1
|
Cifuentes M, Verdejo HE, Castro PF, Corvalan AH, Ferreccio C, Quest AFG, Kogan MJ, Lavandero S. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda) 2025; 40:0. [PMID: 39078396 DOI: 10.1152/physiol.00021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, the persistence of the harmful trigger or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated with the development of several increasingly prevalent and serious chronic conditions, such as obesity, cancer, and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms, and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases, and cancer. We examine the state of the art in selected aspects of the topic and propose future directions and approaches for the field.
Collapse
Affiliation(s)
- Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- OMEGA Laboratory, Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Hugo E Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Division of Cardiovascular Diseases, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Hematology and Oncology, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Department of Public Health, Facultad Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Department of Pharmacological & Toxicological Chemistry, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas, Facultad Medicina & Instituto de Nutricion y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad Medicina, Universidad de Chile, Santiago, Chile
- Department of Biochemistry & Molecular Biology, Facultad Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
2
|
Pinon M, Kamath BM. What's new in pediatric genetic cholestatic liver disease: advances in etiology, diagnostics and therapeutic approaches. Curr Opin Pediatr 2024; 36:524-536. [PMID: 38957097 DOI: 10.1097/mop.0000000000001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW To highlight recent advances in pediatric cholestatic liver disease, including promising novel prognostic markers and new therapies. FINDINGS Additional genetic variants associated with the progressive familial intrahepatic cholestasis (PFIC) phenotype and new genetic cholangiopathies, with an emerging role of ciliopathy genes, are increasingly being identified. Genotype severity predicts outcomes in bile salt export pump (BSEP) deficiency, and post-biliary diversion serum bile acid levels significantly affect native liver survival in BSEP and progressive familial intrahepatic cholestasis type 1 (FIC1 deficiency) patients. Heterozygous variants in the MDR3 gene have been associated with various cholestatic liver disease phenotypes in adults. Ileal bile acid transporter (IBAT) inhibitors, approved for pruritus in PFIC and Alagille Syndrome (ALGS), have been associated with improved long-term quality of life and event-free survival. SUMMARY Next-generation sequencing (NGS) technologies have revolutionized diagnostic approaches, while discovery of new intracellular signaling pathways show promise in identifying therapeutic targets and personalized strategies. Bile acids may play a significant role in hepatic damage progression, suggesting their monitoring could guide cholestatic liver disease management. IBAT inhibitors should be incorporated early into routine management algorithms for pruritus. Data are emerging as to whether IBAT inhibitors are impacting disease biology and modifying the natural history of the cholestasis.
Collapse
Affiliation(s)
- Michele Pinon
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | |
Collapse
|
3
|
Cheon I, Kim M, Kim KH, Ko S. Hepatic Nuclear Receptors in Cholestasis-to-Cholangiocarcinoma Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00358-4. [PMID: 39326734 DOI: 10.1016/j.ajpath.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Cholestasis, characterized by impaired bile flow, is associated with an increased risk of cholangiocarcinoma (CCA), a malignancy originating from the biliary epithelium and hepatocytes. Hepatic nuclear receptors (NRs) are pivotal in regulating bile acid and metabolic homeostasis, and their dysregulation is implicated in cholestatic liver diseases and the progression of liver cancer. This review elucidates the role of various hepatic NRs in the pathogenesis of cholestasis-to-CCA progression. We explore their impact on bile acid metabolism as well as their interactions with other signaling pathways implicated in CCA development. Additionally, we introduce available murine models of cholestasis/primary sclerosing cholangitis leading to CCA and discuss the clinical potential of targeting hepatic NRs as a promising approach for the prevention and treatment of cholestatic liver diseases and CCA. Understanding the complex interplay between hepatic NRs and cholestasis-to-CCA pathology holds promise for the development of novel preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
McKiernan P, Bernabeu JQ, Girard M, Indolfi G, Lurz E, Trivedi P. Opinion paper on the diagnosis and treatment of progressive familial intrahepatic cholestasis. JHEP Rep 2024; 6:100949. [PMID: 38192535 PMCID: PMC10772241 DOI: 10.1016/j.jhepr.2023.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 01/10/2024] Open
Abstract
