1
|
Geils C, Kathrein K. Augmentation of Solid Tumor Immunotherapy With IL-12. J Gene Med 2024; 26:e70000. [PMID: 39618102 PMCID: PMC11609498 DOI: 10.1002/jgm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024] Open
Abstract
Immunotherapy describes a class of therapies in which the immune system is manipulated for therapeutic benefit. These treatments include immune checkpoint inhibitors, adoptive cell therapy, and vaccines. For many hematological malignancies, immunotherapy has emerged as an essential treatment component. However, this success has yet to be replicated for solid tumors, which develop advanced physical and molecular mechanisms for suppressing and evading immune destruction. Nevertheless, cytokine immunotherapy presents a potential remedy to these barriers by delivering a proinflammatory immune signal to the tumor and thereby transforming it from immunologically "cold" to "hot." Interleukin-12 (IL-12), one of the most potent proinflammatory cytokines, was initially investigated for this purpose. However, initial murine and human studies in which IL-12 was administered systemically resulted in dangerous immunotoxicity associated with off-target immune activation. As a result, recent studies have employed advanced cell and molecular engineering approaches to reduce IL-12 toxicity while increasing or maintaining its efficacy such that its effective doses can be tolerated in humans. This review highlights such developments and identifies promising future directions.
Collapse
Affiliation(s)
- Christian Geils
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Katie L. Kathrein
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| |
Collapse
|
2
|
Quinn CH, Julson JR, Markert HR, Nazam N, Butey S, Stewart JE, Coleman JC, Markert JM, Leavenworth JW, Beierle EA. Oncolytic virotherapy augments self-maintaining natural killer cell line cytotoxicity against neuroblastoma. Cancer Immunol Immunother 2024; 73:221. [PMID: 39235531 PMCID: PMC11377387 DOI: 10.1007/s00262-024-03818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Neuroblastoma is the most common extracranial solid tumor in children and accounts for 15% of pediatric cancer related deaths. Targeting neuroblastoma with immunotherapies has proven challenging due to a paucity of immune cells in the tumor microenvironment and the release of immunosuppressive cytokines by neuroblastoma tumor cells. We hypothesized that combining an oncolytic Herpes Simplex Virus (oHSV) with natural killer (NK) cells might overcome these barriers and incite tumor cell death. METHODS We utilized MYCN amplified and non-amplified neuroblastoma cell lines, the IL-12 expressing oHSV, M002, and the human NK cell line, NK-92 MI. We assessed the cytotoxicity of NK cells against neuroblastoma with and without M002 infection, the effects of M002 on NK cell priming, and the impact of M002 and priming on the migratory capacity and CD107a expression of NK cells. To test clinical applicability, we then investigated the effects of M002 and NK cells on neuroblastoma in vivo. RESULTS NK cells were more attracted to neuroblastoma cells that were infected with M002. There was an increase in neuroblastoma cell death with the combination treatment of M002 and NK cells both in vitro and in vivo. Priming the NK cells enhanced their cytotoxicity, migratory capacity and CD107a expression. CONCLUSIONS To the best of our knowledge, these investigations are the first to demonstrate the effects of an oncolytic virus combined with self-maintaining NK cells in neuroblastoma and the priming effect of neuroblastoma on NK cells. The current studies provide a deeper understanding of the relation between NK cells and neuroblastoma and these data suggest that oHSV increases NK cell cytotoxicity towards neuroblastoma.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Nazia Nazam
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Swatika Butey
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK
| | - Jennifer C Coleman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL, 35233, UK.
