1
|
Khan AU, Sengupta B, Das IJ. The role of volume averaging effects, beam hardening, and phantom scatter in dosimetry of grid therapy. Phys Med Biol 2024; 69:225008. [PMID: 39526354 DOI: 10.1088/1361-6560/ad8c91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Objective. Current reference dosimetry methods for spatially fractionated radiation therapy (SFRT) assume a negligible beam quality change, perturbation, or volume-averaging correction factor. Therefore, the aim of this work was to investigate the impact of the grid collimators on the dosimetric characteristics of a 6 MV photon beam. A detector-specific correction factor,kQgrid, Qmsr fgrid,fmsr, was proposed. Several dosimeters were evaluated for their ability to measure both reference dose and grid output factors (GOFs).Approach. A Monte Carlo model of a grid collimator was created to study the change in the depth dose characteristics with the grid collimator. The impact of the collimator on the percent depth dose (PDD), electron contamination, and average photon energy was investigated. ThekQgrid, Qmsr fgrid,fmsrcorrection factors were calculated for two reference-class micro ion chambers. The reference dose and GOFs were measured with a grid collimator using six ion chambers, two silicon diodes, and a diamond detector.Main results.The PDD in the presence of the grid was observed to be steeper compared to the open field. The average photon energy increased from 1.33 MeV to 1.74 MeV with the presence of the grid collimator. The dose contribution by scattered photons was significantly higher at deeper regions for the open field compared to the grid field. ThekQgrid, Qmsr fgrid,fmsrcorrection was calculated to be <0.5%. The reference dose for all detectors, except for the CC13 and CC04 chambers, was within 1% of each other. The CC13 under-responded up to 3.2% due to volume-averaging effects. The GOFs calculated for all detectors, except Razor and A16, were within 1% of each other.Significance. The phantom scatter dictates the change in the PDD with the presence of the grid. The micro ion chambers exhibit negligiblekQgrid, Qmsr fgrid,fmsrcorrection. All detectors, except the CC13 ion chamber, were found to be suitable for SFRT reference dosimetry.
Collapse
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Bishwambhar Sengupta
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| |
Collapse
|
2
|
Snider JW, Rustin GO, Mayr NA, Molitoris J, Chhabra AM, Kang M, Simone CB, Mossahebi S, Griffin R, Mohiuddin M, Zhang H, Amendola B, Perez N, Tubin S, Limoli C, Marter K, Mahadevan A, Coleman N, Ahmed M. The Radiosurgery Society Working Groups on GRID, LATTICE, Microbeam, and FLASH Radiotherapies: 2022 - 2023 Advancements Symposium and Subsequent Progress Made. Pract Radiat Oncol 2024:S1879-8500(24)00282-0. [PMID: 39447865 DOI: 10.1016/j.prro.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Since the inaugural workshop "Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy." hosted by the NCI and sponsored by the Radiosurgery Society (RSS), growing collaborations and investigations have ensued among experts, practitioners, and researchers. The RSS GRID, Lattice, Microbeam & FLASH (GLMF) Working Groups were formed as a framework for these efforts and have focused on advancing the understanding of the biology, technical/physical parameters, trial design, and clinical practice of these new radiation therapy modalities. METHODS AND MATERIALS In view of the steadily increasing clinical interest in SFRT and FLASH, a full-day symposium entitled "Advancements in GRID, LATTICE, and FLASH Radiotherapy Symposium" was established in 2022 that immediately preceded the RSS scientific meeting. This well-attended symposium focused on clinical, technical, and physics approaches for SFRT, while closely examining relevant radiobiological underpinnings. Practical clinical trial development was a highlighted discussion. An additional section reviewed proton therapy and other particle-based techniques for the delivery of GRID and Lattice therapy. A treatment planning and delivery tutorial for GRID, Lattice, and proton GRID/Lattice was directed towards the real-world considerations for the development of new clinical GRID or LATTICE programs. An overall similar approach was applied to the discussion of FLASH. This report summarizes the content of the first GLMF Symposium and related work of the RSS GLMF Working Groups in the field of heterogeneous and ultra-high dose rate irradiation, over approximately 2 years. RESULTS The GLMF Working Groups have continued to expand in membership and attendance, and several resultant trial concepts, research efforts, academic discussions, and peer-reviewed publications have followed as the number of institutions and practitioners utilizing SFRT and FLASH continues to grow. CONCLUSIONS The GLFM Working Groups and the RSS continue to demonstrate excellent progress in proliferating use of and improving understanding of SFRT and ultra-high dose rate radiotherapy techniques.
