1
|
Merenstein A, Obeidat L, Zaravinos A, Bonavida B. The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications. Cancers (Basel) 2024; 17:19. [PMID: 39796650 PMCID: PMC11718991 DOI: 10.3390/cancers17010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients. However, not all patients responded to CPIs, due to various mechanisms of immune resistance. One such mechanism is that, in addition to PD-1 expression on CD8 T cells, other inhibitory receptors exist, such as Lymphocyte Activation Gene 3 (LAG-3), T cell Immunoglobulin Mucin 3 (TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). These inhibitory receptors might be active in the presence of the above approved CPIs. Clearly, it is clinically challenging to block all such inhibitory receptors simultaneously using conventional antibodies. To circumvent this difficulty, we sought to target a potential transcription factor that may be involved in the molecular regulation of more than one inhibitory receptor. The transcription factor Yin Yang1 (YY1) was found to regulate the expression of PD-1, LAG-3, and TIM3. Therefore, we hypothesized that targeting YY1 in CD8 T cells should inhibit the expression of these receptors and, thus, prevent the inactivation of the anti-tumor CD8 T cells by these receptors, by corresponding ligands to tumor cells. This strategy should result in the prevention of immune evasion, leading to the inhibition of tumor growth. In addition, this strategy will be particularly effective in a subset of cancer patients who were unresponsive to approved CPIs. In this review, we discuss the regulation of LAG-3 by YY1 as proof of principle for the potential use of targeting YY1 as an alternative therapeutic approach to preventing the immune evasion of cancer. We present findings on the molecular regulations of both YY1 and LAG-3 expressions, the direct regulation of LAG-3 by YY1, the various approaches to targeting YY1 to evade immune evasion, and their clinical challenges. We also present bioinformatic analyses demonstrating the overexpression of LAG-3, YY1, and PD-L1 in various cancers, their associations with immune infiltrates, and the fact that when LAG-3 is hypermethylated in its promoter region it correlates with a better overall survival. Hence, targeting YY1 in CD8 T cells will result in restoring the anti-tumor immune response and tumor regression. Notably, in addition to the beneficial effects of targeting YY1 in CD8 T cells to inhibit the expression of inhibitory receptors, we also suggest targeting YY1 overexpressed in the tumor cells, which will also inhibit PD-L1 expression and other YY1-associated pro-tumorigenic activities.
Collapse
Affiliation(s)
- Adam Merenstein
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| | - Loiy Obeidat
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
2
|
Di Carlo E, Sorrentino C. State of the art CRISPR-based strategies for cancer diagnostics and treatment. Biomark Res 2024; 12:156. [PMID: 39696697 DOI: 10.1186/s40364-024-00701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology is a groundbreaking and dynamic molecular tool for DNA and RNA "surgery". CRISPR/Cas9 is the most widely applied system in oncology research. It is a major advancement in genome manipulation due to its precision, efficiency, scalability and versatility compared to previous gene editing methods. It has shown great potential not only in the targeting of oncogenes or genes coding for immune checkpoint molecules, and in engineering T cells, but also in targeting epigenomic disturbances, which contribute to cancer development and progression. It has proven useful for detecting genetic mutations, enabling the large-scale screening of genes involved in tumor onset, progression and drug resistance, and in speeding up the development of highly targeted therapies tailored to the genetic and immunological profiles of the patient's tumor. Furthermore, the recently discovered Cas12 and Cas13 systems have expanded Cas9-based editing applications, providing new opportunities in the diagnosis and treatment of cancer. In addition to traditional cis-cleavage, they exhibit trans-cleavage activity, which enables their use as sensitive and specific diagnostic tools. Diagnostic platforms like DETECTR, which employs the Cas12 enzyme, that cuts single-stranded DNA reporters, and SHERLOCK, which uses Cas12, or Cas13, that specifically