| |
Collapse
|
3
|
Wu BX, Wu Z, Hou YY, Fang ZX, Deng Y, Wu HT, Liu J. Application of three-dimensional (3D) bioprinting in anti-cancer therapy. Heliyon 2023; 9:e20475. [PMID: 37800075 PMCID: PMC10550518 DOI: 10.1016/j.heliyon.2023.e20475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a novel technology that enables the creation of 3D structures with bioinks, the biomaterials containing living cells. 3D bioprinted structures can mimic human tissue at different levels of complexity from cells to organs. Currently, 3D bioprinting is a promising method in regenerative medicine and tissue engineering applications, as well as in anti-cancer therapy research. Cancer, a type of complex and multifaceted disease, presents significant challenges regarding diagnosis, treatment, and drug development. 3D bioprinted models of cancer have been used to investigate the molecular mechanisms of oncogenesis, the development of cancers, and the responses to treatment. Conventional 2D cancer models have limitations in predicting human clinical outcomes and drug responses, while 3D bioprinting offers an innovative technique for creating 3D tissue structures that closely mimic the natural characteristics of cancers in terms of morphology, composition, structure, and function. By precise manipulation of the spatial arrangement of different cell types, extracellular matrix components, and vascular networks, 3D bioprinting facilitates the development of cancer models that are more accurate and representative, emulating intricate interactions between cancer cells and their surrounding microenvironment. Moreover, the technology of 3D bioprinting enables the creation of personalized cancer models using patient-derived cells and biomarkers, thereby advancing the fields of precision medicine and immunotherapy. The integration of 3D cell models with 3D bioprinting technology holds the potential to revolutionize cancer research, offering extensive flexibility, precision, and adaptability in crafting customized 3D structures with desired attributes and functionalities. In conclusion, 3D bioprinting exhibits significant potential in cancer research, providing opportunities for identifying therapeutic targets, reducing reliance on animal experiments, and potentially lowering the overall cost of cancer treatment. Further investigation and development are necessary to address challenges such as cell viability, printing resolution, material characteristics, and cost-effectiveness. With ongoing progress, 3D bioprinting can significantly impact the field of cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Krawczyk E, Kitlińska J. Preclinical Models of Neuroblastoma-Current Status and Perspectives. Cancers (Basel) 2023; 15:3314. [PMID: 37444423 PMCID: PMC10340830 DOI: 10.3390/cancers15133314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Preclinical in vitro and in vivo models remain indispensable tools in cancer research. These classic models, including two- and three-dimensional cell culture techniques and animal models, are crucial for basic and translational studies. However, each model has its own limitations and typically does not fully recapitulate the course of the human disease. Therefore, there is an urgent need for the development of novel, advanced systems that can allow for efficient evaluation of the mechanisms underlying cancer development and progression, more accurately reflect the disease pathophysiology and complexity, and effectively inform therapeutic decisions for patients. Preclinical models are especially important for rare cancers, such as neuroblastoma, where the availability of patient-derived specimens that could be used for potential therapy evaluation and screening is limited. Neuroblastoma modeling is further complicated by the disease heterogeneity. In this review, we present the current status of preclinical models for neuroblastoma research, discuss their development and characteristics emphasizing strengths and limitations, and describe the necessity of the development of novel, more advanced and clinically relevant approaches.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Joanna Kitlińska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
5
|
Quinn CH, Beierle AM, Julson JR, Erwin ME, Alrefai H, Markert HR, Stewart JE, Hutchins SC, Bownes LV, Aye JM, Mroczek-Musulman E, Hicks PH, Yoon KJ, Willey CD, Beierle1 EA. Using 3D-bioprinted models to study pediatric neural crest-derived tumors. Int J Bioprint 2023; 9:723. [PMID: 37323483 PMCID: PMC10261178 DOI: 10.18063/ijb.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/21/2023] [Indexed: 06/17/2023] Open
Abstract
