1
|
Brzeziński P, Feszak I, Ortiz BDM, Feszak S, Kawczak P, Bączek T. Unveiling a Dermatological Rarity: The Enigma of Vulvar Intraepithelial Neoplasia Grade III (HSIL) and the Role of p53 in Its Development. Biomedicines 2024; 12:1799. [PMID: 39200263 PMCID: PMC11351730 DOI: 10.3390/biomedicines12081799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Vulvar intraepithelial neoplasia, also known as VIN, is a non-invasive squamous lesion and precursor of squamous cell carcinoma (SCC) of the vulva. There is no screening test for vulvar intraepithelial neoplasia. Diagnosis of VIN is made clinically and confirmed with a biopsy. We describe a 66-year-old woman with a condyloma-like tumour located in the skin on the vestibule of the vagina. A biopsy sample was taken from the nodule. The definitive diagnosis is supported by the histological examination (VIN III) and immunohistochemical examination of p16(+), p53(+), and a few cell nuclei. The case provides information on the importance of multidisciplinary cooperation. Lifelong surveillance is essential since the resection of individual lesions does not guarantee the prevention of invasive cancer.
Collapse
Affiliation(s)
- Piotr Brzeziński
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland; (P.B.); (I.F.)
| | - Igor Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland; (P.B.); (I.F.)
| | - Beatriz Di Martino Ortiz
- Dermatology Department, Clinicas Hospital, Faculty of Medical Sciences, National University of Ausunción, San Lorenzo 111421, Paraguay;
| | - Sylwia Feszak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
2
|
Najafiyan B, Bokaii Hosseini Z, Esmaelian S, Firuzpour F, Rahimipour Anaraki S, Kalantari L, Hheidari A, Mesgari H, Nabi-Afjadi M. Unveiling the potential effects of resveratrol in lung cancer treatment: Mechanisms and nanoparticle-based drug delivery strategies. Biomed Pharmacother 2024; 172:116207. [PMID: 38295754 DOI: 10.1016/j.biopha.2024.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/β-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Collapse
Affiliation(s)
- Behnam Najafiyan
- Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Samar Esmaelian
- Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Faezeh Firuzpour
- Student of Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Cocuz IG, Popelea MC, Niculescu R, Manea A, Sabău AH, Tinca AC, Szoke AR, Budin CE, Stoian A, Morariu SH, Cotoi TC, Cocuz ME, Cotoi OS. Pathophysiology, Histopathology, and Differential Diagnostics of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma-An Update from the Pathologist's Point of View. Int J Mol Sci 2024; 25:2220. [PMID: 38396897 PMCID: PMC10888641 DOI: 10.3390/ijms25042220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the most frequently occurring non-melanocytic skin cancers. The objective of our study is to present the pathophysiology of BCC and cSCC and its direct relationship with the histopathological diagnostics and the differential diagnostics of these types of cancer, based on the morphological characteristics, immunohistochemical profile, and genetic alterations. The qualitative study was based on emphasizing the morphological characteristics and immunohistochemistry profiles of BCC and cSCC and the differential diagnostics based on the tissue samples from the Clinical Pathology Department of Mures Clinical County Hospital between 2020 and 2022. We analyzed the histopathological appearances and immunohistochemical profiles of BCC and cSCC in comparison with those of Bowen disease, keratoacanthoma, hyperkeratotic squamous papilloma, metatypical carcinoma, pilomatricoma, trichoblastoma, Merkel cell carcinoma, pleomorphic dermal sarcoma (PDS), and melanoma. Our study showed the importance of the correct histopathological diagnosis, which has a direct impact on the appropriate treatment and outcome for each patient. The study highlighted the histopathological and morphological characteristics of NMSCs and the precursor lesions in HE and the immunohistochemical profile for lesions that may make the differential diagnosis difficult to establish.
Collapse
Affiliation(s)
- Iuliu Gabriel Cocuz
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | | | - Raluca Niculescu
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Andrei Manea
- Faculty of Medicine, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Adrian-Horațiu Sabău
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Andreea-Cătălina Tinca
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Andreea Raluca Szoke
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Corina Eugenia Budin
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pneumology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Adina Stoian
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Neurology I Clinic, Targu Mures Emergency County Hospital, 540136 Targu Mures, Romania
| | - Silviu Horia Morariu
- Dermatology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Dermatology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Titiana Cornelia Cotoi
- Pharmaceutical Technique Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Pharmacy No. 2, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| | - Maria-Elena Cocuz
- Fundamental Prophylactic and Clinical Disciplines Department, Faculty of Medicine, Transilvania University of Brasov, 500003 Brașov, Romania;
- Clinical Pneumology and Infectious Diseases Hospital of Brasov, 500174 Brasov, Romania
| | - Ovidiu Simion Cotoi
- Pathophysiology Department, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.G.C.); (R.N.); (A.-H.S.); (A.-C.T.); (A.R.S.); (C.E.B.); (A.S.); (O.S.C.)
