1
|
Liu P, Xie N. RFWD2 increases proliferation and CDDP resistance of osteosarcoma cells. Gene 2025; 933:148973. [PMID: 39349111 DOI: 10.1016/j.gene.2024.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
P53, a key tumor suppressor gene, usually produces mtp53 proteins with oncogenic functions due to missense mutations in the DNA-binding domain. P53 is the most commonly mutated gene in osteosarcoma and plays an important role in the development and metastasis of osteosarcoma. The ubiquitin proteasome system is an evolutionarily conserved post-translational modification that regulates a variety of disease processes, including tumors. Researches have shown that RFWD2, as a function of an E3 ubiquitin ligase, plays an important role in regulating tumor progression. However, the biological function of RFWD2 in osteosarcoma cells with different p53 status remains to be clarified. Initially, we found that sarcoma patients with high levels of RFWD2 expression tended to have shorter overall survival time by analyzing UALCAN-TCGA data. Subsequently, we used CCK-8, colony formation, Transwell, and xenograft methods to confirm that RFWD2 acts as an oncogene, regulating the proliferation and invasion of osteosarcoma cells (HOS(p53mut/-), U2OS(p53wt/wt) and Saos-2(p53-/-) cells) with different p53 status. Further co-IP experiments showed that in HOS(p53mut/-) and U2OS(p53wt/wt) cells, RFWD2 binds to p53 and participate in tumor progression. In addition, we demonstrated through both in vitro and in vivo experiments that RFWD2 regulates the sensitivity of osteosarcoma cells to CDDP. In conclusion, our study demonstrates that RFWD2 acts as an oncogene regulating osteosarcoma cell proliferation and sensitivity to CDDP. Our findings provide a new perspective and potential therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Pingting Liu
- Department of Health Management Center, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Na Xie
- Department of Pediatrics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China.
| |
Collapse
|
2
|
Zhou T, Zhang DD, Jin J, Xie J, Yu J, Zhu C, Wan R. Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC. Sci Rep 2025; 15:657. [PMID: 39753728 PMCID: PMC11698864 DOI: 10.1038/s41598-024-84553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken. Bioinformatics methods were employed to systematically investigate the potential carcinogenic impact of SMAD3. We extensively harnessed data from authoritative sources, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), cBioPortal, Human Protein Atlas (HPA), UALCAN, and various other databases. Our study encompassed a comprehensive analysis of the following aspects: differential SMAD3 expression and its association with prognosis across diverse cancer types, gene mutations, immune cell infiltration, single-cell sequencing analysis, DNA methylation patterns, and drug sensitivity profiles. In vitro experiments were conducted with the primary objective of appraising both the expression profile and the precise functional attributes of SMAD3 within the milieu of Liver Hepatocellular Carcinoma (LIHC). Our findings revealed significant variations in SMAD3 expression between cancerous and adjacent normal tissues. High levels of SMAD3 expression were consistently associated with unfavorable prognoses across multiple cancer types,. Additionally, our analysis of SMAD3 methylation patterns in human cancers unveiled a favorable prognosis linked to elevated DNA methylation levels in pan-cancer. Furthermore, we identified positive associations between SMAD3 expression and RNAm6A methylation-related genes in the majority of cancers. Moreover, SMAD3 expression displayed substantial correlations with immune cell infiltration. Notably, immune checkpoint genes exhibited significant associations with SMAD3 expression across diverse cancers. Single-cell sequencing results elucidated the pan-cancer single-cell expression landscape of SMAD3. Within specific cancer subtypes, SMAD3 expression exhibited a noteworthy positive association with distinctive facets of malignancy. Finally, in our comprehensive analysis of drug sensitivity, we discerned a catalog of prospective therapeutic agents. In our comprehensive analysis across multiple cancer types, we observed a significant disparity in SMAD3 expression compared to normal tissues, and this findings suggest that SMAD3 holds promise as both a prognostic biomarker and a therapeutic target against various cancers. Difference displayed a noteworthy association with patient prognosis.