The use of three-dimensional (3D) bioprinting has remained at the forefront of tissue engineering and has recently been employed for generating bioprinted solid tumors to be used as cancer models to test therapeutics. In pediatrics, neural crest-derived tumors are the most common type of extracranial solid tumors. There are only a few tumor-specific therapies that directly target these tumors, and the lack of new therapies remains detrimental to improving the outcomes for these patients. The absence of more efficacious therapies for pediatric solid tumors, in general, may be due to the inability of the currently employed preclinical models to recapitulate the solid tumor phenotype. In this study, we utilized 3D bioprinting to generate neural crest-derived solid tumors. The bioprinted tumors consisted of cells from established cell lines and patient-derived xenograft tumors mixed with a 6% gelatin/1% sodium alginate bioink. The viability and morphology of the bioprints were analyzed via bioluminescence and immunohisto chemistry, respectively. We compared the bioprints to traditional twodimensional (2D) cell culture under conditions such as hypoxia and therapeutics. We successfully produced viable neural crest-derived tumors that retained the histology and immunostaining characteristics of the original parent tumors. The bioprinted tumors propagated in culture and grew in orthotopic murine models. Furthermore, compared to cells grown in traditional 2D culture, the bioprinted tumors were resistant to hypoxia and chemotherapeutics, suggesting that the bioprints exhibited a phenotype that is consistent with that seen clinically in solid tumors, thus potentially making this model superior to traditional 2D culture for preclinical investigations. Future applications of this technology entail the potential to rapidly print pediatric solid tumors for use in high-throughput drug studies, expediting the identification of novel, individualized therapies.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Andee M Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Michael E Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Hasan Alrefai
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Sara Claire Hutchins
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | - Patricia H Hicks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | | |
Collapse
|
6
|
Sztankovics D, Moldvai D, Petővári G, Gelencsér R, Krencz I, Raffay R, Dankó T, Sebestyén A. 3D bioprinting and the revolution in experimental cancer model systems-A review of developing new models and experiences with in vitro 3D bioprinted breast cancer tissue-mimetic structures. Pathol Oncol Res 2023; 29:1610996. [PMID: 36843955 PMCID: PMC9946983 DOI: 10.3389/pore.2023.1610996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Growing evidence propagates those alternative technologies (relevant human cell-based-e.g., organ-on-chips or biofabricated models-or artificial intelligence-combined technologies) that could help in vitro test and predict human response and toxicity in medical research more accurately. In vitro disease model developments have great efforts to create and serve the need of reducing and replacing animal experiments and establishing human cell-based in vitro test systems for research use, innovations, and drug tests. We need human cell-based test systems for disease models and experimental cancer research; therefore, in vitro three-dimensional (3D) models have a renaissance, and the rediscovery and development of these technologies are growing ever faster. This recent paper summarises the early history of cell biology/cellular pathology, cell-, tissue culturing, and cancer research models. In addition, we highlight the results of the increasing use of 3D model systems and the 3D bioprinted/biofabricated model developments. Moreover, we present our newly established 3D bioprinted luminal B type breast cancer model system, and the advantages of in vitro 3D models, especially the bioprinted ones. Based on our results and the reviewed developments of in vitro breast cancer models, the heterogeneity and the real in vivo situation of cancer tissues can be represented better by using 3D bioprinted, biofabricated models. However, standardising the 3D bioprinting methods is necessary for future applications in different high-throughput drug tests and patient-derived tumour models. Applying these standardised new models can lead to the point that cancer drug developments will be more successful, efficient, and consequently cost-effective in the near future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Aaltonen K, Radke K, Adamska A, Seger A, Mañas A, Bexell D. Patient-derived models: Advanced tools for precision medicine in neuroblastoma. Front Oncol 2023; 12:1085270. [PMID: 36776363 PMCID: PMC9910084 DOI: 10.3389/fonc.2022.1085270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Neuroblastoma is a childhood cancer derived from the sympathetic nervous system. High-risk neuroblastoma patients have a poor overall survival and account for ~15% of childhood cancer deaths. There is thus a need for clinically relevant and authentic models of neuroblastoma that closely resemble the human disease to further interrogate underlying mechanisms and to develop novel therapeutic strategies. Here we review recent developments in patient-derived neuroblastoma xenograft models and in vitro cultures. These models can be used to decipher mechanisms of metastasis and treatment resistance, for drug screening, and preclinical drug testing. Patient-derived neuroblastoma models may also provide useful information about clonal evolution, phenotypic plasticity, and cell states in relation to neuroblastoma progression. We summarize current opportunities for, but also barriers to, future model development and application. Integration of patient-derived models with patient data holds promise for the development of precision medicine treatment strategies for children with high-risk neuroblastoma.