Background & Aims Progressive familial intrahepatic cholestasis (PFIC) relates to a group of rare, debilitating, liver disorders which typically present in early childhood, but have also been reported in adults. Without early detection and effective treatment, PFIC can result in end-stage liver disease. The aim of the paper was to put forward recommendations that promote standardisation of the management of PFIC in clinical practice. Methods A committee of six specialists came together to discuss the challenges faced by physicians in the management of PFIC. The committee agreed on two key areas where expert guidance is required to optimise care: (1) how to diagnose and treat patients with a clinical presentation of PFIC in the absence of clear genetic test results/whilst awaiting results, and (2) how to monitor disease progression and response to treatment. A systematic literature review was undertaken to contextualise and inform the recommendations. Results An algorithm was developed for the diagnosis and treatment of children with suspected PFIC. The algorithm recommends the use of licensed inhibitors of ileal bile acid transporters as the first-line treatment for patients with PFIC and suggests that genetic testing be used to confirm genotype whilst treatment is initiated in patients in whom PFIC is suspected. The authors recommend referring patients to an experienced centre, and ensuring that monitoring includes measurements of pruritus, serum bile acid levels, growth, and quality of life following diagnosis and during treatment. Conclusions The algorithm presented within this paper offers guidance to optimise the management of paediatric PFIC. The authors hope that these recommendations will help to standardise the management of PFIC in the absence of clear clinical guidelines. Impact and implications This opinion paper outlines a consistent approach to the contemporaneous diagnosis, monitoring, referral and management of children with progressive familial intrahepatic cholestasis. This should assist physicians given the recent developments in genetic diagnosis and the availability of effective drug therapy. This manuscript will also help to raise awareness of current developments and educate health planners on the place for new drug therapies in progressive familial intrahepatic cholestasis.
Collapse
Affiliation(s)
- Patrick McKiernan
- Liver Unit and Small Bowel Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Jesus Quintero Bernabeu
- Pediatric Hepatology and Liver Transplant Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Muriel Girard
- Pediatric Hepatology Unit, Hôpital Necker-Enfants Malades, and Université Paris Cité, Paris, France
| | - Giuseppe Indolfi
- Paediatric and Liver Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department NEUROFARBA, University of Florence, Florence, Italy
| | - Eberhard Lurz
- Dr. von Hauner Children’s Hospital, LMU Munich University Hospital, Munich, Germany
| | - Palak Trivedi
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
5
|
Niemyjska-Dmoch W, Kosiński P, Węgrzyn P, Luterek K, Jezela-Stanek A. Intrahepatic cholestasis of pregnancy and theory of inheritance of the disease. Literature review. J Matern Fetal Neonatal Med 2023; 36:2279020. [PMID: 37945319 DOI: 10.1080/14767058.2023.2279020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Intrahepatic cholestasis during pregnancy is associated with a higher risk of prenatal and maternal complications. There are several new publications and guidelines on the detection and thresholds of intrahepatic cholestasis during pregnancy. However, the genetic background of this disease has rarely been investigated. This is a comprehensive review of the roles of genes in intrahepatic cholestasis during pregnancy.
Collapse
Affiliation(s)
- Weronika Niemyjska-Dmoch
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Kosiński
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Węgrzyn
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Luterek
- Department of Obstetrics, Perinatology and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
6
|
Ren L, Cheng SG, Kang PC, Li TF, Li X, Xiao JZ, Jiang D. Silenced LASP1 interacts with DNMT1 to promote TJP2 expression and attenuate articular cartilage injury in mice by suppressing TJP2 methylation. Kaohsiung J Med Sci 2023; 39:1096-1105. [PMID: 37578083 DOI: 10.1002/kjm2.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
To investigate the regulatory mechanisms and effects of LIM and SH3 protein 1 (LASP1) on osteoarthritis (OA). IL-1β was used to induce OA in cell models. Viability and apoptosis of chondrocytes were assessed. The expressions of tumor necrsis factor-α (TNF-α) and IL-6 were measured by ELISA kit, and Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were performed to test the expression of related proteins. The STRING database was used to predict the relationship between LASP1 and DNA methyltransferase 1 (DNMT1). The tight junction protein 2 (TJP2) and Gene Expression Omnibus data were analyzed for differential OA genes. Methylation-specific PCR detected methylation of the TJP2 promoter region, and chromatin immunoprecipitation detected the enrichment of DNMT1 in the TJP2 promoter region. Safranin O-Fast Green staining and hematoxylin and eosin staining were used to determine the OARSI score and evaluate the pathological conditions of the joint tissues. LASP1 was highly expressed in IL-1β-induced cell models. Silencing of LASP1 promoted chondrocyte proliferation and expression of Collagen II and Aggrecan and inhibited chondrocyte apoptosis, inflammatory factors, and matrix metalloprotein expression. TJP2 is weakly expressed in OA models, and LASP1 promotes methylation of the TJP2 promoter region by interacting with DNMT1. Silencing of LASP1 attenuated IL-1β-induced chondrocyte degeneration by promoting TJP2 expression. Similarly, silencing LASP1 promotes TJP2 expression to alleviate articular cartilage injury in mice with OA. Silencing of LASP1 inhibited the methylation of the TJP2 promoter region by interacting with DNMT1, thereby alleviating articular cartilage damage in OA mice.
