versatile synthesis of new libraries of (radio)conjugates useful for the development of theranostic tools toward GRPR-expressing tumors.
Collapse
Affiliation(s)
- Alice D’Onofrio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Correspondence:
| | - Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Célia Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Arkadiusz Sikora
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - Monika Wyczółkowska
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - Renata Mikołajczak
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
33
|
Nakashima K, Iikuni S, Watanabe H, Ono M. Application of the Chelator-Based Clickable Radiotheranostic Platform to Moderate-Molecular-Weight Ligands. ACS Med Chem Lett 2022; 13:1642-1647. [PMID: 36262405 PMCID: PMC9575180 DOI: 10.1021/acsmedchemlett.2c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
We have reported that the chelator-based clickable radiotheranostic platform, ADIBO-DOTADG-ALB (ADA), has favorable properties as a radiotheranostic platform for low-molecular-weight ligands. In this study, we evaluated the applicability of ADA to moderate-molecular-weight ligands to expand the utility of the ADA platform. As a moderate-molecular-weight ligand, we selected exendin-4, a peptide-based agonist to glucagon-like peptide-1 receptor (GLP-1R). An exendin-4-incorporated ADA derivative, exendin-4-Cys40-triazole-DOTADG-ALB (EtDA), was radiolabeled with 111In by the conjugation of exendin-4-Cys40 azide to [111In]In-ADA. The click ligation of exendin-4-Cys40 azide to [111In]In-ADA was quantitatively completed in 10 min under ambient conditions. In the in vitro cell-binding assay and albumin-binding assay, [111In]In-EtDA showed strong binding to both a GLP-1R-expressing cell and albumin. In the biodistribution assay, [111In]In-EtDA showed markedly protracted tumor uptake, which was significantly decreased by the coinjection of exendin-4-Cys40. The single photon emission computed tomography (SPECT) image of [111In]In-EtDA visualized the tumor clearly. These results indicated the utility of [111In]In-EtDA as a radiotheranostic agent, suggesting the applicability of the ADA platform to moderate-molecular-weight ligands.
Collapse
Affiliation(s)
- Kazuma Nakashima
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis,
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
34
|
Li R, Gao R, Zhao Y, Zhang F, Wang X, Li B, Wang L, Ma L, Du J. pH-responsive graphene oxide loaded with targeted peptide and anticancer drug for OSCC therapy. Front Oncol 2022; 12:930920. [PMID: 35992794 PMCID: PMC9382286 DOI: 10.3389/fonc.2022.930920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of cancer occurring in the oral and maxillofacial regions. Despite of the advances in the diagnosis and treatment, the overall 5-year survival rate has remained about 40%–50% in the past decades. Various nanotechnology-based carrier systems have been investigated for their potentials in the OSCC treatment. However, because of the lack of active targeting of tumors, their application is limited. Studies have shown that gastrin-releasing peptide receptors (GRPRs) are overexpressed on many human cancers, including head and neck squamous cell carcinoma. Herein, we aimed to develop a GRPR-targeted nano-graphene oxide (NGO) nanoprobe drug delivery system for OSCC therapy. DOX@NGO-BBN-AF750 was synthesized by the non-covalent bonding method to couple carboxylated NGO with BBN-AF750 (bombesin antagonist peptides conjugated to Alexa Fluor 750) and DOX (doxorubicin) through π-π and hydrogen bonding. Internalization and antitumor activities were carried out in human HSC-3 cancer cells. The tumor pH microenvironment was simulated to study the release of antitumor drug DOX from the DOX@NGO-ant BBN-AF750 complex under different pH conditions. DOX@NGO-BBN-AF750 showed internalization into HSC-3 cells. The IC50 (50% inhibitory concentration) was 5 µg/ml for DOX@NGO-BBN-AF750 in HSC-3 cells. Furthermore, DOX@NGO-BBN-AF750 showed a pH-sensitive drug release rate, and a dose-dependent and pH-responsive cytotoxicity in HSC-3 cells. DOX@NGO-BBN-AF750 presents the characteristics ensuring a slow release of DOX from the nanoprobe, thereby protecting the drug from degradation and prolonging the half-life of the drug. This report provides a versatile strategy to achieving targeted and imaging-guided therapy of OSCC.