target and cleave single-stranded RNA, can be exploited to speed up and advance oncological diagnostics. Overall, CRISPR platform has the great potential to improve molecular diagnostics and the functionality and safety of engineered cellular medicines. Here, we will emphasize the potentially transformative impact of CRISPR technology in the field of oncology compared to traditional treatments, diagnostic and prognostic approaches, and highlight the opportunities and challenges raised by using the newly introduced CRISPR-based systems for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio University" of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
3
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
4
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
5
|
Monchusi B, Dube P, Takundwa MM, Kenmogne VL, Thimiri Govinda Raj DB. Advances in CRISPR-Cas systems for blood cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:261-284. [PMID: 39266186 DOI: 10.1016/bs.pmbts.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas systems have revolutionised precision medicine by enabling personalised treatments tailored to an individual's genetic profile. Various CRISPR technologies have been developed to target specific disease-causing genes in blood cancers, and some have advanced to clinical trials. Although some studies have explored the in vivo applications of CRISPR-Cas systems, several challenges continue to impede their widespread use. Furthermore, CRISPR-Cas technology has shown promise in improving the response of immunotherapies to blood cancers. The emergence of CAR-T cell therapy has shown considerable success in the targeting and correcting of disease-causing genes in blood cancers. Despite the promising potential of CRISPR-Cas in the treatment of blood cancers, issues related to safety, ethics, and regulatory approval remain significant hurdles. This comprehensive review highlights the transformative potential of CRISPR-Cas technology to revolutionise blood cancer therapy.
Collapse
Affiliation(s)
- Bernice Monchusi
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Phumuzile Dube
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Mutsa Monica Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Vanelle Larissa Kenmogne
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - Deepak Balaji Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
6
|
Behrouzian Fard G, Ahmadi MH, Gholamin M, Amirfakhrian R, Saberi Teimourian E, Karimi MA, Hosseini Bafghi M. CRISPR-Cas9 technology: As an efficient genome modification tool in the cancer diagnosis and treatment. Biotechnol Bioeng 2024; 121:472-488. [PMID: 37986642 DOI: 10.1002/bit.28603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Cancer is the second most common cause of death globally and is a major public health concern. Managing this disease is difficult due to its multiple stages and numerous genetic and epigenetic changes. Traditional cancer diagnosis and treatment methods have limitations, making it crucial to develop new modalities to combat the increasing burden of cancer. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has transformed genetic engineering due to its simplicity, specificity, low cytotoxicity, and cost-effectiveness. It has been proposed as an effective technology to enhance cancer diagnosis and treatment strategies. This article presents the most recent discoveries regarding the structure, mechanism, and delivery methods of the highly powerful genome editing tool, CRISPR-Cas9. In terms of diagnosis, the article examines the role of CRISPR-Cas9 in detecting microRNAs and DNA methylation, and discusses two popular gene detection techniques that utilize the CRISPR-Cas system: DNA endonuclease-targeted CRISPR trans reporter and specific high sensitivity enzymatic reporter unlocking. Regarding treatment, the article explores several genes that have been identified and modified by CRISPR-Cas9 for effective tumorigenesis of common cancers such as breast, lung, and colorectal cancer. The present review also addresses the challenges and ethical issues associated with using CRISPR-Cas9 as a diagnostic and therapeutic tool. Despite some limitations, CRISPR-Cas9-based cancer diagnosis has the potential to become the next generation of cancer diagnostic tools, and the continuous progress of CRISPR-Cas9 can greatly aid in cancer treatment.