Collapse
Affiliation(s)
- Tao Zhou
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Dan Dan Zhang
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Jiejing Jin
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Jinyang Xie
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Chao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Chen L, Ren Z, Zhang Y, Hou W, Li Y. Design, synthesis, and evaluation of novel stilbene derivatives that degrade acidic nucleoplasmic DNA-binding protein 1 (And1) and synergize with PARP1 inhibitor in NSCLC cells. J Enzyme Inhib Med Chem 2024; 39:2383886. [PMID: 39072709 PMCID: PMC11288208 DOI: 10.1080/14756366.2024.2383886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 07/30/2024] Open
Abstract
Specifically inducing the degradation of acidic nucleoplasmic DNA-binding protein 1 (And1) is a promising antitumor strategy. Our previous study identified Bazedoxifene (BZA) and CH3 as specific And1 degraders and validated their activity in reversing radiotherapy resistance in vitro and in vivo. However, unelucidated structure-activity relationships and moderate activity have limited their application. In this study, 27 novel CH3 derivatives were designed and synthesised based on the cavity topology of the WD40 domain of And1. Among them, A15 with a "V" conformation significantly induced And1 degradation in NSCLC cells. In addition, this study demonstrated a potential synthetic lethal effect of And1 degraders and PARP1 inhibitors. 1 µM of Olaparib in combination with 5 µM of A15 significantly inhibited the proliferation of A549 and H460 cells. Overall, these compounds are valuable tools for elucidating And1 biology, and their special spatial conformation make them promising candidates for future optimisation studies.
Collapse
Affiliation(s)
- Leyuan Chen
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhonghao Ren
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunze Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wenbin Hou
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiliang Li
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
4
|
Tian C, Sun X, Zhu H, Zhou M, Chen Q, Min D, Huang Y, Han K. Delivery of IL-12 by neoantigen-reactive T cells promotes antitumor immunity in murine osteosarcoma mode. IMMUNOTHERAPY ADVANCES 2024; 5:ltae010. [PMID: 39742319 PMCID: PMC11684073 DOI: 10.1093/immadv/ltae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Despite the proven clinical benefits of cytokine therapy in cancer treatment, systemic administration of cytokines such as IL-12 is constrained by dose-limiting toxicities and short half-lives. To address these challenges, we explored a localized cytokine delivery strategy using engineered neoantigen-reactive T (NRT) cells as carriers in a murine model of osteosarcoma. Materials and Methods We used a neoantigen from K7M2 osteosarcoma cells to retrovirally transduce NRT cells to express an inducible form of IL-12. We evaluated the engineered NRT cells' antitumor activity and the production of IL-12 and IFN-γ upon in vitro co-culture with tumor cells. We systemically administered NRT-IL-12 cells in a mouse model of osteosarcoma to assess their impact on tumor growth and survival. Results In vitro assays demonstrated that the engineered NRT cells exhibited enhanced antitumor activity and produced elevated levels of IL-12 and IFN-γ. In the mouse model of osteosarcoma, systemic administration of NRT-IL-12 cells resulted in a significant reduction in tumor growth and an increase in survival rates compared to the administration of control NRT cells. Further analysis revealed that NRT-IL-12 cells induced a profound increase in CD8+ T-cell infiltration and a decrease in Treg cells within the tumor microenvironment. Conclusion Our study presents a novel and efficacious strategy for osteosarcoma immunotherapy by harnessing NRT cells as targeted cytokine delivery vehicles.