Collapse
Affiliation(s)
- Ran Li
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| | - Ruifang Gao
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Yingjiao Zhao
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiangyu Wang
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| | - Jie Du
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| |
Collapse
|
35
|
Brouns F, Shewry PR. Do gluten peptides stimulate weight gain in humans? NUTR BULL 2022; 47:186-198. [PMID: 35915782 PMCID: PMC9328276 DOI: 10.1111/nbu.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Observations from animal and in vitro laboratory research, and anecdotal evidence, have led to the suggestion that gluten consumption stimulates weight gain by the presence of peptides expressing opioid activity. Another proposed mechanism is that gluten peptides decrease resting energy expenditure resulting in a positive energy balance. In order to induce such effects in vivo, intact food peptides must be absorbed in sufficient quantities, remain intact in the blood for sufficient time to have long-lasting biological activity and bind to receptors involved in appetite, satiety and energy regulation. However, although peptides from food may pass from the intestine into the blood in extremely low quantities, they are generally rapidly degraded by plasma and vasculum-bound aminopeptidases, resulting in very short half-lives and loss of bioactivity. At present, gluten peptide sequences that influence regulators of energy metabolism have not been identified. Furthermore, data on the quantitative absorption of gluten peptides in the blood stream, their stability and lasting bioactivity are also lacking. Therefore, there is no evidence for proposed effects on driving appetite by the brain, nor on energy expenditure and weight gain. Furthermore, the level of overweight observed in various countries appears to be independent of the level of wheat consumption, and abundant observational evidence in humans shows that the levels of gluten consumption are neither related to daily calorie intake nor to BMI. This narrative review therefore discusses the proposed effects of gluten on bodyweight (BW) and putative biological mechanisms in the light of the current evidence.
Collapse
Affiliation(s)
- Fred Brouns
- School for Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | | |
Collapse
|
36
|
Balma M, Liberini V, Racca M, Laudicella R, Bauckneht M, Buschiazzo A, Nicolotti DG, Peano S, Bianchi A, Albano G, Quartuccio N, Abgral R, Morbelli SD, D'Alessandria C, Terreno E, Huellner MW, Papaleo A, Deandreis D. Non-conventional and Investigational PET Radiotracers for Breast Cancer: A Systematic Review. Front Med (Lausanne) 2022; 9:881551. [PMID: 35492341 PMCID: PMC9039137 DOI: 10.3389/fmed.2022.881551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is one of the most common malignancies in women, with high morbidity and mortality rates. In breast cancer, the use of novel radiopharmaceuticals in nuclear medicine can improve the accuracy of diagnosis and staging, refine surveillance strategies and accuracy in choosing personalized treatment approaches, including radioligand therapy. Nuclear medicine thus shows great promise for improving the quality of life of breast cancer patients by allowing non-invasive assessment of the diverse and complex biological processes underlying the development of breast cancer and its evolution under therapy. This review aims to describe molecular probes currently in clinical use as well as those under investigation holding great promise for personalized medicine and precision oncology in breast cancer.
Collapse
Affiliation(s)
- Michele Balma
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- *Correspondence: Michele Balma
| | - Virginia Liberini
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| | - Manuela Racca
- Nuclear Medicine Unit, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Ambra Buschiazzo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | | | - Simona Peano
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Andrea Bianchi
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Giovanni Albano
- Nuclear Medicine Unit, Fondazione Istituto G. Giglio, Cefalù, Italy
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Civico di Cristina and Benfratelli Hospitals, Palermo, Italy
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Silvia Daniela Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | | | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, Molecular & Preclinical Imaging Centers, University of Turin, Turin, Italy
| | - Martin William Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alberto Papaleo
- Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy
| | - Désirée Deandreis
- Division of Nuclear Medicine, Department of Medical Science, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Neels OC, Kopka K, Liolios C, Afshar-Oromieh A. Radiolabeled PSMA Inhibitors. Cancers (Basel) 2021; 13:6255. [PMID: 34944875 PMCID: PMC8699044 DOI: 10.3390/cancers13246255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022] Open
Abstract
PSMA has shown to be a promising target for diagnosis and therapy (theranostics) of prostate cancer. We have reviewed developments in the field of radio- and fluorescence-guided surgery and targeted photodynamic therapy as well as multitargeting PSMA inhibitors also addressing albumin, GRPr and integrin αvβ3. An overview of the regulatory status of PSMA-targeting radiopharmaceuticals in the USA and Europe is also provided. Technical and quality aspects of PSMA-targeting radiopharmaceuticals are described and new emerging radiolabeling strategies are discussed. Furthermore, insights are given into the production, application and potential of alternatives beyond the commonly used radionuclides for radiolabeling PSMA inhibitors. An additional refinement of radiopharmaceuticals is required in order to further improve dose-limiting factors, such as nephrotoxicity and salivary gland uptake during endoradiotherapy. The improvement of patient treatment achieved by the advantageous combination of radionuclide therapy with alternative therapies is also a special focus of this review.
Collapse
Affiliation(s)
- Oliver C. Neels
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Faculty of Chemistry and Food Chemistry, School of Science, Technical University Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Christos Liolios
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National & Kapodistrian University of Athens, Zografou, 15771 Athens, Greece;
- INRASTES, Radiochemistry Laboratory, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Bern University Hospital (Inselspital), Freiburgstrasse 18, 3010 Bern, Switzerland;
| |
Collapse
|