Collapse
Affiliation(s)
- Ghazaleh Behrouzian Fard
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Ahmadi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Amirfakhrian
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Saberi Teimourian
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Karimi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hosseini Bafghi
- Department of Laboratory Sciences, Faculty of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
8
|
Zhang H, Vandesompele J, Braeckmans K, De Smedt SC, Remaut K. Nucleic acid degradation as barrier to gene delivery: a guide to understand and overcome nuclease activity. Chem Soc Rev 2024; 53:317-360. [PMID: 38073448 DOI: 10.1039/d3cs00194f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Gene therapy is on its way to revolutionize the treatment of both inherited and acquired diseases, by transferring nucleic acids to correct a disease-causing gene in the target cells of patients. In the fight against infectious diseases, mRNA-based therapeutics have proven to be a viable strategy in the recent Covid-19 pandemic. Although a growing number of gene therapies have been approved, the success rate is limited when compared to the large number of preclinical and clinical trials that have been/are being performed. In this review, we highlight some of the hurdles which gene therapies encounter after administration into the human body, with a focus on nucleic acid degradation by nucleases that are extremely abundant in mammalian organs, biological fluids as well as in subcellular compartments. We overview the available strategies to reduce the biodegradation of gene therapeutics after administration, including chemical modifications of the nucleic acids, encapsulation into vectors and co-administration with nuclease inhibitors and discuss which strategies are applied for clinically approved nucleic acid therapeutics. In the final part, we discuss the currently available methods and techniques to qualify and quantify the integrity of nucleic acids, with their own strengths and limitations.
Collapse
Affiliation(s)
- Heyang Zhang
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
9
|
Zhang L, He W, Fu R, Wang S, Chen Y, Xu H. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. Nucleic Acids Res 2023; 51:9880-9893. [PMID: 37615574 PMCID: PMC10570041 DOI: 10.1093/nar/gkad702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
High-fidelity clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) variants have been developed to reduce the off-target effects of CRISPR systems at a cost of efficiency loss. To systematically evaluate the efficiency and off-target tolerance of Cas9 variants in complex with different single guide RNAs (sgRNAs), we applied high-throughput viability screens and a synthetic paired sgRNA-target system to assess thousands of sgRNAs in combination with two high-fidelity Cas9 variants HiFi and LZ3. Comparing these variants against wild-type SpCas9, we found that ∼20% of sgRNAs are associated with a significant loss of efficiency when complexed with either HiFi or LZ3. The loss of efficiency is dependent on the sequence context in the seed region of sgRNAs, as well as at positions 15-18 in the non-seed region that interacts with the REC3 domain of Cas9, suggesting that the variant-specific mutations in the REC3 domain account for the loss of efficiency. We also observed various degrees of sequence-dependent off-target reduction when different sgRNAs are used in combination with the variants. Given these observations, we developed GuideVar, a transfer learning-based computational framework for the prediction of on-target efficiency and off-target effects with high-fidelity variants. GuideVar facilitates the prioritization of sgRNAs in the applications with HiFi and LZ3, as demonstrated by the improvement of signal-to-noise ratios in high-throughput viability screens using these high-fidelity variants.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rongjie Fu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuyue Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Dubey AK, Mostafavi E. Biomaterials-mediated CRISPR/Cas9 delivery: recent challenges and opportunities in gene therapy. Front Chem 2023; 11:1259435. [PMID: 37841202 PMCID: PMC10568484 DOI: 10.3389/fchem.2023.1259435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The use of biomaterials in delivering CRISPR/Cas9 for gene therapy in infectious diseases holds tremendous potential. This innovative approach combines the advantages of CRISPR/Cas9 with the protective properties of biomaterials, enabling accurate and efficient gene editing while enhancing safety. Biomaterials play a vital role in shielding CRISPR/Cas9 components, such as lipid nanoparticles or viral vectors, from immunological processes and degradation, extending their effectiveness. By utilizing the flexibility of biomaterials, tailored systems can be designed to address specific genetic diseases, paving the way for personalized therapeutics. Furthermore, this delivery method offers promising avenues in combating viral illnesses by precisely modifying pathogen genomes, and reducing their pathogenicity. Biomaterials facilitate site-specific gene modifications, ensuring effective delivery to infected cells while minimizing off-target effects. However, challenges remain, including optimizing delivery efficiency, reducing off-target effects, ensuring long-term safety, and establishing scalable production techniques. Thorough research, pre-clinical investigations, and rigorous safety evaluations are imperative for successful translation from the laboratory to clinical applications. In this review, we discussed how CRISPR/Cas9 delivery using biomaterials revolutionizes gene therapy and infectious disease treatment, offering precise and safe editing capabilities with the potential to significantly improve human health and quality of life.