Collapse
Affiliation(s)
- J W Snider
- South Florida Proton Therapy Institute; Delray Beach, FL.
| | | | | | | | | | | | | | - Sina Mossahebi
- University of Maryland School of Medicine; Baltimore, MD
| | - Robert Griffin
- University of Arkansas for Medical Sciences; Little Rock, AR
| | | | - Hualin Zhang
- University of Southern California; Los Angeles, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Xu Z, Balik S, Woods K, Shen Z, Cheng C, Cui J, Gallogly H, Chang E, Lukas L, Lim A, Natsuaki Y, Ye J, Ma L, Zhang H. Dosimetric characterization for GRID collimator-based spatially fractionated radiation therapy: Dosimetric parameter acquisition and machine interchangeability investigation. J Appl Clin Med Phys 2024; 25:e14410. [PMID: 38810092 PMCID: PMC11302805 DOI: 10.1002/acm2.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.
Collapse
Affiliation(s)
- Zhengzheng Xu
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Salim Balik
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Kaley Woods
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Zhilei Shen
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Chihyao Cheng
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Jing Cui
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Haihong Gallogly
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Eric Chang
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Lauren Lukas
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Andrew Lim
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Yutaka Natsuaki
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Jason Ye
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Lijun Ma
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| | - Hualin Zhang
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Li H, Mayr NA, Griffin RJ, Zhang H, Pokhrel D, Grams M, Penagaricano J, Chang S, Spraker MB, Kavanaugh J, Lin L, Sheikh K, Mossahebi S, Simone CB, Roberge D, Snider JW, Sabouri P, Molineu A, Xiao Y, Benedict SH. Overview and Recommendations for Prospective Multi-institutional Spatially Fractionated Radiation Therapy Clinical Trials. Int J Radiat Oncol Biol Phys 2024; 119:737-749. [PMID: 38110104 PMCID: PMC11162930 DOI: 10.1016/j.ijrobp.2023.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/30/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE The highly heterogeneous dose delivery of spatially fractionated radiation therapy (SFRT) is a profound departure from standard radiation planning and reporting approaches. Early SFRT studies have shown excellent clinical outcomes. However, prospective multi-institutional clinical trials of SFRT are still lacking. This NRG Oncology/American Association of Physicists in Medicine working group consensus aimed to develop recommendations on dosimetric planning, delivery, and SFRT dose reporting to address this current obstacle toward the design of SFRT clinical trials. METHODS AND MATERIALS Working groups consisting of radiation oncologists, radiobiologists, and medical physicists with expertise in SFRT were formed in NRG Oncology and the American Association of Physicists in Medicine to investigate the needs and barriers in SFRT clinical trials. RESULTS Upon reviewing the SFRT technologies and methods, this group identified challenges in several areas, including the availability of SFRT, the lack of treatment planning system support for SFRT, the lack of guidance in the physics and dosimetry of SFRT, the approximated radiobiological modeling of SFRT, and the prescription and combination of SFRT with conventional radiation therapy. CONCLUSIONS Recognizing these challenges, the group further recommended several areas of improvement for the application of SFRT in cancer treatment, including the creation of clinical practice guidance documents, the improvement of treatment planning system support, the generation of treatment planning and dosimetric index reporting templates, and the development of better radiobiological models through preclinical studies and through conducting multi-institution clinical trials.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology, John Hopkins University, Baltimore, Maryland.