Collapse
Affiliation(s)
- Cong Tian
- Department of Oncology, Shanghai Jiao Tong UniversityAffiliated Sixth People’ s Hospital, Shanghai 201306, China
| | - Xingxing Sun
- Department of Oncology, Shanghai Jiao Tong UniversityAffiliated Sixth People’ s Hospital, Shanghai 201306, China
| | - Hongling Zhu
- Department of Oncology, Shanghai Jiao Tong UniversityAffiliated Sixth People’ s Hospital, Shanghai 201306, China
| | - Meixiang Zhou
- Department of Oncology, Shanghai Jiao Tong UniversityAffiliated Sixth People’ s Hospital, Shanghai 201306, China
| | - Qingyu Chen
- Department of Oncology, Shanghai Jiao Tong UniversityAffiliated Sixth People’ s Hospital, Shanghai 201306, China
| | - Daliu Min
- Department of Oncology, Shanghai Jiao Tong UniversityAffiliated Sixth People’ s Hospital, Shanghai 201306, China
| | - Yan Huang
- Department of Radiation Oncology, Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Kun Han
- Department of Oncology, Shanghai Jiao Tong UniversityAffiliated Sixth People’ s Hospital, Shanghai 201306, China
| |
Collapse
|
5
|
Wei M, Li Q, Li S, Wang D, Wang Y. Multifaceted roles of cGAS-STING pathway in the lung cancer: from mechanisms to translation. PeerJ 2024; 12:e18559. [PMID: 39588006 PMCID: PMC11587877 DOI: 10.7717/peerj.18559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Lung cancer (LC) remains one of the most prevalent and lethal malignancies globally, with a 5-year survival rate for advanced cases persistently below 10%. Despite the significant advancements in immunotherapy, a substantial proportion of patients with advanced LC fail to respond effectively to these treatments, highlighting an urgent need for novel immunotherapeutic targets. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has gained prominence as a potential target for improving LC immunotherapy due to its pivotal role in enhancing anti-tumor immune responses, augmenting tumor antigen presentation, and promoting T cell infiltration. However, emerging evidence also suggests that the cGAS-STING pathway may have pro-tumorigenic effects in the context of LC. This review aims to provide a comprehensive analysis of the cGAS-STING pathway, including its biological composition, activation mechanisms, and physiological functions, as well as its dual roles in LC and the current and emerging LC treatment strategies that target the pathway. By addressing these aspects, we intend to highlight the potential of the cGAS-STING pathway as a novel immunotherapeutic target, while also considering the challenges and future directions for its clinical application.
Collapse
Affiliation(s)
- Mingming Wei
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
7
|
Wang R, Wu NS, Wang L, Zhang ZZ, Wang CF, Wang Y, Liang Y, Zhang Y, Qi XW. A pan-cancer analysis of Wnt family member 7B in human cancers. CANCER INNOVATION 2024; 3:e139. [PMID: 39257440 PMCID: PMC11386237 DOI: 10.1002/cai2.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 09/12/2024]
Abstract
Background Previous studies have highlighted the crucial role of Wnt7B in the development of various cancers, including breast, pancreatic, and gastric cancers. However, research into the involvement of Wnt7B is often confined to specific tumor types, with a noticeable lack of comprehensive studies spanning multiple cancer forms. The potential of Wnt7B as a diagnostic or prognostic cancer biomarker has not been fully explored. Methods In this study, we combined bioinformatics and immunohistochemistry analyses to examine the expression patterns and functions of Wnt7B in cancerous and adjacent noncancerous tissues across a range of tumors. Results Our data indicate that Wnt7B may serve as a novel prognostic biomarker and therapeutic target in certain cancers. Conclusion We found significant upregulation of Wnt7B expression levels in the majority of cancer cases examined. Furthermore, Wnt7B can influence cancer prognosis by modulating the tumor microenvironment, immune cell infiltration, and tumor stemness, among other factors. Additionally, we examined the associations between anticancer drug sensitivity and Wnt7B expression, which could aid in the development of more precise clinical therapies.