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Global Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Bengaluru, Karnataka, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Jin S, Yong H, Liu Y, Bao W. CRISPR/Cas9-mediated high-mobility group A2 knockout inhibits cell proliferation and invasion in papillary thyroid carcinoma cells. Adv Med Sci 2023; 68:409-416. [PMID: 37837800 DOI: 10.1016/j.advms.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/16/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE Metastasis and recurrence are the prognostic risk factor in patients with thyroid carcinoma. High-mobility group A2 (HMGA2) protein plays a crucial role in papillary thyroid carcinoma (PTC) metastasis. The aim of this study was to investigate the mechanisms underlying the HMGA2 effect on PTC cell proliferation and invasion. MATERIALS AND METHODS We used the CRISPR/Cas9 system to perform knockout of the HMGA2 gene in the human PTC cell line TPC-1. The knockout monoclonal cells were screened and verified by PCR analysis and genomic sequencing. Cell proliferation was examined after the knockout of the HMGA2 gene using cell counting kit-8 (CCK-8) assays. Furthermore, cell migration and invasion after the knockout were examined by cell scratch tests. Additionally, the changes in cell cycle and apoptosis after the knockout were detected by flow cytometry. RESULTS The results of the PCR analysis and the genomic sequencing confirmed that the human PTC TPC-1 cell line with knockout of HMGA2 gene was successfully established. The knockout of the HMGA2 gene significantly reduced the cell proliferation, growth, and invasion. Meanwhile, the knockout of the HMGA2 gene delayed the conversion of the G2/M phase and promoted cell necrosis. CONCLUSION The CRISPR/Cas9-mediated HMGA2 knockout in the TPC-1 cell line inhibited cell proliferation and invasion, which might be due to the blockage of the cell cycle in the G2/M phase and the promotion of cell necrosis.
Collapse
Affiliation(s)
- Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Hong Yong
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yousheng Liu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wuyuntu Bao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
12
|
Wei W, Chen ZN, Wang K. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence. Int J Mol Sci 2023; 24:12317. [PMID: 37569693 PMCID: PMC10418799 DOI: 10.3390/ijms241512317] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
As an emerging treatment strategy for malignant tumors, chimeric antigen receptor T (CAR-T) cell therapy has been widely used in clinical practice, and its efficacy has been markedly improved in the past decade. However, the clinical effect of CAR-T therapy is not so satisfying, especially in solid tumors. Even in hematologic malignancies, a proportion of patients eventually relapse after receiving CAR-T cell infusions, owing to the poor expansion and persistence of CAR-T cells. Recently, CRISPR/Cas9 technology has provided an effective approach to promoting the proliferation and persistence of CAR-T cells in the body. This technology has been utilized in CAR-T cells to generate a memory phenotype, reduce exhaustion, and screen new targets to improve the anti-tumor potential. In this review, we aim to describe the major causes limiting the persistence of CAR-T cells in patients and discuss the application of CRISPR/Cas9 in promoting CAR-T cell persistence and its anti-tumor function. Finally, we investigate clinical trials for CRISPR/Cas9-engineered CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an 710032, China;
| |
Collapse
|
13
|
Hosea R, Hillary S, Wu S, Kasim V. Targeting Transcription Factor YY1 for Cancer Treatment: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:3506. [PMID: 37444616 DOI: 10.3390/cancers15133506] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents a significant and persistent global health burden, with its impact underscored by its prevalence and devastating consequences. Whereas numerous oncogenes could contribute to cancer development, a group of transcription factors (TFs) are overactive in the majority of tumors. Targeting these TFs may also combat the downstream oncogenes activated by the TFs, making them attractive potential targets for effective antitumor therapeutic strategy. One such TF is yin yang 1 (YY1), which plays crucial roles in the development and progression of various tumors. In preclinical studies, YY1 inhibition has shown efficacy in inhibiting tumor growth, promoting apoptosis, and sensitizing tumor cells to chemotherapy. Recent studies have also revealed the potential of combining YY1 inhibition with immunotherapy for enhanced antitumor effects. However, clinical translation of YY1-targeted therapy still faces challenges in drug specificity and delivery. This review provides an overview of YY1 biology, its role in tumor development and progression, as well as the strategies explored for YY1-targeted therapy, with a focus on their clinical implications, including those using small molecule inhibitors, RNA interference, and gene editing techniques. Finally, we discuss the challenges and current limitations of targeting YY1 and the need for further research in this area.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
