1
|
Niscola P, Gianfelici V, Catalano G, Giovannini M, Mazzone C, Noguera NI, de Fabritiis P. Acute Myeloid Leukemia in Older Patients: From New Biological Insights to Targeted Therapies. Curr Oncol 2024; 31:6632-6658. [PMID: 39590121 PMCID: PMC11592437 DOI: 10.3390/curroncol31110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous blood-related neoplasm that predominantly afflicts older adults with a poor prognosis due to their physical condition and the presence of medical accompanying comorbidities, adverse biological disease features, and suitability for induction intensive chemotherapy and allogenic stem cells transplantation. Recent research into the molecular and biological factors contributing to disease development and progression has led to significant advancements in treatment approaches for older patients with AML. This review article discusses the latest biological and therapeutic developments that are transforming the management of AML in older adults.
Collapse
Affiliation(s)
- Pasquale Niscola
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Valentina Gianfelici
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Gianfranco Catalano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
| | - Marco Giovannini
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Carla Mazzone
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy
| | - Paolo de Fabritiis
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
| |
Collapse
|
2
|
Liu S, Wang X, Sun X, Wei B, Jiang Z, Ouyang Y, Ozaki T, Yu M, Liu Y, Zhang R, Zhu Y. Oridonin inhibits bladder cancer survival and immune escape by covalently targeting HK1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155426. [PMID: 38367425 DOI: 10.1016/j.phymed.2024.155426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Hexokinase I (HK1) is highly expressed in a variety of malignancies, regulates glycolytic pathway in cancer cells, and thus considered to be one of the promising molecular targets for cancer therapy. Nonetheless, the development of a specific inhibitor against HK1 remains elusive. PURPOSE This study aims to elucidate the mechanism by which oridonin inhibits the proliferation and immune evasion of bladder cancer cells, specifically through the suppression of HK1. METHODS To examine the mechanisms by which oridonin directly binds to cysteines of HK1 and inhibits bladder cancer growth, this study utilized a variety of methods. These included the Human Proteome Microarray, Streptavidin-agarose affinity assay, Biolayer Interferometry (BLI) ainding analysis, Mass Spectrometry, Cellular Thermal Shift Assay, Extracellular Acidification Rate measurement, and Xenotransplant mouse models. RESULTS As indicated by our current findings, oridonin forms a covalent bond with Cys-813, located adjacently to glucose-binding domain of HK1. This suppresses the enzymatic activity of HK1, leading to an effective reduction of glycolysis, which triggers cell death via apoptosis in cells derived from human bladder cancer. Significantly, oridonin also inhibits lactate-induced PD-L1 expression in bladder cancer. Furthermore, pairing oridonin with a PD-L1 inhibitor amplifies the cytotoxicity of CD8+ T cells against bladder cancer. CONCLUSION This research strongly suggests that oridonin serves as a covalent inhibitor of HK1. Moreover, it indicates that functional cysteine residue of HK1 could operate as viable targets for selective inhibition. Consequently, oridonin exhibits substantial potential for the evolution of anti-cancer agents targeting the potential therapeutic target HK1 via metabolism immunomodulation.
Collapse
Affiliation(s)
- Shuangjie Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China; Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojie Sun
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Baojun Wei
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhaowei Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yongze Ouyang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University. Key Laboratory of Transgenetic Animal Research. No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Nardozza AM, Guarnera L, Travaglini S, Ottone T, Divona M, De Bellis E, Savi A, Banella C, Noguera NI, Di Fusco D, Monteleone I, Voso MT. Characterization of a novel IDH2-R159H mutation in acute myeloid leukaemia: Effects on cell metabolism and differentiation. Br J Haematol 2024; 204:719-723. [PMID: 38009542 DOI: 10.1111/bjh.19216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Anna Maria Nardozza
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luca Guarnera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Eleonora De Bellis
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- SC Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Arianna Savi