Collapse
Affiliation(s)
- Rui Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| | - Ni-Sha Wu
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| | - Li Wang
- Department of Infection China Academy of Chinese Medical Sciences, Guang'anmen Hospital Beijing China
| | - Zhi-Zhao Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| | - Cheng-Fang Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| | - Yan Wang
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| | - Yan Liang
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| | - Xiao-Wei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital Army Medical University Chongqing China
| |
Collapse
|
8
|
Kajiwara M, Takahashi H, Nakaguro M, Kawakita D, Hirai H, Utsumi Y, Urano M, Sato Y, Tsukahara K, Kano S, Okami K, Ozawa H, Yamazaki K, Okada T, Shimizu A, Hanyu K, Sakai A, Yamauchi M, Sekimizu M, Hanazawa T, Saito Y, Ueki Y, Honma Y, Arai T, Iwaki S, Yamamura K, Imanishi Y, Sato Y, Tada Y, Nagao T. The clinicopathological and prognostic significance of autonomic nerves in salivary duct carcinoma. Virchows Arch 2024; 485:439-452. [PMID: 39042207 DOI: 10.1007/s00428-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Many researchers have focused on the role of the autonomic nervous system in the tumor microenvironment. Autonomic nerves include the sympathetic and parasympathetic nerves, which are known to induce cancer growth and metastasis. However, in salivary duct carcinoma (SDC), a rare and highly malignant tumor, the issue should be investigated from both biological and therapeutic perspectives. We explored the clinicopathological and prognostic implications of the autonomic nerves in 129 SDCs. Immunohistochemistry was performed to determine the nature of each nerve using antibodies against S100, tyrosine hydroxylase (TH) as a sympathetic marker, and vesicular acetylcholine transporter (VAChT) as a parasympathetic marker. The area of each marker-positive nerve was digitized and evaluated quantitatively. Double immunofluorescence for TH and VAChT was performed in selected cases. The expression of the secreted neurotrophins was also examined. S100-positive nerves were present in the cancer tissue in 94 of 129 cases (72.9%). Among them, TH-positive sympathetic nerves and/or VAChT-positive parasympathetic nerves were identified in 92 cases (97.9%), and 59 cases (62.8%) had TH/VAChT-co-expressing nerves. Double immunofluorescence revealed a mosaic pattern of sympathetic and parasympathetic fibers in co-expressing nerve bundles. The presence of autonomic nerves, regardless of their area, was significantly associated with aggressive histological features, advanced T/N classification, and a poor prognosis, with shorter disease-free and overall survival. There was an association between some tumor immune microenvironment-related markers and the autonomic nerve status, but not the latter and the secreted neurotrophin expression. This study suggests that autonomic nerves might play a role in the progression of SDC.
Collapse
Affiliation(s)
- Manami Kajiwara
- Department of Anatomic Pathology, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Kawakita
- Department of Otorhinolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideaki Hirai
- Department of Anatomic Pathology, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Yoshitaka Utsumi
- Department of Anatomic Pathology, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Makoto Urano
- Department of Diagnostic Pathology, School of Medicine, Bantane Hospital, Fujita Health University, Nakagawa-Ku, Nagoya, Japan
| | - Yukiko Sato
- Division of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-Ku, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Satoshi Kano
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenji Okami
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Tokai University, Isehara, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Shinjuku-Ku, Tokyo, Japan
| | - Keisuke Yamazaki
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Takuro Okada
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University Hachioji Medical Center, Hachioji, Japan
| | - Akira Shimizu
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Kenji Hanyu
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Akihiro Sakai
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Tokai University, Isehara, Japan
| | - Mayu Yamauchi
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine, Tokai University, Isehara, Japan
| | - Mariko Sekimizu
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Shinjuku-Ku, Tokyo, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head & Neck Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Yuki Saito
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yushi Ueki
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-Ku, Niigata, Japan
| | - Yoshitaka Honma
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Chuo-Ku, Tokyo, Japan
| | - Tomoyuki Arai
- Department of Otorhinolaryngology/Head & Neck Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Sho Iwaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koji Yamamura
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Shinjuku-Ku, Tokyo, Japan
| | - Yuichiro Sato
- Department of Head and Neck Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Minato-Ku, Tokyo, Japan
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan.