14
|
Zhang L, He W, Fu R, Xu H. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532856. [PMID: 36993488 PMCID: PMC10055116 DOI: 10.1101/2023.03.16.532856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
High-fidelity Cas9 variants have been developed to reduce the off-target effects of CRISPR systems at a cost of efficiency loss. To systematically evaluate the efficiency and off-target tolerance of Cas9 variants in complex with different single guide RNAs (sgRNAs), we applied high-throughput viability screens and a synthetic paired sgRNA-target system to assess thousands of sgRNAs in combination with two high-fidelity Cas9 variants HiFi and LZ3. Comparing these variants against WT SpCas9, we found that ~20% of sgRNAs are associated with a significant loss of efficiency when complexed with either HiFi or LZ3. The loss of efficiency is dependent on the sequence context in the seed region of sgRNAs, as well as at positions 15-18 in the non-seed region that interacts with the REC3 domain of Cas9, suggesting that the variant-specific mutations in REC3 domain account for the loss of efficiency. We also observed various degrees of sequencedependent off-target reduction when different sgRNAs are used in combination with the variants. Given these observations, we developed GuideVar, a transfer-learning-based computational framework for the prediction of on-target efficiency and off-target effect with high-fidelity variants. GuideVar facilitates the prioritization of sgRNAs in the applications with HiFi and LZ3, as demonstrated by the improvement of signal-to-noise ratios in high-throughput viability screens using these high-fidelity variants.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rongjie Fu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
15
|
Genome editing in cancer: Challenges and potential opportunities. Bioact Mater 2023; 21:394-402. [PMID: 36185740 PMCID: PMC9483578 DOI: 10.1016/j.bioactmat.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Ever since its mechanism was discovered back in 2012, the CRISPR/Cas9 system have revolutionized the field of genome editing. While at first it was seen as a therapeutic tool mostly relevant for curing genetic diseases, it has been recently shown to also hold the potential to become a clinically relevant therapy for cancer. However, there are multiple challenges that must be addressed prior to clinical testing. Predominantly, the safety of the system when used for in-vivo therapies, including off-target activity and the effects of the double strand break induction on genomic stability. Here, we will focus on the inherent challenges in the CRISPR/Cas9 system and discuss various opportunities to overcoming these challenges. In recent years, several works have shown that knocking down key genes by CRISPR/Cas9 based could potentially be a new type of cancer therapy. This has been made possible due to advances in the fields of In-vivo delivery, such as lentiviral vectors and lipid nanoparticles. Limiting CRISPR/Cas9 activity to the tumor and minimizing off-target activity are challenges that must be overcome before proceeding to the clinic. We review approaches arising from multiple disciplines that could overcome these challenges. The combination of these multi-disciplinary approaches should be able to overcome the different challenges and open the way to the clinic.
Collapse
|
16
|
Hou S, Hasnat M, Chen Z, Liu Y, Faran Ashraf Baig MM, Liu F, Chen Z. Application Perspectives of Nanomedicine in Cancer Treatment. Front Pharmacol 2022; 13:909526. [PMID: 35860027 PMCID: PMC9291274 DOI: 10.3389/fphar.2022.909526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a disease that seriously threatens human health. Based on the improvement of traditional treatment methods and the development of new treatment modes, the pattern of cancer treatment is constantly being optimized. Nanomedicine plays an important role in these evolving tumor treatment modalities. In this article, we outline the applications of nanomedicine in three important tumor-related fields: chemotherapy, gene therapy, and immunotherapy. According to the current common problems, such as poor targeting of first-line chemotherapy drugs, easy destruction of nucleic acid drugs, and common immune-related adverse events in immunotherapy, we discuss how nanomedicine can be combined with these treatment modalities, provide typical examples, and summarize the advantages brought by the application of nanomedicine.