| | - Nina A Mayr
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jose Penagaricano
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Sha Chang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | | | - James Kavanaugh
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Khadija Sheikh
- Department of Radiation Oncology, John Hopkins University, Baltimore, Maryland
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - David Roberge
- Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - James W Snider
- South Florida Proton Therapy Institute, 5280 Linton Blvd, Delray Beach, Florida
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - Andrea Molineu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stanley H Benedict
- Department of Radiation Oncology, University of California, Davis, Sacramento, California
| |
Collapse
|
5
|
Ahmed MM, Wu X, Mohiuddin M, Perez NC, Zhang H, Amendola BE, Malachowska B, Mohiuddin M, Guha C. Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management. Semin Radiat Oncol 2024; 34:310-322. [PMID: 38880540 DOI: 10.1016/j.semradonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Treating radioresistant and bulky tumors is challenging due to their inherent resistance to standard therapies and their large size. GRID and lattice spatially fractionated radiation therapy (simply referred to GRID RT and LRT) offer promising techniques to tackle these issues. Both approaches deliver radiation in a grid-like or lattice pattern, creating high-dose peaks surrounded by low-dose valleys. This pattern enables the destruction of significant portions of the tumor while sparing healthy tissue. GRID RT uses a 2-dimensional pattern of high-dose peaks (15-20 Gy), while LRT delivers a three-dimensional array of high-dose vertices (10-20 Gy) spaced 2-5 cm apart. These techniques are beneficial for treating a variety of cancers, including soft tissue sarcomas, osteosarcomas, renal cell carcinoma, melanoma, gastrointestinal stromal tumors (GISTs), pancreatic cancer, glioblastoma, and hepatocellular carcinoma. The specific grid and lattice patterns must be carefully tailored for each cancer type to maximize the peak-to-valley dose ratio while protecting critical organs and minimizing collateral damage. For gynecologic cancers, the treatment plan should align with the international consensus guidelines, incorporating concurrent chemotherapy for optimal outcomes. Despite the challenges of precise dosimetry and patient selection, GRID RT and LRT can be cost-effective using existing radiation equipment, including particle therapy systems, to deliver targeted high-dose radiation peaks. This phased approach of partial high-dose induction radiation therapy with standard fractionated radiation therapy maximizes immune modulation and tumor control while reducing toxicity. Comprehensive treatment plans using these advanced techniques offer a valuable framework for radiation oncologists, ensuring safe and effective delivery of therapy for radioresistant and bulky tumors. Further clinical trials data and standardized guidelines will refine these strategies, helping expand access to innovative cancer treatments.
Collapse
Affiliation(s)
- Mansoor M Ahmed
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY.
| | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, FL
| | - Majid Mohiuddin
- Radiation Oncology Consultants and Northwestern Proton Center, Warrenville, IL
| | | | - Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA
| | | | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY
| |
Collapse
|
6
|
Prado A, Martí J, García de Acilu P, Zucca D, Ángel de la Casa M, García J, Alonso L, Martínez A, Montero Á, Rubio C, Fernández-Letón P. Dosimetrical and geometrical parameters in single-fraction lattice radiotherapy for the treatment of bulky tumors: Insights from initial clinical experience. Phys Med 2024; 123:103408. [PMID: 38889590 DOI: 10.1016/j.ejmp.2024.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