| |
Collapse
|
9
|
Tao J, Bian X, Zhou J, Zhang M. From microscopes to molecules: The evolution of prostate cancer diagnostics. Cytojournal 2024; 21:29. [PMID: 39391208 PMCID: PMC11464998 DOI: 10.25259/cytojournal_36_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 10/12/2024] Open
Abstract
In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm. With PCa persisting as one of the most common malignancies among men globally, the quest for early and precise diagnostic methods has never been more critical. The spotlight in this endeavor shines on the molecular diagnostics that reveal the genetic underpinnings of PCa, offering insights into its onset, progression, and resistance to conventional therapies. Among the genetic aberrations, the TMPRSS2-ERG fusion and mutations in genes such as phosphatase and tensin homolog (PTEN) and myelocytomatosis viral oncogene homolog (MYC) are identified as significant players in the disease's pathology, providing not only diagnostic markers but also potential therapeutic targets. This review underscores a multimodal diagnostic approach, merging molecular diagnostics with cytopathology, as a cornerstone in managing PCa effectively. This strategy promises a future where treatment is not only tailored to the individual's genetic makeup but also anticipates the disease's trajectory, offering hope for improved prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaokang Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Ma X, Deng K, Sun Y, Wu M. Research trends on cancer neuroscience: a bibliometric and visualized analysis. Front Neurosci 2024; 18:1408306. [PMID: 39268034 PMCID: PMC11390534 DOI: 10.3389/fnins.2024.1408306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Background Recently, cancer neuroscience has become the focus for scientists. Interactions between the nervous system and cancer (both systemic and local) can regulate tumorigenesis, progression, treatment resistance, compromise of anti-cancer immunity, and provocation of tumor-promoting inflammation. We assessed the related research on cancer neuroscience through bibliometric analysis and explored the research status and hotspots from 2020 to 2024. Methods Publications on cancer neuroscience retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and Scimago Graphica were used to analyze and visualize the result. Results A total of 744 publications were retrieved, with an upward trend in the overall number of articles published over the last 5 years. As it has the highest number of publications (n = 242) and citations (average 13.63 citations per article), the United States holds an absolute voice in the field of cancer neuroscience. The most productive organizations and journals were Shanghai Jiaotong University (n = 24) and Cancers (n = 45), respectively. Monje M (H-index = 53), Hondermarck H (H-index = 42), and Amit M (H-index = 39) were the three researchers who have contributed most to the field. From a global perspective, research hotspots in cancer neuroscience comprise nerve/neuron-tumor cell interactions, crosstalk between the nervous system and other components of the tumor microenvironment (such as immune cells), as well as the impact of tumors and tumor therapies on nervous system function. Conclusion The United States and European countries are dominating the field of cancer neuroscience, while developing countries such as China are growing rapidly but with limited impact. The next focal point in this field is likely to be neurotrophic factors. Cancer neuroscience is still in its infancy, which means that many of the interactions and mechanisms between the nervous system and cancer are not yet fully understood. Further investigation is necessary to probe the interactions of the nervous system with cancer cell subpopulations and other components of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinru Ma
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Kun Deng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Minghua Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Yuxiao C, Jiachen W, Yanjie L, Shenglan L, Yuji W, Wenbin L. Therapeutic potential of arginine deprivation therapy for gliomas: a systematic review of the existing literature. Front Pharmacol 2024; 15:1446725. [PMID: 39239650 PMCID: PMC11375294 DOI: 10.3389/fphar.2024.1446725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Background Arginine deprivation therapy (ADT) hinders glioma cells' access to nutrients by reducing peripheral blood arginine, showing great efficacy in various studies, which suggests it as a potentially promising treatment for glioma. The aim of this systematic review was to explore the mechanism of ADT for gliomas, the therapeutic effect based on existing research, and possible combination therapies. Methods We performed a systematic literature review of PubMed, ScienceDirect and Web of Science databases according to PRISMA guidelines, searching for articles on the efficacy of ADT in glioma. Results We identified 17 studies among 786 search results, among which ADT therapy mainly based on Arginine free condition, Arginine Deiminase and Arginase, including three completed clinical trials. ADT therapy has shown promising results in vivo and in vitro, with its safety confirmed in clinical trials. In the early phase of treatment, glioblastoma (GBM) cells develop protective mechanisms of stress and autophagy, which eventually evolve into caspase dependent apoptosis or senescence, respectively. The immunosuppressive microenvironment is also altered by arginine depletion, such as the transformation of microglia into a pro-inflammatory phenotype and the activation of T-cells. Thus, ADT therapy demonstrates glioma-killing effect in the presence of a combination of mechanisms. In combination with various conventional therapies and investigational drugs such as radiotherapy, temozolomide (TMZ), cyclin-dependent kinase inhibitors (CDK) inhibitors and autophagy inducers, ADT therapy has been shown to be more effective. However, the phenomenon of drug resistance due to re-expression of ASS1 rather than stem cell remains to be investigated. Conclusion Despite the paucity of studies in the literature, the available data demonstrate the therapeutic potential of arginine deprivation therapy for glioma and encourage further research, especially the exploration of its combination therapies and the extrapolation of what we know about the effects and mechanisms of ADT from other tumors to glioma.