Collapse
Affiliation(s)
- Lian Ren
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Shi-Gao Cheng
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Peng-Cheng Kang
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Teng-Fei Li
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Xun Li
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Jiong-Zhe Xiao
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Dong Jiang
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| |
Collapse
|
7
|
Gonzales E, Gardin A, Almes M, Darmellah-Remil A, Seguin H, Mussini C, Franchi-Abella S, Duché M, Ackermann O, Thébaut A, Habes D, Hermeziu B, Lapalus M, Falguières T, Combal JP, Benichou B, Valero S, Davit-Spraul A, Jacquemin E. Outcomes of 38 patients with PFIC3: Impact of genotype and of response to ursodeoxycholic acid therapy. JHEP Rep 2023; 5:100844. [PMID: 37701337 PMCID: PMC10494458 DOI: 10.1016/j.jhepr.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023] Open
Abstract
Background & Aims Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease caused by biallelic variations in ABCB4. Data reporting on the impact of genotype and of response to ursodeoxycholic acid (UDCA) therapy on long-term outcomes are scarce. Methods We retrospectively describe a cohort of 38 patients with PFIC3 with a median age at last follow-up of 19.5 years (range 3.8-53.8). Results Twenty patients presented with symptoms before 1 year of age. Thirty-one patients received ursodeoxycholic acid (UDCA) therapy resulting in serum liver test improvement in 20. Twenty-seven patients had cirrhosis at a median age of 8.1 years of whom 18 received a liver transplant at a median age of 8.5 years. Patients carrying at least one missense variation were more likely to present with positive (normal or decreased) canalicular MDR3 expression in the native liver and had prolonged native liver survival (NLS; median 12.4 years [range 3.8-53.8]). In contrast, in patients with severe genotypes (no missense variation), there was no detectable canalicular MDR3 expression, symptom onset and cirrhosis occurred earlier, and all underwent liver transplantation (at a median age of 6.7 years [range 2.3-10.3]). The latter group was refractory to UDCA treatment, whereas 87% of patients with at least one missense variation displayed an improvement in liver biochemistry in response to UDCA. Biliary phospholipid levels over 6.9% of total biliary lipid levels predicted response to UDCA. Response to UDCA predicted NLS. Conclusions Patients carrying at least one missense variation, with positive canalicular expression of MDR3 and a biliary phospholipid level over 6.9% of total biliary lipid levels were more likely to respond to UDCA and to exhibit prolonged NLS. Impact and implications In this study, data show that genotype and response to ursodeoxycholic acid therapy predicted native liver survival in patients with PFIC3 (progressive familial intrahepatic cholestasis type 3). Patients carrying at least one missense variation, with positive (decreased or normal) immuno-staining for canalicular MDR3, and a biliary phospholipid level over 6.9% of total biliary lipids were more likely to respond to ursodeoxycholic acid therapy and to exhibit prolonged native liver survival.
