1
|
Sun J, Liu Y, Zhao J, Lu B, Zhou S, Lu W, Wei J, Hu Y, Kong X, Gao J, Guan H, Gao J, Xiao Q, Li X. Plasma proteomic and polygenic profiling improve risk stratification and personalized screening for colorectal cancer. Nat Commun 2024; 15:8873. [PMID: 39402035 PMCID: PMC11473805 DOI: 10.1038/s41467-024-52894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/20/2024] [Indexed: 10/17/2024] Open
Abstract
This study aims to identify colorectal cancer (CRC)-related proteomic profiles and develop a prediction model for CRC onset by integrating proteomic profiles with genetic and non-genetic factors (QCancer-15) to improve the risk stratification and estimate of personalized initial screening age. Here, using a two-stage strategy, we prioritize 15 protein biomarkers as predictors to construct a protein risk score (ProS). The risk prediction model integrating proteomic profiles with polygenic risk score (PRS) and QCancer-15 risk score (QCancer-S) shows improved performance (C-statistic: 0.79 vs. 0.71, P = 4.94E-03 in training cohort; 0.75 vs 0.69, P = 5.49E-04 in validation cohort) and net benefit than QCancer-S alone. The combined model markedly stratifies the risk of CRC onset. Participants with high ProS, PRS, or combined risk score are proposed to start screening at age 46, 41, or before 40 years old. In this work, the integration of blood proteomics with PRS and QCancer-15 demonstrates improved performance for risk stratification and clinical implication for the derivation of risk-adapted starting ages of CRC screening, which may contribute to the decision-making process for CRC screening.
Collapse
Affiliation(s)
- Jing Sun
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Liu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Lu
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyun Zhou
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Lu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingsun Wei
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yeting Hu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Junshun Gao
- Cosmos Wisdom Mass Spectrometry Center of Zhejiang University Medical School, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hong Guan
- Cosmos Wisdom Mass Spectrometry Center of Zhejiang University Medical School, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Junli Gao
- Cosmos Wisdom Mass Spectrometry Center of Zhejiang University Medical School, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China.
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xue Li
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Xie L, Kong Q, Ai M, He A, Yao B, Zhang L, Zhang K, Zhu C, Li Y, Xia L, Tian R, Xu R. Spatial Proteomic Profiling of Colorectal Cancer Revealed Its Tumor Microenvironment Heterogeneity. J Proteome Res 2024; 23:3342-3352. [PMID: 39026393 DOI: 10.1021/acs.jproteome.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Colorectal cancer is a predominant malignancy with a second mortality worldwide. Despite its prevalence, therapeutic options remain constrained and surgical operation is still the most useful therapy. In this regard, a comprehensive spatially resolved quantitative proteome atlas was constructed to explore the functional proteomic landscape of colorectal cancer. This strategy integrates histopathological analysis, laser capture microdissection, and proteomics. Spatial proteome profiling of 200 tissue section samples facilitated by the fully integrated sample preparation technology SISPROT enabled the identification of more than 4000 proteins on the Orbitrap Exploris 240 from 2 mm2 × 10 μm tissue sections. Compared with normal adjacent tissues, we identified a spectrum of cancer-associated proteins and dysregulated pathways across various regions of colorectal cancer including ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. Additionally, we conducted proteomic analysis on tumoral epithelial cells and paracancerous epithelium from early to advanced stages in hallmark rectum cancer and sigmoid colon cancer. Bioinformatics analysis revealed functional proteins and cell-type signatures associated with different regions of colorectal tumors, suggesting potential clinical implications. Overall, this study provides a comprehensive spatially resolved functional proteome landscape of colorectal cancer, serving as a valuable resource for exploring potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lifen Xie
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Meiling Ai
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bin Yao
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Luobin Zhang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Keren Zhang
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Chaowei Zhu
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| |
Collapse
|
3
|
Papier K, Atkins JR, Tong TYN, Gaitskell K, Desai T, Ogamba CF, Parsaeian M, Reeves GK, Mills IG, Key TJ, Smith-Byrne K, Travis RC. Identifying proteomic risk factors for cancer using prospective and exome analyses of 1463 circulating proteins and risk of 19 cancers in the UK Biobank. Nat Commun 2024; 15:4010. [PMID: 38750076 PMCID: PMC11096312 DOI: 10.1038/s41467-024-48017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
The availability of protein measurements and whole exome sequence data in the UK Biobank enables investigation of potential observational and genetic protein-cancer risk associations. We investigated associations of 1463 plasma proteins with incidence of 19 cancers and 9 cancer subsites in UK Biobank participants (average 12 years follow-up). Emerging protein-cancer associations were further explored using two genetic approaches, cis-pQTL and exome-wide protein genetic scores (exGS). We identify 618 protein-cancer associations, of which 107 persist for cases diagnosed more than seven years after blood draw, 29 of 618 were associated in genetic analyses, and four had support from long time-to-diagnosis ( > 7 years) and both cis-pQTL and exGS analyses: CD74 and TNFRSF1B with NHL, ADAM8 with leukemia, and SFTPA2 with lung cancer. We present multiple blood protein-cancer risk associations, including many detectable more than seven years before cancer diagnosis and that had concordant evidence from genetic analyses, suggesting a possible role in cancer development.