PURPOSE This study aims to investigate lattice radiotherapy (LRT) for bulky tumor in 10 patients, analyzing geometrical and dosimetrical parameters and correlations among variables. METHODS Patients were prescribed a single-fraction of 18 Gy to 50 % of each spherical vertex (1.5 cm diameter). Vertices were arranged in equidistant planes forming a triangular pattern. Center-to-center distance (Dc-c) between vertices was varied from 4 to 5 cm. A new method for calculating the valley-to-peak dose ratio (VPDR) was proposed and compared to other two from existing literature. GTV volumes (VGTV), vertex number (Nvert), low-dose related parameters and vertex D99%, D50%, and D1% were recorded. Beam-on time and Monitor Units (MU) were also evaluated. Correlations were assessed using Spearman's coefficient, with significant differences analyzed using Mann-Whitney U test. RESULTS Tumor volumes ranged from 417 to 3615 cm3. Median vertex number was 14.5 (IQR:11.3-17.8). VPDR ranged from 0.16 to 0.28. Median D99% spanned from 10.0 to 13.7 Gy, median D50% exceeded 18.0 Gy, and median D1% surpassed 23.3 Gy. Periphery dose remained under 4.0 Gy. Plans exhibited high modulation, with median beam-on time and MU of 8.8 min (IQR:8.2-10.1) and 13,069 MU (IQR:11574-13639). Significant correlations were found between Nvert and VGTV (p < 0.01), MU (p < 0.02) and beam-on time (p < 0.01) and between Dc-c and two VPDR definitions (p < 0.02) and periphery dose (p < 0.01). Significant differences were observed among the three valley dose definitions (p < 0.01) and the three peak dose definitions (p < 0.01). CONCLUSIONS Reporting geometrical and dosimetrical parameters in LRT is crucial, alongside the need for unified definitions of valley and peak doses.
Collapse
Affiliation(s)
- Alejandro Prado
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain.
| | - Jaime Martí
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Paz García de Acilu
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario de Toledo. Toledo, Spain
| | - Daniel Zucca
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Miguel Ángel de la Casa
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Juan García
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Leyre Alonso
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Ana Martínez
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Ángel Montero
- Departamento de Oncología Radioterápica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Carmen Rubio
- Departamento de Oncología Radioterápica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| | - Pedro Fernández-Letón
- Departamento de Radiofísica y Protección Radiológica. Hospital Universitario HM Sanchinarro. HM Hospitales. Madrid, Spain
| |
Collapse
|
7
|
Zhang H, Wu X. Which Modality of SFRT Should be Considered First for Bulky Tumor Radiation Therapy, GRID or LATTICE? Semin Radiat Oncol 2024; 34:302-309. [PMID: 38880539 DOI: 10.1016/j.semradonc.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially fractionated radiation therapy (SFRT), also known as the GRID and LATTICE radiotherapy (GRT, LRT), the concept of treating tumors by delivering a spatially modulated dose with highly non-uniform dose distributions, is a treatment modality of growing interest in radiation oncology, physics, and radiation biology. Clinical experience in SFRT has suggested that GRID and LATTICE therapy can achieve a high response and low toxicity in the treatment of refractory and bulky tumors. Limited initially to GRID therapy using block collimators, advanced, and versatile multi-leaf collimators, volumetric modulated arc technologies and particle therapy have since increased the capabilities and individualization of SFRT and expanded the clinical investigation of SFRT to various dosing regimens, multiple malignancies, tumor types and sites. As a 3D modulation approach outgrown from traditional 2D GRID, LATTICE therapy aims to reconfigure the traditional SFRT as spatial modulation of the radiation is confined solely to the tumor volume. The distinctively different beam geometries used in LATTICE therapy have led to appreciable variations in dose-volume distributions, compared to GRID therapy. The clinical relevance of the variations in dose-volume distribution between LATTICE and traditional GRID therapies is a crucial factor in determining their adoption in clinical practice. In this Point-Counterpoint contribution, the authors debate the pros and cons of GRID and LATTICE therapy. Both modalities have been used in clinics and their applicability and optimal use have been discussed in this article.
Collapse
Affiliation(s)
- Hualin Zhang
- Executive Medical Physics Associates, Miami, FL..
| | - Xiaodong Wu
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA
| |
Collapse
|
8
|
Prezado Y, Grams M, Jouglar E, Martínez-Rovira I, Ortiz R, Seco J, Chang S. Spatially fractionated radiation therapy: a critical review on current status of clinical and preclinical studies and knowledge gaps. Phys Med Biol 2024; 69:10TR02. [PMID: 38648789 DOI: 10.1088/1361-6560/ad4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.