- Pathology Department, Mures Clinical County Hospital, 540011 Targu Mures, Romania
| |
Collapse
|
4
|
Vojsovič M, Kratochvilová L, Valková N, Šislerová L, El Rashed Z, Menichini P, Inga A, Monti P, Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024; 216:14-23. [PMID: 37838351 DOI: 10.1016/j.biochi.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
Collapse
Affiliation(s)
- Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic.
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Zeinab El Rashed
- Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Paola Menichini
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Paola Monti
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
5
|
Murtough S, Babu D, Webb CM, Louis dit Picard H, McGinty LA, Chao-Chu J, Pink R, Silver AR, Smart HL, Field JK, Woodland P, Risk JM, Blaydon DC, Pennington DJ, Kelsell DP. Investigating iRHOM2-Associated Transcriptional Changes in Tylosis With Esophageal Cancer. GASTRO HEP ADVANCES 2023; 3:385-395. [PMID: 39131151 PMCID: PMC11307647 DOI: 10.1016/j.gastha.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/19/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Survival rates for esophageal squamous cell carcinoma (ESCC) are extremely low due to the late diagnosis of most cases. An understanding of the early molecular processes that lead to ESCC may facilitate opportunities for early diagnosis; however, these remain poorly defined. Tylosis with esophageal cancer (TOC) is a rare syndrome associated with a high lifetime risk of ESCC and germline mutations in RHBDF2, encoding iRhom2. Using TOC as a model of ESCC predisposition, this study aimed to identify early-stage transcriptional changes in ESCC development. Methods Esophageal biopsies were obtained from control and TOC individuals, the latter undergoing surveillance endoscopy, and adjacent diagnostic biopsies were graded as having no dysplasia or malignancy. Bulk RNA-Seq was performed, and findings were compared with sporadic ESCC vs normal RNA-Seq datasets. Results Multiple transcriptional changes were identified in TOC samples, relative to controls, and many were detected in ESCC. Accordingly, pathway analyses predicted an enrichment of cancer-associated processes linked to cellular proliferation and metastasis, and several transcription factors were predicted to be associated with TOC and ESCC, including negative enrichment of GRHL2. Subsequently, a filtering strategy revealed 22 genes that were significantly dysregulated in both TOC and ESCC. Moreover, Keratin 17, which was upregulated in TOC and ESCC, was also found to be overexpressed at the protein level in 'normal' TOC esophagus tissue. Conclusion Transcriptional changes occur in TOC esophagus prior to the onset of dysplasia, many of which are associated with ESCC. These findings support the utility of TOC to help reveal the early molecular processes that lead to sporadic ESCC.
Collapse
Affiliation(s)
- Stephen Murtough
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Deepak Babu
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Catherine M. Webb
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Hélène Louis dit Picard
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Lisa A. McGinty
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Jennifer Chao-Chu
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan Pink
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Andrew R. Silver
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Howard L. Smart
- Gastroenterology and Liver Services, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - John K. Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Philip Woodland
- Endoscopy Unit, Barts Health NHS Trust, The Royal London Hospital, London, UK
| | - Janet M. Risk
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Diana C. Blaydon
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Daniel J. Pennington
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - David P. Kelsell
- Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Kratochvilová L, Vojsovič M, Valková N, Šislerová L, El Rashed Z, Inga A, Monti P, Brázda V. The presence of a G-quadruplex prone sequence upstream of a minimal promoter increases transcriptional activity in the yeast Saccharomyces cerevisiae. Biosci Rep 2023; 43:BSR20231348. [PMID: 38112096 PMCID: PMC10730334 DOI: 10.1042/bsr20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Non-canonical secondary structures in DNA are increasingly being revealed as critical players in DNA metabolism, including modulating the accessibility and activity of promoters. These structures comprise the so-called G-quadruplexes (G4s) that are formed from sequences rich in guanine bases. Using a well-defined transcriptional reporter system, we sought to systematically investigate the impact of the presence of G4 structures on transcription in yeast Saccharomyces cerevisiae. To this aim, different G4 prone sequences were modeled to vary the chance of intramolecular G4 formation, analyzed in vitro by Thioflavin T binding test and circular dichroism and then placed at the yeast ADE2 locus on chromosome XV, downstream and adjacent to a P53 response element (RE) and upstream from a minimal CYC1 promoter and Luciferase 1 (LUC1) reporter gene in isogenic strains. While the minimal CYC1 promoter provides basal reporter activity, the P53 RE enables LUC1 transactivation under the control of P53 family proteins expressed under the inducible GAL1 promoter. Thus, the impact of the different G4 prone sequences on both basal and P53 family protein-dependent expression was measured after shifting cells onto galactose containing medium. The results showed that the presence of G4 prone sequences upstream of a yeast minimal promoter increased its basal activity proportionally to their potential to form intramolecular G4 structures; consequently, this feature, when present near the target binding site of P53 family transcription factors, can be exploited to regulate the transcriptional activity of P53, P63 and P73 proteins.