Collapse
Affiliation(s)
- Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Joshua R Atkins
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kezia Gaitskell
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Trishna Desai
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Chibuzor F Ogamba
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mahboubeh Parsaeian
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Tim J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Grassmann F, Mälarstig A, Dahl L, Bendes A, Dale M, Thomas CE, Gabrielsson M, Hedman ÅK, Eriksson M, Margolin S, Huang TH, Ulfstedt M, Forsberg S, Eriksson P, Johansson M, Hall P, Schwenk JM, Czene K. The impact of circulating protein levels identified by affinity proteomics on short-term, overall breast cancer risk. Br J Cancer 2024; 130:620-627. [PMID: 38135714 PMCID: PMC10876928 DOI: 10.1038/s41416-023-02541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Current breast cancer risk prediction scores and algorithms can potentially be further improved by including molecular markers. To this end, we studied the association of circulating plasma proteins using Proximity Extension Assay (PEA) with incident breast cancer risk. SUBJECTS In this study, we included 1577 women participating in the prospective KARMA mammographic screening cohort. RESULTS In a targeted panel of 164 proteins, we found 8 candidates nominally significantly associated with short-term breast cancer risk (P < 0.05). Similarly, in an exploratory panel consisting of 2204 proteins, 115 were found nominally significantly associated (P < 0.05). However, none of the identified protein levels remained significant after adjustment for multiple testing. This lack of statistically significant findings was not due to limited power, but attributable to the small effect sizes observed even for nominally significant proteins. Similarly, adding plasma protein levels to established risk factors did not improve breast cancer risk prediction accuracy. CONCLUSIONS Our results indicate that the levels of the studied plasma proteins captured by the PEA method are unlikely to offer additional benefits for risk prediction of short-term overall breast cancer risk but could provide interesting insights into the biological basis of breast cancer in the future.
Collapse
Affiliation(s)
- Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany.
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
| | - Leo Dahl
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Annika Bendes
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Matilda Dale
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Cecilia Engel Thomas
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Marike Gabrielsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa K Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc., San Diego, CA, USA
| | | | | | - Per Eriksson
- Olink Proteomics, Uppsala Science Park, Uppsala, Sweden
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Jochen M Schwenk
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Watts EL, Moore SC, Gunter MJ, Chatterjee N. Adiposity and cancer: meta-analysis, mechanisms, and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302944. [PMID: 38405761 PMCID: PMC10889047 DOI: 10.1101/2024.02.16.24302944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Obesity is a recognised risk factor for many cancers and with rising global prevalence, has become a leading cause of cancer. Here we summarise the current evidence from both population-based epidemiologic investigations and experimental studies on the role of obesity in cancer development. This review presents a new meta-analysis using data from 40 million individuals and reports positive associations with 19 cancer types. Utilising major new data from East Asia, the meta-analysis also shows that the strength of obesity and cancer associations varies regionally, with stronger relative risks for several cancers in East Asia. This review also presents current evidence on the mechanisms linking obesity and cancer and identifies promising future research directions. These include the use of new imaging data to circumvent the methodological issues involved with body mass index and the use of omics technologies to resolve biologic mechanisms with greater precision and clarity.