Collapse
Affiliation(s)
- Chen Yuxiao
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Xuanwu Hospital (The First Clinical College of Capital Medical University), Beijing, China
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wang Jiachen
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lan Yanjie
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Li Shenglan
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Yuji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Li Wenbin
- Department of Neuro-Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Huang G, Zhou M, Lu D, Li J, Tang Q, Xiong C, Liang F, Chen R. The mechanism of ITGB4 in tumor migration and invasion. Front Oncol 2024; 14:1421902. [PMID: 39169946 PMCID: PMC11335651 DOI: 10.3389/fonc.2024.1421902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Integrin β4 (ITGB4) is a transmembrane protein that functions as a mechanosensor, mediating the bidirectional exchange of information between the intracellular and extracellular matrices. ITGB4 plays a critical role in cell adhesion, migration, and signaling. Numerous studies have implicated ITGB4 as a key facilitator of tumor migration and invasion. This review provides a foundational description of the mechanisms by which ITGB4 regulates tumor migration and invasion through pathways involving focal adhesion kinase (FAK), protein kinase B (AKT), and matrix metalloproteinases (MMPs). These mechanisms encompass epithelial-mesenchymal transition (EMT), phosphorylation, and methylation of associated molecules. Additionally, this review explores the role of ITGB4 in the migration and invasion of prevalent clinical tumors, including those of the digestive system, breast, and prostate.
Collapse
Affiliation(s)
- Guichen Huang
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Damin Lu
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Jinxiao Li
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Tang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Chutong Xiong
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Qin H, Peng M, Cheng J, Wang Z, Cui Y, Huang Y, Gui Y, Sun Y, Xiang W, Huang X, Huang T, Wang L, Chen J, Hou Y. A novel LGALS1-depended and immune-associated fatty acid metabolism risk model in acute myeloid leukemia stem cells. Cell Death Dis 2024; 15:482. [PMID: 38965225 PMCID: PMC11224233 DOI: 10.1038/s41419-024-06865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Leukemia stem cells (LSCs) are recognized as the root cause of leukemia initiation, relapse, and drug resistance. Lipid species are highly abundant and essential component of human cells, which often changed in tumor microenvironment. LSCs remodel lipid metabolism to sustain the stemness. However, there is no useful lipid related biomarker has been approved for clinical practice in AML prediction and treatment. Here, we constructed and verified fatty acid metabolism-related risk score (LFMRS) model based on TCGA database via a series of bioinformatics analysis, univariate COX regression analysis, and multivariate COX regression analysis, and found that the LFMRS model could be an independent risk factor and predict the survival time of AML patients combined with age. Moreover, we revealed that Galectin-1 (LGALS1, the key gene of LFMRS) was highly expressed in LSCs and associated with poor prognosis of AML patients, and LGALS1 repression inhibited AML cell and LSC proliferation, enhanced cell apoptosis, and decreased lipid accumulation in vitro. LGALS1 repression curbed AML progression, lipid accumulation, and CD8+ T and NK cell counts in vivo. Our study sheds light on the roles of LFMRS (especially LGALS1) model in AML, and provides information that may help clinicians improve patient prognosis and develop personalized treatment regimens for AML.