Collapse
Affiliation(s)
- Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| | - Zeinab El Rashed
- Gene Expression Regulation SSD, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention UO, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic
| |
Collapse
|
7
|
Cappello A, Tosetti G, Smirnov A, Ganini C, Yang X, Shi Y, Wang Y, Melino G, Bernassola F, Candi E. p63 orchestrates serine and one carbon metabolism enzymes expression in head and neck cancer. Biol Direct 2023; 18:73. [PMID: 37946250 PMCID: PMC10636826 DOI: 10.1186/s13062-023-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is characterized by high proliferation and limited differentiation. The altered expression of the p53 family members, and specifically of p63, represents a pivotal event in the pathogenesis of HNSCC. Physiologically, p63 affects metabolism through the direct transactivation of the enzyme hexokinase 2, and subsequently controls the proliferation of epithelial cells; nonetheless, its role in cancer metabolism is still largely unclear. The high energetic demand of cancer and the consequent needs of a metabolic reshape, also involve the serine and glycine catabolic and anabolic pathways, including the one carbon metabolism (OCM), to produce energetic compounds (purines) and to maintain cellular homeostasis (glutathione and S-adenosylmethionine). RESULTS The involvement in serine/glycine starvation by other p53 family members has been reported, including HNSCC. Here, we show that in HNSCC p63 controls the expression of the enzymes regulating the serine biosynthesis and one carbon metabolism. p63 binds the promoter region of genes involved in the serine biosynthesis as well as in the one carbon metabolism. p63 silencing in a HNSCC cell line affects the mRNA and protein levels of these selected enzymes. Moreover, the higher expression of TP63 and its target enzymes, negatively impacts on the overall survival of HNSCC patients. CONCLUSION These data indicate a direct role of p63 in the metabolic regulation of HNSCC with significant clinical effects.
Collapse
Affiliation(s)
- Angela Cappello
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Giulia Tosetti
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy
| | - Carlo Ganini
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", 70121, Bari, Italy
- Division of Medical Oncology, A.O.U. Policlinico di Bari, 70124, Bari, Italy
| | - Xue Yang
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 201805, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institute for Translational Medicine, Soochow University, Suzhou, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, 00167, Rome, Italy.
| |
Collapse
|
8
|
Duncan A, Nousome D, Ricks R, Kuo HC, Ravindranath L, Dobi A, Cullen J, Srivastava S, Chesnut GT, Petrovics G, Kohaar I. Association of TP53 Single Nucleotide Polymorphisms with Prostate Cancer in a Racially Diverse Cohort of Men. Biomedicines 2023; 11:biomedicines11051404. [PMID: 37239075 DOI: 10.3390/biomedicines11051404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence indicates the involvement of a genetic component in prostate cancer (CaP) susceptibility and clinical severity. Studies have reported the role of germline mutations and single nucleotide polymorphisms (SNPs) of TP53 as possible risk factors for cancer development. In this single institutional retrospective study, we identified common SNPs in the TP53 gene in AA and CA men and performed association analyses for functional TP53 SNPs with the clinico-pathological features of CaP. The SNP genotyping analysis of the final cohort of 308 men (212 AA; 95 CA) identified 74 SNPs in the TP53 region, with a minor allele frequency (MAF) of at least 1%. Two SNPs were non-synonymous in the exonic region of TP53: rs1800371 (Pro47Ser) and rs1042522 (Arg72Pro). The Pro47Ser variant had an MAF of 0.01 in AA but was not detected in CA. Arg72Pro was the most common SNP, with an MAF of 0.50 (0.41 in AA; 0.68 in CA). Arg72Pro was associated with a shorter time to biochemical recurrence (BCR) (p = 0.046; HR = 1.52). The study demonstrated ancestral differences in the allele frequencies of the TP53 Arg72Pro and Pro47Ser SNPs, providing a valuable framework for evaluating CaP disparities among AA and CA men.