Collapse
|
8
|
Zhang W, Zheng X. Patient-derived xenografts or organoids in the discovery of traditional and self-assembled drug for tumor immunotherapy. Front Oncol 2023; 13:1122322. [PMID: 37081982 PMCID: PMC10110942 DOI: 10.3389/fonc.2023.1122322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
In addition to the rapid development of immune checkpoint inhibitors, there has also been a surge in the development of self-assembly immunotherapy drugs. Based on the immune target, traditional tumor immunotherapy drugs are classified into five categories, namely immune checkpoint inhibitors, direct immune modulators, adoptive cell therapy, oncolytic viruses, and cancer vaccines. Additionally, the emergence of self-assembled drugs with improved precision and environmental sensitivity offers a promising innovation approach to tumor immunotherapy. Despite rapid advances in tumor immunotherapy drug development, all candidate drugs require preclinical evaluation for safety and efficacy, and conventional evaluations are primarily conducted using two-dimensional cell lines and animal models, an approach that may be unsuitable for immunotherapy drugs. The patient-derived xenograft and organoids models, however, maintain the heterogeneity and immunity of the pathological tumor heterogeneity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xiaoqiang Zheng,
| |
Collapse
|
9
|
Genta S, Coburn B, Cescon DW, Spreafico A. Patient-derived cancer models: Valuable platforms for anticancer drug testing. Front Oncol 2022; 12:976065. [PMID: 36033445 PMCID: PMC9413077 DOI: 10.3389/fonc.2022.976065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Molecularly targeted treatments and immunotherapy are cornerstones in oncology, with demonstrated efficacy across different tumor types. Nevertheless, the overwhelming majority metastatic disease is incurable due to the onset of drug resistance. Preclinical models including genetically engineered mouse models, patient-derived xenografts and two- and three-dimensional cell cultures have emerged as a useful resource to study mechanisms of cancer progression and predict efficacy of anticancer drugs. However, variables including tumor heterogeneity and the complexities of the microenvironment can impair the faithfulness of these platforms. Here, we will discuss advantages and limitations of these preclinical models, their applicability for drug testing and in co-clinical trials and potential strategies to increase their reliability in predicting responsiveness to anticancer medications.
Collapse
Affiliation(s)
- Sofia Genta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bryan Coburn
- Division of Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - David W. Cescon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Chilamakuri R, Rouse DC, Agarwal S. Inhibition of Polo-like Kinase 1 by HMN-214 Blocks Cell Cycle Progression and Inhibits Neuroblastoma Growth. Pharmaceuticals (Basel) 2022; 15:ph15050523. [PMID: 35631350 PMCID: PMC9144399 DOI: 10.3390/ph15050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is an essential cell cycle mitotic kinase component that plays an important role in cell cycle progression and has been reported to be involved in various cancers, including neuroblastoma (NB). PLK1 also regulates G2/M transition, chromosomal segregation, spindle assembly maturation, and mitotic exit. NB is an early embryonic-stage heterogeneous solid tumor and accounts for 15% of all pediatric cancer-related deaths. Therefore, we aimed to develop a targeting strategy for PLK1 by repurposing HMN-214 in NB. HMN-214 is a prodrug of HMN-176 and is known to selectively interfere with PLK1 function. In the present study, we performed the transcriptomic analysis of a large cohort of primary NB patient samples and revealed that PLK1 expression is inversely correlated with the overall survival of NB patients. Additionally, we found that PLK1 strongly correlates with NB disease and stage progression. HMN-214 significantly inhibited NB proliferation and colony formation in both MYCN-amplified and -nonamplified cell lines in a dose-dependent manner. Furthermore, HMN-214 induces apoptosis and significantly obstructs the cell cycle at the G2/M phase in NB cells by inhibiting multiple cell-cycle-related genes, such as PLK1, WEE1, CDK1, CDK2, Cyclin B1, CHK1, and CHK2. HMN-214 significantly inhibits cell cycle regulator CDK1 and the phosphorylation and activation of PLK1 in NB. In the NB 3D spheroid tumor model, HMN-214 significantly and in a dose-dependent manner inhibits spheroid tumor mass and growth. Overall, our study highlights that targeting PLK1 using HMN-214 is a novel therapeutic approach for NB.
Collapse
|