Collapse
Affiliation(s)
- Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
6
|
Martín-García D, García-Aranda M, Redondo M. Biomarker Identification through Proteomics in Colorectal Cancer. Int J Mol Sci 2024; 25:2283. [PMID: 38396959 PMCID: PMC10888664 DOI: 10.3390/ijms25042283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Colorectal cancer (CRC) is a devastating disease that ranks third in diagnosis and as the second leading cause of cancer-related deaths. The early detection of CRC has been shown to be the most effective strategy to improve treatment outcomes and patient survival. Therefore, current lines of research focus on the development of reliable diagnostic tools. Targeted therapies, in combination with standard chemotherapy and immune checkpoint inhibitors, have emerged as promising treatment protocols in CRC. However, their effectiveness is linked to the molecular characteristics of each patient. The importance of discovering biomarkers that help predict response to therapies and assess prognosis is evident as they allow for a fundamental step towards personalized care and successful treatments. Among the ongoing efforts to identify them, mass spectrometry-based translational proteomics presents itself as a unique opportunity as it enables the discovery and application of protein biomarkers that may revolutionize the early detection and treatment of CRC. Our objective is to show the most recent studies focused on the identification of CRC-related protein markers, as well as to provide an updated view of advances in the field of proteomics and cancer.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Universitario Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
7
|
Sun J, Zhao J, Jiang F, Wang L, Xiao Q, Han F, Chen J, Yuan S, Wei J, Larsson SC, Zhang H, Dunlop MG, Farrington SM, Ding K, Theodoratou E, Li X. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome. Genome Med 2023; 15:75. [PMID: 37726845 PMCID: PMC10508028 DOI: 10.1186/s13073-023-01229-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The proteome is a major source of therapeutic targets. We conducted a proteome-wide Mendelian randomization (MR) study to identify candidate protein markers and therapeutic targets for colorectal cancer (CRC). METHODS Protein quantitative trait loci (pQTLs) were derived from seven published genome-wide association studies (GWASs) on plasma proteome, and summary-level data were extracted for 4853 circulating protein markers. Genetic associations with CRC were obtained from a large-scale GWAS meta-analysis (16,871 cases and 26,328 controls), the FinnGen cohort (4957 cases and 304,197 controls), and the UK Biobank (9276 cases and 477,069 controls). Colocalization and summary-data-based MR (SMR) analyses were performed sequentially to verify the causal role of candidate proteins. Single cell-type expression analysis, protein-protein interaction (PPI), and druggability evaluation were further conducted to detect the specific cell type with enrichment expression and prioritize potential therapeutic targets. RESULTS Collectively, genetically predicted levels of 13 proteins were associated with CRC risk. Elevated levels of two proteins (GREM1, CHRDL2) and decreased levels of 11 proteins were associated with an increased risk of CRC, among which four (GREM1, CLSTN3, CSF2RA, CD86) were prioritized with the most convincing evidence. These protein-coding genes are mainly expressed in tissue stem cells, epithelial cells, and monocytes in colon tumor tissue. Two interactive pairs of proteins (GREM1 and CHRDL2; MMP2 and TIMP2) were identified to be involved in osteoclast differentiation and tumorigenesis pathways; four proteins (POLR2F, CSF2RA, CD86, MMP2) have been targeted for drug development on autoimmune diseases and other cancers, with the potentials of being repurposed as therapeutic targets for CRC. CONCLUSIONS This study identified several protein biomarkers to be associated with CRC risk and provided new insights into the etiology and promising targets for the development of screening biomarkers and therapeutic drugs for CRC.
Collapse
Affiliation(s)
- Jing Sun
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lijuan Wang
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Qian Xiao
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jingsun Wei
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Huang Q, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Li B, Chen Z. Plasma protein changes reflect colorectal cancer development and associated inflammation. Front Oncol 2023; 13:1158261. [PMID: 37228491 PMCID: PMC10203952 DOI: 10.3389/fonc.2023.1158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of death worldwide. Efficient non-invasive blood-based biomarkers for CRC early detection and prognosis are urgently needed. Methods To identify novel potential plasma biomarkers, we applied a proximity extension assay (PEA), an antibody-based proteomics strategy to quantify the abundance of plasma proteins in CRC development and cancer-associated inflammation from few μL of plasma sample. Results Among the 690 quantified proteins, levels of 202 plasma proteins were significantly changed in CRC patients compared to age-and-sex-matched healthy subjects. We identified novel protein changes involved in Th17 activity, oncogenic pathways, and cancer-related inflammation with potential implications in the CRC diagnosis. Moreover, the interferon γ (IFNG), interleukin (IL) 32, and IL17C were identified as associated with the early stages of CRC, whereas lysophosphatidic acid phosphatase type 6 (ACP6), Fms-related tyrosine kinase 4 (FLT4), and MANSC domain-containing protein 1 (MANSC1) were correlated with the late-stages of CRC. Discussion Further study to characterize the newly identified plasma protein changes from larger cohorts will facilitate the identification of potential novel diagnostic, prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Qianru Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Ewa Śrutek
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Tomasz Nowikiewicz
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Harazin-Lechowicz
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | | | | | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|