Collapse
Affiliation(s)
- Allison Duncan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Randy Ricks
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Huai-Ching Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| |
Collapse
|
9
|
Abdel-Hamid HA, Marey H, Ibrahim MFG. Hemin protects against cell stress induced by estrogen and progesterone in rat mammary glands via modulation of Nrf2/HO-1 and NF-κB pathways. Cell Stress Chaperones 2023; 28:289-301. [PMID: 36930344 PMCID: PMC10167073 DOI: 10.1007/s12192-023-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Mammary gland hyperplasia is one of the risk factors for breast cancer. Till date, there is no study that has addressed the effect of hemin in this condition. Thus, this study was designed to evaluate the effect of the heme oxygenase 1 (HO-1) inducer (hemin) and its inhibitor (zinc protoporphyrin-IX) (ZnPP-IX) on mammary gland hyperplasia (MGH) induced by estrogen and progesterone in adult albino rats. Forty adult female albino rats were divided into the control group, MGH group, MGH + Hemin group, and MGH + Hemin + ZnPP-IX group. Serum levels of estradiol and progesterone were measured. Breast tissues were taken for estimation of oxidative, inflammatory, and apoptotic markers. Mammary gland histology was performed, and expression of Ki-67, Beclin, and P53 in breast tissue was also measured. Estrogen and progesterone administration induced hyperplasia of cells lining the ducts of the breast tissues associated with increased diameter and height of the nipples as well as increased oxidative stress markers, inflammatory markers, antiapoptotic markers, and cell autophagy. Hemin administration during induction of MGH can reverse all the affected parameters. Then, these effects were abolished by ZnPP-IX administration. We concluded that hemin administration can antagonize the cell stress induced by estrogen and progesterone and protect against the development of mammary gland hyperplasia via modulation of Nrf2/HO-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Heba A. Abdel-Hamid
- Department of Medical Physiology, Faculty of Medicine, Minia University, Minia, 61111 Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
| | - Heba Marey
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| | | |
Collapse
|
10
|
Resende F, de Araújo S, Tavares LP, Teixeira MM, Costa VV. The Multifaceted Role of Annexin A1 in Viral Infections. Cells 2023; 12:1131. [PMID: 37190040 PMCID: PMC10137178 DOI: 10.3390/cells12081131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Dysregulated inflammatory responses are often correlated with disease severity during viral infections. Annexin A1 (AnxA1) is an endogenous pro-resolving protein that timely regulates inflammation by activating signaling pathways that culminate with the termination of response, clearance of pathogen and restoration of tissue homeostasis. Harnessing the pro-resolution actions of AnxA1 holds promise as a therapeutic strategy to control the severity of the clinical presentation of viral infections. In contrast, AnxA1 signaling might also be hijacked by viruses to promote pathogen survival and replication. Therefore, the role of AnxA1 during viral infections is complex and dynamic. In this review, we provide an in-depth view of the role of AnxA1 during viral infections, from pre-clinical to clinical studies. In addition, this review discusses the therapeutic potential for AnxA1 and AnxA1 mimetics in treating viral infections.
Collapse
Affiliation(s)
- Filipe Resende
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Simone de Araújo
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Luciana Pádua Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Post-Graduation Program of Cell Biology, Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research and Development of Drugs, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
11
|
Kuśnierczyk P. Genetic differences between smokers and never-smokers with lung cancer. Front Immunol 2023; 14:1063716. [PMID: 36817482 PMCID: PMC9932279 DOI: 10.3389/fimmu.2023.1063716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Smoking is a major risk factor for lung cancer, therefore lung cancer epidemiological trends reflect the past trends of cigarette smoking to a great extent. The geographic patterns in mortality closely follow those in incidence. Although lung cancer is strongly associated with cigarette smoking, only about 15% of smokers get lung cancer, and also some never-smokers develop this malignancy. Although less frequent, lung cancer in never smokers is the seventh leading cause of cancer deaths in both sexes worldwide. Lung cancer in smokers and never-smokers differs in many aspects: in histological types, environmental factors representing a risk, and in genes associated with this disease. In this review, we will focus on the genetic differences between lung cancer in smokers versus never-smokers: gene expression, germ-line polymorphisms, gene mutations, as well as ethnic and gender differences. Finally, treatment options for smokers and never-smokers will be briefly reviewed.