Collapse
Affiliation(s)
- Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, F-91400, Orsay, France
- New Approaches in Radiotherapy Lab, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, A Coruña, E-15706, Spain
- Oportunius Program, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America
| | - Emmanuel Jouglar
- Institut Curie, PSL Research University, Department of Radiation Oncology, F-75005, Paris and Orsay Protontherapy Center, F-91400, Orsay, France
| | - Immaculada Martínez-Rovira
- Physics Department, Universitat Auto`noma de Barcelona, E-08193, Cerdanyola del Valle`s (Barcelona), Spain
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology, 1600 Divisadero Street, San Francisco, CA 94143, United States of America
| | - Joao Seco
- Division of Biomedical physics in Radiation Oncology, DKFZ-German Cancer Research Center, Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sha Chang
- Dept of Radiation Oncology and Department of Biomedical Engineering, University of North Carolina School of Medicine, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolin State University, United States of America
| |
Collapse
|
9
|
Zhang H, Ma L, Lim A, Ye J, Lukas L, Li H, Mayr NA, Chang EL. Dosimetric Validation for Prospective Clinical Trial of GRID Collimator-Based Spatially Fractionated Radiation Therapy: Dose Metrics Consistency and Heterogeneous Pattern Reproducibility. Int J Radiat Oncol Biol Phys 2024; 118:565-573. [PMID: 37660738 DOI: 10.1016/j.ijrobp.2023.08.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE Dose heterogeneity within a tumor target is likely responsible for the biologic effects and local tumor control from spatially fractionated radiation therapy (SFRT). This study used a commercially available GRID-pattern dose mudulated nonuniform radiation therapy (GRID) collimator to assess the interplan variability of heterogeneity dose metrics in patients with various bulky tumor sizes and depths. METHODS AND MATERIALS The 3-dimensional heterogeneity metrics of 14 bulky tumors, ranging from 155 to 2161 cm3 in volume, 6 to 23 cm in equivalent diameter, and 3 to 13 cm in depth, and treated with GRID collimator-based SFRT were studied. A prescription dose of 15 Gy was given at the tumor center with 6 MV photons. The dose-volume histogram indices, dose heterogeneity parameters, and peak/valley dose ratios were derived; the equivalent uniform doses of cancer cells with various radiosensitivities in each plan were estimated. To account for the spatial fractionation, high dose core number density of the tumor target was defined and calculated. RESULTS Among 14 plans, the dose-volume histogram indices D5, D10, D50, D90, and D95 (doses covering 5%, 10%, 50%, 90%, and 95% of the target volume) were found within 10% variation. The dose ratio of D10/D90 also showed a moderate consistency (range, 3.9-5.0; mean, 4.4). The equivalent uniform doses were consistent, ranging from 4.3 to 5.5 Gy, mean 4.6 Gy, for radiosensitive cancer cells and from 5.8 to 6.9 Gy, mean 6.2 Gy, for radioresistant cancer cells. The high dose core number density was within 20% among all plans. CONCLUSIONS GRID collimator-based SFRT delivers a consistent heterogeneity dose distribution and high dose core density across bulky tumor plans. The interplan reproducibility and simplicity of GRID therapy may be useful for certain clinical indications and interinstitutional clinical trial design, and its heterogeneity metrics may help guide multileaf-collimator-based SFRT planning to achieve similar or further optimized dose distributions.
Collapse
Affiliation(s)
- Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California.