- Department of clinical and biological sciences, University of Turin, Turin, Italy
| | - Cristina Banella
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
4
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
5
|
Castelli G, Logozzi M, Mizzoni D, Di Raimo R, Cerio A, Dolo V, Pasquini L, Screnci M, Ottone T, Testa U, Fais S, Pelosi E. Ex Vivo Anti-Leukemic Effect of Exosome-like Grapefruit-Derived Nanovesicles from Organic Farming-The Potential Role of Ascorbic Acid. Int J Mol Sci 2023; 24:15663. [PMID: 37958646 PMCID: PMC10648274 DOI: 10.3390/ijms242115663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Citrus fruits are a natural source of ascorbic acid, and exosome-like nanovesicles obtained from these fruits contain measurable levels of ascorbic acid. We tested the ability of grapefruit-derived extracellular vesicles (EVs) to inhibit the growth of human leukemic cells and leukemic patient-derived bone marrow blasts. Transmission electron microscopy and nanoparticle tracking analysis (NTA) showed that the obtained EVs were homogeneous exosomes, defined as exosome-like plant-derived nanovesicles (ELPDNVs). The analysis of their content has shown measurable amounts of several molecules with potent antioxidant activity. ELPDNVs showed a time-dependent antiproliferative effect in both U937 and K562 leukemic cell lines, comparable with the effect of high-dosage ascorbic acid (2 mM). This result was confirmed by a clear decrease in the number of AML blasts induced by ELPDNVs, which did not affect the number of normal cells. ELPDNVs increased the ROS levels in both AML blast cells and U937 without affecting ROS storage in normal cells, and this effect was comparable to ascorbic acid (2 mM). With our study, we propose ELPDNVs from grapefruits as a combination/supporting therapy for human leukemias with the aim to improve the effectiveness of the current therapies.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Annamaria Cerio
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Vincenza Dolo
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Luca Pasquini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Screnci
- Banca Regionale Sangue Cordone Ombelicale, UOC Immunoematologia e Medicina Trasfusionale, Policlinico Umberto I, 00161 Rome, Italy;
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy;
- Santa Lucia Foundation, IRCCS, Neuro-Oncohematology, 00179 Rome, Italy
| | - Ugo Testa
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| | - Elvira Pelosi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.C.); (M.L.); (D.M.); (R.D.R.); (A.C.); (U.T.)
| |
Collapse
|
6
|
Catalano G, Zaza A, Banella C, Pelosi E, Castelli G, de Marinis E, Smigliani A, Travaglini S, Ottone T, Divona M, Del Principe MI, Buccisano F, Maurillo L, Ammatuna E, Testa U, Nervi C, Venditti A, Voso MT, Noguera NI. MCL1 regulates AML cells metabolism via direct interaction with HK2. Metabolic signature at onset predicts overall survival in AMLs' patients. Leukemia 2023; 37:1600-1610. [PMID: 37349598 DOI: 10.1038/s41375-023-01946-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e. day 7, promyelocytes). According with Proton Leak (PL) values, AML blasts can be grouped in two well defined populations. The AML group with blasts presenting high PL or high basal OXPHOS plus high SRC levels had shorter overall survival time and significantly overexpressed myeloid cell leukemia 1 (MCL1) protein. We demonstrate that MCL1 directly binds to Hexokinase 2 (HK2) on the outer mitochondrial membrane (OMM). Overall, these results suggest that high PL and high SRC plus high basal OXPHOS levels at disease onset, arguably with the concourse of MCL1/HK2 action, are significantly linked with shorter overall survival time in AML. Our data describe a new function for MCL1 protein in AMLs' cells: by forming a complex with HK2, MCL1 co-localizes to VDAC on the OMM, thus inducing glycolysis and OXPHOS, ultimately conferring metabolic plasticity and promoting resistance to therapy.
Collapse
Affiliation(s)
- Gianfranco Catalano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Alessandra Zaza
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Cristina Banella
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
- Department of Health Sciences, University of Florence and Meyer Children's University Hospital, Florence, Italy
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta de Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma La Sapienza, Rome, Italy
| | - Ariela Smigliani
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Emanuele Ammatuna
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Clara Nervi
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy.
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, Rome, Italy.