Collapse
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
12
|
Patil MR, Bihari A. A comprehensive study of p53 protein. J Cell Biochem 2022; 123:1891-1937. [PMID: 36183376 DOI: 10.1002/jcb.30331] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The protein p53 has been extensively investigated since it was found 43 years ago and has become a "guardian of the genome" that regulates the division of cells by preventing the growth of cells and dividing them, that is, inhibits the development of tumors. Initial proof of protein existence by researchers in the mid-1970s was found by altering and regulating the SV40 big T antigen termed the A protein. Researchers demonstrated how viruses play a role in cancer by employing viruses' ability to create T-antigens complex with viral tumors, which was discovered in 1979 following a viral analysis and cancer analog research. Researchers later in the year 1989 explained that in Murine Friend, a virus-caused erythroleukemia, commonly found that p53 was inactivated to suggest that p53 could be a "tumor suppressor gene." The TP53 gene, encoding p53, is one of human cancer's most frequently altered genes. The protein-regulated biological functions of all p53s include cell cycles, apoptosis, senescence, metabolism of the DNA, angiogenesis, cell differentiation, and immunological response. We tried to unfold the history of the p53 protein, which was discovered long back in 1979, that is, 43 years of research on p53, and how p53's function has been developed through time in this article.
Collapse
Affiliation(s)
- Manisha R Patil
- Department of Computer-Applications, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Bihari
- Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Bizzarri AR. Conformational Heterogeneity and Frustration of the Tumor Suppressor p53 as Tuned by Punctual Mutations. Int J Mol Sci 2022; 23:12636. [PMID: 36293489 PMCID: PMC9604312 DOI: 10.3390/ijms232012636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational heterogeneity of the p53 tumor suppressor, the wild-type (p53wt) and mutated forms, was investigated by a computational approach, including the modeling and all atoms of the molecular dynamics (MD) simulations. Four different punctual mutations (p53R175H, p53R248Q, p53R273H, and p53R282W) which are known to affect the DNA binding and belong to the most frequent hot-spot mutations in human cancers, were taken into consideration. The MD trajectories of the wild-type and mutated p53 forms were analyzed by essential dynamics to extract the relevant collective motions and by the frustration method to evaluate the degeneracy of the energy landscape. We found that p53 is characterized by wide collective motions and its energy landscape exhibits a rather high frustration level, especially in the regions involved in the binding to physiological ligands. Punctual mutations give rise to a modulation of both the collective motions and the frustration of p53, with different effects depending on the mutation. The regions of p53wt and of the mutated forms characterized by a high frustration level are also largely involved in the collective motions. Such a correlation is discussed also in connection with the intrinsic disordered character of p53 and with its central functional role.
Collapse
Affiliation(s)
- Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| |
Collapse
|
14
|
The Therapeutic Potential of the Restoration of the p53 Protein Family Members in the EGFR-Mutated Lung Cancer. Int J Mol Sci 2022; 23:ijms23137213. [PMID: 35806218 PMCID: PMC9267050 DOI: 10.3390/ijms23137213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of precision medicine and targeted therapies, lung cancer remains the top cause of cancer-related mortality worldwide. The patients diagnosed with metastatic disease have a five-year survival rate lower than 6%. In metastatic disease, EGFR is the most common driver of mutation, with the most common co-driver hitting TP53. EGFR-positive patients are offered the frontline treatment with tyrosine kinase inhibitors, yet the development of resistance and the lack of alternative therapies make this group of patients only fit for clinical trial participation. Since mutant p53 is the most common co-driver in the metastatic setting, therapies reactivating the p53 pathway might serve as a promising alternative therapeutic approach in patients who have developed a resistance to tyrosine kinase inhibitors. This review focuses on the molecular background of EGFR-mutated lung cancer and discusses novel therapeutic options converging on the reactivation of p53 tumor suppressor pathways.
Collapse
|
15
|
P63 and P73 Activation in Cancers with p53 Mutation. Biomedicines 2022; 10:biomedicines10071490. [PMID: 35884795 PMCID: PMC9313412 DOI: 10.3390/biomedicines10071490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/27/2022] Open
Abstract
The members of the p53 family comprise p53, p63, and p73, and full-length isoforms of the p53 family have a tumor suppressor function. However, p53, but not p63 or p73, has a high mutation rate in cancers causing it to lose its tumor suppressor function. The top and second-most prevalent p53 mutations are missense and nonsense mutations, respectively. In this review, we discuss possible drug therapies for nonsense mutation and a missense mutation in p53. p63 and p73 activators may be able to replace mutant p53 and act as anti-cancer drugs. Herein, these p63 and p73 activators are summarized and how to improve these activator responses, particularly focusing on p53 gain-of-function mutants, is discussed.
Collapse
|