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Andrew Lim
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Jason Ye
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Lauren Lukas
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, John Hopkins University, Baltimore, Maryland
| | - Nina A Mayr
- College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Eric Lin Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| |
Collapse
|
10
|
At B, Velayudham R. Assessing dosimetric advancements in spatially fractionated radiotherapy: From grids to lattices. Med Dosim 2024; 49:206-214. [PMID: 38290896 DOI: 10.1016/j.meddos.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Spatially fractionated radiotherapy (SFRT) techniques have undergone transformative evolution, encompassing physical GRID therapy, MLC-based grids, virtual TOMO GRIDs, and 3-dimensional high-dose lattices. Historical roots trace back to Alban Köhler's pioneering Spatially fractionated grid therapy (SFGRT), utilizing physical grids for dose modulation. Technological innovations introduced multi-leaf collimators (MLCs), enabling adaptable spatial fractionation and a shift to the broader term "SFRT." Physics and dosimetry-based studies have demonstrated the feasibility of computerized treatment planning and identified the potential to minimize the peripheral dose while using such high-dose therapy. Meanwhile, 3-dimensional high-dose lattices showed enhanced precision. The meticulous placement of high-dose volumetric spheres enables a reduction in the volume of high-dose spills. Advancements in 3-dimensional lattices through intensity-modulated radiotherapy and volumetric modulated arc therapy (VMAT) techniques offer enhanced therapeutic options. A database of SFRT studies identified 723 articles. This review shows the trajectory of SFRT from traditional grids to MLC-based approaches, virtual TOMO GRIDs, and innovative 3-dimensional lattices. Technological innovations, dosimetric advancements, and clinical feasibility have underscored the continual progress in refining spatially fractionated radiotherapy. The integration of MLCs and lattice techniques has demonstrated improved therapeutic outcomes, solidifying their relevance in modern radiation therapy protocols. Research has yet to reveal a clear correlation between treatment outcomes and dosimetric parameters. Additional investigations are necessary to assess the impact of various dosimetric parameters, such as EUD, peak-to-valley ratio (PVDR), D5%, D10%, D20%, D90%, etc., on the effectiveness of treatments.
Collapse
Affiliation(s)
- Bhagyalakshmi At
- Vellore Institute of Technology, Vellore Campus, Katpadi, Tamil Nadu 500036, India; American Oncology Institute at Baby Memorial Hospital, Kozhikode, Kerala 673004, India
| | | |
Collapse
|
11
|
Grams MP, Deufel CL, Kavanaugh JA, Corbin KS, Ahmed SK, Haddock MG, Lester SC, Ma DJ, Petersen IA, Finley RR, Lang KG, Spreiter SS, Park SS, Owen D. Clinical aspects of spatially fractionated radiation therapy treatments. Phys Med 2023; 111:102616. [PMID: 37311338 DOI: 10.1016/j.ejmp.2023.102616] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
PURPOSE To provide clinical guidance for centers wishing to implement photon spatially fractionated radiation therapy (SFRT) treatments using either a brass grid or volumetric modulated arc therapy (VMAT) lattice approach. METHODS We describe in detail processes which have been developed over the course of a 3-year period during which our institution treated over 240 SFRT cases. The importance of patient selection, along with aspects of simulation, treatment planning, quality assurance, and treatment delivery are discussed. Illustrative examples involving clinical cases are shown, and we discuss safety implications relevant to the heterogeneous dose distributions. RESULTS SFRT can be an effective modality for tumors which are otherwise challenging to manage with conventional radiation therapy techniques or for patients who have limited treatment options. However, SFRT has several aspects which differ drastically from conventional radiation therapy treatments. Therefore, the successful implementation of an SFRT treatment program requires the multidisciplinary expertise and collaboration of physicians, physicists, dosimetrists, and radiation therapists. CONCLUSIONS We have described methods for patient selection, simulation, treatment planning, quality assurance and delivery of clinical SFRT treatments which were built upon our experience treating a large patient population with both a brass grid and VMAT lattice approach. Preclinical research and patient trials aimed at understanding the mechanism of action are needed to elucidate which patients may benefit most from SFRT, and ultimately expand its use.
Collapse
Affiliation(s)
- Michael P Grams
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Christopher L Deufel
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - James A Kavanaugh
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Kimberly S Corbin
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Safia K Ahmed
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Michael G Haddock
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Ivy A Petersen
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Randi R Finley
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Karen G Lang
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sheri S Spreiter
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|