Collapse
Affiliation(s)
- Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Antoine Gardin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Marion Almes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Amaria Darmellah-Remil
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Hanh Seguin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
| | - Charlotte Mussini
- Pathology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stéphanie Franchi-Abella
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mathieu Duché
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Pediatric Radiology, Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Oanez Ackermann
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Alice Thébaut
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Dalila Habes
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Bogdan Hermeziu
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Martine Lapalus
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | | | | | | | | | - Anne Davit-Spraul
- Biochemistry; Bicêtre Hospital, Assistance Publique – Hôpitaux de Paris, University Paris-Saclay, Le Kremlin-Bicêtre, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation, National Reference Centre for Biliary Atresia and Genetic Cholestasis, FILFOIE, ERN RARE LIVER, France
- Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, France
| |
Collapse
|
8
|
Alsohaibani FI, Peedikayil MC, Alfadley AF, Aboueissa MK, Abaalkhail FA, Alqahtani SA. Progressive Familial Intrahepatic Cholestasis: A Descriptive Study in a Tertiary Care Center. Int J Hepatol 2023; 2023:1960152. [PMID: 37520499 PMCID: PMC10374379 DOI: 10.1155/2023/1960152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Background Progressive familial intrahepatic cholestasis (PFIC) is a rare genetic disorder that results from defective mechanisms of bile secretion. We aim to describe different types of PFIC and their clinical features, treatment modalities, and outcomes in Saudi Arabia. Patients and Methods. This is a retrospective study of all patients diagnosed with PFIC at King Faisal Specialist Hospital and Research Center in Riyadh from January 1, 2002, to December 31, 2021. All relevant information was collected from patient charts and transferred into the REDcap® database for statistical analysis. Results A total of 79 patients were identified with PFIC, and PFIC type 3 was the most common (59.5%), followed by PFIC type 2 (34.2%), PFIC type 1 (5.1%), and PFIC type 4 (1.3%). Males and females were affected in 54.4% and 45.6%, respectively. Mutations in ATP8B1, ABCB11, and ABCB4 genes were observed in PFIC type 1, PFIC type 2, and PFIC type 3, and loss of function in a variant of TJP2 was detected in PFIC type 4, respectively. A total of 51 (64.6%) patients underwent liver transplantation: three patients (3/4) with PFIC type 1 (75%), twenty patients (20/27) with PFIC type 2 (74.1%), twenty-seven patients (27/47) with PFIC type 3 (57.4%), and one patient with PFIC type 4 (100%). The mean duration of disease before transplantation was 53.9 ± 67 months with a median of 30 months. Following liver transplantation, symptomatic control was achieved in 47 patients (92.2%). Recurrence after transplantation occurred in 4 patients (7.8%) within an average of 22.5 months and a median of 17 months. Conclusion PFIC is considered a rare disorder in Saudi Arabia; however, early recognition of the disease is important for appropriate management and early referral for liver transplantation evaluation. The overall rate of liver transplantation in our cohort was 64.6% with an excellent five-year survival rate.
Collapse
Affiliation(s)
- Fahad I. Alsohaibani
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Musthafa C. Peedikayil
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | - Faisal A. Abaalkhail
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saleh A. Alqahtani
- Liver Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Golonka RM, Yeoh BS, Saha P, Gohara A, Tummala R, Stepkowski S, Tiwari AK, Joe B, Gonzalez FJ, Gewirtz AT, Vijay-Kumar M. Loss of toll-like receptor 5 potentiates spontaneous hepatocarcinogenesis in farnesoid X receptor-deficient mice. Hepatol Commun 2023; 7:02009842-202306010-00016. [PMID: 37219858 DOI: 10.1097/hc9.0000000000000166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND HCC is the most common primary liver cancer and a leading cause of cancer-related mortality. Gut microbiota is a large collection of microbes, predominately bacteria, that harbor the gastrointestinal tract. Changes in gut microbiota that deviate from the native composition, that is, "dysbiosis," is proposed as a probable diagnostic biomarker and a risk factor for HCC. However, whether gut microbiota dysbiosis is a cause or a consequence of HCC is unknown. METHODS To better understand the role of gut microbiota in HCC, mice deficient of toll-like receptor 5 (TLR5, a receptor for bacterial flagellin) as a model of spontaneous gut microbiota dysbiosis were crossed with farnesoid X receptor knockout mice (FxrKO), a genetic model for spontaneous HCC. Male FxrKO/Tlr5KO double knockout (DKO), FxrKO, Tlr5KO, and wild-type (WT) mice were aged to the 16-month HCC time point. RESULTS Compared with FxrKO mice, DKO mice had more severe hepatooncogenesis at the gross, histological, and transcript levels and this was associated with pronounced cholestatic liver injury. The bile acid dysmetabolism in FxrKO mice became more aberrant in the absence of TLR5 due in part to suppression of bile acid secretion and enhanced cholestasis. Out of the 14 enriched taxon signatures seen in the DKO gut microbiota, 50% were dominated by the Proteobacteria phylum with expansion of the gut pathobiont γ-Proteobacteria that is implicated in HCC. CONCLUSIONS Collectively, introducing gut microbiota dysbiosis by TLR5 deletion exacerbated hepatocarcinogenesis in the FxrKO mouse model.