Collapse
Affiliation(s)
- Huanhuan Qin
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563006, China
| | - Meixi Peng
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jingsong Cheng
- The Second Clinical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Wang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563006, China
| | - Yinghui Cui
- Department of Hematology/Oncology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yongxiu Huang
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaoqi Gui
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yanni Sun
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Medical School of Guizhou University, Guiyang, 550025, China
| | - Wenqiong Xiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaomei Huang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ting Huang
- Department of Gynecology and Obstetrics, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
An J, Chen P, Li X, Li X, Peng F. Identification of potential hub genes and biological mechanism in rheumatoid arthritis and non-small cell lung cancer via integrated bioinformatics analysis. Transl Oncol 2024; 45:101964. [PMID: 38657441 PMCID: PMC11059132 DOI: 10.1016/j.tranon.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Although there is evidence of the association between RA and NSCLC, little is known about their interaction mechanisms. The aim of this study is to identify potential hub genes and biological mechanism in RA and NSCLC via integrated bioinformatics analysis. METHODS The gene expression datasets of RA and NSCLC were downloaded to discover and validate hub genes. After identifying DEGs, we performed enrichment analysis, PPI network construction and module analysis, selection and validation of hub genes. Moreover, we selected the hub gene PTPRC for expression and prognosis analysis, immune analysis, mutation and methylation analysis in NSCLC. Finally, we performed real-time PCR, colony formation assay, wound healing assay, transwell invasion assay, sphere formation assay and western blotting to validate the role of PTPRC in A549 cells. RESULTS We obtained 320 DEGs for subsequent analysis. Enrichment results showed that the DEGs were mainly involved in Th1, Th2 and Th17 cell differentiation. In addition, four hub genes, BIRC5, PTPRC, PLEK, and FYN, were identified after selection and validation. These hub genes were subsequently shown to be closely associated with immune cells and related pathways. In NSCLC, PTPRC was downregulated, positively correlated with immune infiltration and immune cells. Experiments showed that PTPRC could promote the proliferation, migration and invasion, and the ability to form spheroids of A549 cells. In addition, PTPRC could regulate the increased expression of CD45, β-catenin, c-Myc and LEF1 proteins. CONCLUSIONS This study explored the hub genes and related mechanisms of RA and NSCLC, demonstrated the central role of the inflammatory response and the adaptive immune system, and identified PTPRC as an immune-related biomarker and potential therapeutic target for RA and NSCLC patients. In addition, PTPRC can significantly promote the proliferation, migration and invasion of A549 cells, and its mechanism may be to promote the EMT process by regulating the Wnt signaling pathway and promote cell stemness, which in turn has a promoting effect on A549 cells.
Collapse
Affiliation(s)
- Junsha An
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Pingting Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiuchuan Li
- Department of cardiology, General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Fu Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Mao R, Li J, Xiao W. Identification of prospective aging drug targets via Mendelian randomization analysis. Aging Cell 2024; 23:e14171. [PMID: 38572516 PMCID: PMC11258487 DOI: 10.1111/acel.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Aging represents a multifaceted process culminating in the deterioration of biological functions. Despite the introduction of numerous anti-aging strategies, their therapeutic outcomes have often been less than optimal. Consequently, discovering new targets to mitigate aging effects is of critical importance. We applied Mendelian randomization (MR) to identify potential pharmacological targets against aging, drawing upon summary statistics from both the Decode and FinnGen cohorts, with further validation in an additional cohort. To address potential reverse causality, bidirectional MR analysis with Steiger filtering was utilized. Additionally, Bayesian co-localization and phenotype scanning were implemented to investigate previous associations between genetic variants and traits. Summary-data-based Mendelian randomization (SMR) analysis was conducted to assess the impact of genetic variants on aging via their effects on protein expression. Additionally, mediation analysis was orchestrated to uncover potential intermediaries in these associations. Finally, we probed the systemic implications of drug-target protein expression across diverse indications by MR-PheWas analysis. Utilizing a Bonferroni-corrected threshold, our MR examination identified 10 protein-aging associations. Within this cohort of proteins, MST1, LCT, GMPR2, PSMB4, ECM1, EFEMP1, and ISLR2 appear to exacerbate aging risks, while MAX, B3GNT8, and USP8 may exert protective influences. None of these proteins displayed reverse causality except EFEMP1. Bayesian co-localization inferred shared variants between aging and proteins such as B3GNT8 (rs11670143), ECM1 (rs61819393), and others listed. Mediator analysis pinpointed 1,5-anhydroglucitol as a partial intermediary in the influence LCT exhibits on telomere length. Circulating proteins play a pivotal role in influencing the aging process, making them promising candidates for therapeutic intervention. The implications of these proteins in aging warrant further investigation in future clinical research.