Collapse
Affiliation(s)
- Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Yinong Liu
- Hospital Laboratory of Nangjing Lishui People’s Hospital, Nangjing, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional, and Pharmaceutical Nanomaterials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| |
Collapse
|
17
|
Bhattacharjee R, Das Roy L, Choudhury A. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discov Oncol 2022; 13:45. [PMID: 35674844 PMCID: PMC9174617 DOI: 10.1007/s12672-022-00509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
The research focus on CRISPR/Cas9 has gained substantial concentration since the discovery of 'an unusual repeat sequence' reported by Ishino et al. (J Bacteriol 169:5429-5433, 1987) and the journey comprises the recent Nobel Prize award (2020), conferred to Emmanuelle Charpentier and Jennifer Doudna. Cumulatively, the CRISPR has a short, compact, and most discussed success of its application in becoming one of the most versatile and paradigm shifting technologies of Biological Research. Today, the CRISPR/Cas9 genome editing system is almost ubiquitously utilized in many facets of biological research where its tremendous gene manipulation capability has been harnessed to create miracles. From 2012, the CRISPR/Cas 9 system has been showcased in almost 15,000 research articles in the PubMed database, till date. Backed by some strong molecular evidence, the CRISPR system has been utilized in a few clinical trials targeted towards various pathologies. While the area covered by CRISPR is cosmic, this review will focus mostly on the utilization of CRISPR/Cas9 technology in the field of cancer therapy.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | | | | |
Collapse
|
18
|
Li X, Xiong K, Bi D, Zhao C. A Novel CRISPR/Cas9 Screening Potential Index for Prognostic and Immunological Prediction in Low-Grade Glioma. Front Genet 2022; 13:839884. [PMID: 35586564 PMCID: PMC9109250 DOI: 10.3389/fgene.2022.839884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/18/2022] [Indexed: 12/05/2022] Open
Abstract
Glioma is a malignancy with the highest mortality in central nervous system disorders. Here, we implemented the computational tools based on CRISPR/Cas9 to predict the clinical outcomes and biological characteristics of low-grade glioma (LGG). The transcriptional expression profiles and clinical phenotypes of LGG patients were retrieved from The Cancer Genome Atlas and Chinese Glioma Genome Atlas. The CERES algorithm was used to screen for LGG-lethal genes. Cox regression and random survival forest were adopted for survival-related gene selection. Nonnegative matrix factorization distinguished patients into different clusters. Single-sample gene set enrichment analysis was employed to create a novel CRISPR/Cas9 screening potential index (CCSPI), and patients were stratified into low- and high-CCSPI groups. Survival analysis, area under the curve values (AUCs), nomogram, and tumor microenvironment exploration were included for the model validation. A total of 20 essential genes in LGG were used to classify patients into two clusters and construct the CCSPI system. High-CCSPI patients were associated with a worse prognosis of both training and validation set (p < 0.0001) and higher immune fractions than low-CCSPI individuals. The CCSPI system had a promising performance with 1-, 3-, and 5-year AUCs of 0.816, 0.779, 0.724, respectively, and the C-index of the nomogram model reached 0.743 (95% CI = 0.725–0.760). Immune-infiltrating cells and immune checkpoints such as PD-1/PD-L1 and POLD3 were positively associated with CCSPI. In conclusion, the CCSPI had prognostic value in LGG, and the model will deepen our cognition of the interaction between the CNS and immune system in different LGG subtypes.
Collapse
Affiliation(s)
- Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kewei Xiong
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,School of Mathematics and Statistics, Central China Normal University, Wuhan, China
| | - Dong Bi
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|