| |
Collapse
|
7
|
Jiang R, Chen Z, Ni M, Li X, Ying H, Fen J, Wan D, Peng C, Zhou W, Gu L. A traditional gynecological medicine inhibits ovarian cancer progression and eliminates cancer stem cells via the LRPPRC-OXPHOS axis. J Transl Med 2023; 21:504. [PMID: 37496051 PMCID: PMC10373366 DOI: 10.1186/s12967-023-04349-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal malignant gynecological tumor type for which limited therapeutic targets and drugs are available. Enhanced mitochondrial oxidative phosphorylation (OXPHOS), which enables cell growth, migration, and cancer stem cell maintenance, is a critical driver of disease progression and a potential intervention target of OC. However, the current OXPHOS intervention strategy mainly suppresses the activity of the electron transport chain directly and cannot effectively distinguish normal tissues from cancer tissues, resulting in serious side effects and limited efficacy. METHODS We screened natural product libraries to investigate potential anti-OC drugs that target OXPHOS. Additionally, LC-MS, qRT-PCR, western-blot, clonogenic assay, Immunohistochemistry, wound scratch assay, and xenograft model was applied to evaluate the anti-tumor mechanism of small molecules obtained by screening in OC. RESULTS Gossypol acetic acid (GAA), a widely used gynecological medicine, was screened out from the drug library with the function of suppressing OXPHOS and OC progression by targeting the leucine-rich pentatricopeptide repeat containing (LRPPRC) protein. Mechanically, LRPPRC promotes the synthesis of OXPHOS subunits by binding to RNAs encoded by mitochondrial DNA. GAA binds to LRPPRC directly and induces LRPPRC rapid degradation in a ubiquitin-independent manner. LRPPRC was overexpressed in OC, which is highly correlated with the poor outcomes of OC and could promote the malignant phenotype of OC cells in vitro and in vivo. GAA management inhibits cell growth, clonal formation, and cancer stem cell maintenance in vitro, and suppresses subcutaneous graft tumor growth in vivo. CONCLUSIONS Our study identified a therapeutic target and provided a corresponding inhibitor for OXPHOS-based OC therapy. GAA inhibits OC progression by suppressing OXPHOS complex synthesis via targeting LRPPRC protein, supporting its potential utility as a natural therapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Ruibin Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhongjian Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Xia Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Hangjie Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jianguo Fen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Danying Wan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chanjuan Peng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Wei Zhou
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, 310022, Hangzhou, People's Republic of China.
| | - Linhui Gu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
8
|
Skopek R, Palusińska M, Kaczor-Keller K, Pingwara R, Papierniak-Wyglądała A, Schenk T, Lewicki S, Zelent A, Szymański Ł. Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research. Int J Mol Sci 2023; 24:5377. [PMID: 36982453 PMCID: PMC10049680 DOI: 10.3390/ijms24065377] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their limitations, cell lines are cost-effective and provide repeatable and comparable results. Choosing the appropriate cell line for acute myeloid leukemia (AML) research is crucial for obtaining reliable and relevant results. Several factors should be considered when selecting a cell line for AML research, such as specific markers and genetic abnormalities associated with different subtypes of AML. It is also essential to evaluate the karyotype and mutational profile of the cell line, as these can influence the behavior and response to the treatment of the cells. In this review, we evaluate immortalized AML cell lines and discuss the issues surrounding them concerning the revised World Health Organization and the French-American-British classifications.
Collapse
Affiliation(s)
- Rafał Skopek
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Katarzyna Kaczor-Keller
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland
| | | | - Tino Schenk
- Department of Hematology and Medical Oncology, Clinic of Internal Medicine II, Jena University Hospital, 07747 Jena, Germany
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, 07747 Jena, Germany
| | - Sławomir Lewicki
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities, 26-600 Radom, Poland
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland
| | - Artur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
9
|
Effects of Triheptanoin on Mitochondrial Respiration and Glycolysis in Cultured Fibroblasts from Neutral Lipid Storage Disease Type M (NLSD-M) Patients. Biomolecules 2023; 13:biom13030452. [PMID: 36979387 PMCID: PMC10046759 DOI: 10.3390/biom13030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Neutral lipid storage disease type M (NLSD-M) is an ultra-rare, autosomal recessive disorder that causes severe skeletal and cardiac muscle damage and lipid accumulation in all body tissues. In this hereditary pathology, the defective action of the adipose triglyceride lipase (ATGL) enzyme induces the enlargement of cytoplasmic lipid droplets and reduction in the detachment of mono- (MG) and diglycerides (DG). Although the pathogenesis of muscle fiber necrosis is unknown, some studies have shown alterations in cellular energy production, probably because MG and DG, the substrates of Krebs cycle, are less available. No tests have been tried with medium-chain fatty acid molecules to evaluate the anaplerotic effect in NLSD cells. In this study, we evaluated the in vitro effect of triheptanoin (Dojolvi®), a highly purified chemical triglyceride with seven carbon atoms, in fibroblasts obtained from five NLSD-M patients. Glycolytic and mitochondrial functions were determined by Seahorse XF Agylent Technology, and cellular viability and triglyceride content were measured through colorimetric assays. After the addition of triheptanoin, we observed an increase in glycolysis and mitochondrial respiration in all patients compared with healthy controls. These preliminary results show that triheptanoin is able to induce an anaplerotic effect in NLSD-M fibroblasts, paving the way towards new therapeutic strategies.
Collapse
|
10
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|