Collapse
Affiliation(s)
- Rachel M Golonka
- Department of Physiology and Pharmacology, UT Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Beng San Yeoh
- Department of Physiology and Pharmacology, UT Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Piu Saha
- Department of Physiology and Pharmacology, UT Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Amira Gohara
- Department of Pathology, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Ramakumar Tummala
- Department of Physiology and Pharmacology, UT Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Stanislaw Stepkowski
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, Ohio, USA
| | - Bina Joe
- Department of Physiology and Pharmacology, UT Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, UT Microbiome Consortium, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
10
|
Vitale G, Mattiaccio A, Conti A, Berardi S, Vero V, Turco L, Seri M, Morelli MC. Molecular and Clinical Links between Drug-Induced Cholestasis and Familial Intrahepatic Cholestasis. Int J Mol Sci 2023; 24:ijms24065823. [PMID: 36982896 PMCID: PMC10057459 DOI: 10.3390/ijms24065823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Idiosyncratic Drug-Induced Liver Injury (iDILI) represents an actual health challenge, accounting for more than 40% of hepatitis cases in adults over 50 years and more than 50% of acute fulminant hepatic failure cases. In addition, approximately 30% of iDILI are cholestatic (drug-induced cholestasis (DIC)). The liver's metabolism and clearance of lipophilic drugs depend on their emission into the bile. Therefore, many medications cause cholestasis through their interaction with hepatic transporters. The main canalicular efflux transport proteins include: 1. the bile salt export pump (BSEP) protein (ABCB11); 2. the multidrug resistance protein-2 (MRP2, ABCC2) regulating the bile salts' independent flow by excretion of glutathione; 3. the multidrug resistance-1 protein (MDR1, ABCB1) that transports organic cations; 4. the multidrug resistance-3 protein (MDR3, ABCB4). Two of the most known proteins involved in bile acids' (BAs) metabolism and transport are BSEP and MDR3. BSEP inhibition by drugs leads to reduced BAs' secretion and their retention within hepatocytes, exiting in cholestasis, while mutations in the ABCB4 gene expose the biliary epithelium to the injurious detergent actions of BAs, thus increasing susceptibility to DIC. Herein, we review the leading molecular pathways behind the DIC, the links with the other clinical forms of familial intrahepatic cholestasis, and, finally, the main cholestasis-inducing drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sonia Berardi
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Vittoria Vero
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| |
Collapse
|
11
|
Ge LL, Xing MY, Zhang HB, Wang ZC. Neurofibroma Development in Neurofibromatosis Type 1: Insights from Cellular Origin and Schwann Cell Lineage Development. Cancers (Basel) 2022; 14:cancers14184513. [PMID: 36139671 PMCID: PMC9497298 DOI: 10.3390/cancers14184513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1), a genetic tumor predisposition syndrome that affects about 1 in 3000 newborns, is caused by mutations in the NF1 gene and subsequent inactivation of its encoded neurofibromin. Neurofibromin is a tumor suppressor protein involved in the downregulation of Ras signaling. Despite a diverse clinical spectrum, one of several hallmarks of NF1 is a peripheral nerve sheath tumor (PNST), which comprises mixed nervous and fibrous components. The distinct spatiotemporal characteristics of plexiform and cutaneous neurofibromas have prompted hypotheses about the origin and developmental features of these tumors, involving various cellular transition processes. METHODS We retrieved published literature from PubMed, EMBASE, and Web of Science up to 21 June 2022 and searched references cited in the selected studies to identify other relevant papers. Original articles reporting the pathogenesis of PNSTs during development were included in this review. We highlighted the Schwann cell (SC) lineage shift to better present the evolution of its corresponding cellular origin hypothesis and its important effects on the progression and malignant transformation of neurofibromas. CONCLUSIONS In this review, we summarized the vast array of evidence obtained on the full range of neurofibroma development based on cellular and molecular pathogenesis. By integrating findings relating to tumor formation, growth, and malignancy, we hope to reveal the role of SC lineage shift as well as the combined impact of additional determinants in the natural history of PNSTs.
Collapse
Affiliation(s)
- Ling-Ling Ge
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming-Yan Xing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
| | - Hai-Bing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Correspondence: (H.-B.Z.); or (Z.-C.W.); Tel.: +86-021-54920988 (H.-B.Z.); +86-021-53315120 (Z.-C.W.)
| |
Collapse
|