Collapse
Affiliation(s)
- Rui Mao
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Aging Biology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ji Li
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Aging Biology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenqin Xiao
- Department of Dermatology, Xiangya HospitalCentral South UniversityChangshaChina
- Hunan Key Laboratory of Aging Biology, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
17
|
Fan Z, Pan H, Qu N, Wang X, Cao L, Chen L, Liu M. LncRNA taurine upregulated gene 1 in liver disease. Clin Chim Acta 2024; 560:119752. [PMID: 38821337 DOI: 10.1016/j.cca.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Long non-coding RNAs (lncRNAs) are RNA sequences exceeding 200 nucleotides in length that lack protein-coding capacity and participate in diverse biological processes in the human body, particularly exerting a pivotal role in disease surveillance, diagnosis, and progression. Taurine upregulated gene 1 (TUG1) is a versatile lncRNA, and recent studies have revealed that the aberrant expression or function of TUG1 is intricately linked to the pathogenesis of liver diseases. Consequently, we have summarized the current understanding of the mechanism of TUG1 in liver diseases such as liver fibrosis, fatty liver, cirrhosis, liver injury, hepatitis, and liver cancer. Moreover, mounting evidence suggests that interventions targeting TUG1 or its downstream pathways may hold therapeutic promise for liver diseases. This review elucidates the characteristics, mechanisms, and targets of TUG1 in liver diseases, offering a theoretical basis for the prevention, diagnosis, treatment, and prognostic biomarkers of liver diseases.
Collapse
Affiliation(s)
- Zihao Fan
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Hao Pan
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Na Qu
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Lianrui Cao
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China.
| | - Mingxia Liu
- School of Pharmaceutical Sciences, Liaoning University, No. 66, Chongshan Mid Road, Shenyang 110036, China.
| |
Collapse
|
18
|
Li J, Li J, Chen J, Cao W, Chen B. Comprehensive analysis of ATP6V1s family member, ATP6V1C2, with prognostic and drug development values in colorectal cancer. Pathol Res Pract 2024; 258:155357. [PMID: 38772116 DOI: 10.1016/j.prp.2024.155357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Member of the V-type ATPase family have attracted vast attention in tumor progression. Nevertheless, the specific member of V-ATPase, ATP6V1C2, its regulatory function in colorectal cancer (CRC) progression was poorly understood. In this study, comprehensive analyses demonstrated the role of ATP6V1C2 in CRC progression and drug screening based on ATP6V1C2 was carried out. As a result, among the ATPV1s family, ATP6V1C2 was significantly highly expressed in CRC. Immuno-infiltration analysis suggests that, the interaction between CRC cells and immune cells resulting in reduced immune and estimate scores. GSEA analysis found that, ATP6V1C2 negatively correlates with immune cells,especially CD8T cells. Next, Ecotyper database queries indicated that ATP6V1C2 was negatively correlates with characteristic gene expression in CD8T cells. Then, COX regression analysis and survival curves made it clear that ATP6V1C2 is positively correlates with clinicopathological progression leading to poor CRC prognosis. CellMiner explore told us LOR-253 and Sonidegib may be effective in CRC cancer treatment. Molecular Docking between ATP6V1C2 and 9 first-line and 9 natural drugs showed that ATP6V1C2 was recognized by the best geometrical and energetic matching pattern of 2 First-line and 4 natural drugs. RT-PCR and immunoblotting confirmed that ATP6V1C2 was significantly overexpressed in CRC. Four natural drugs screened by molecular docking were effective in cell proliferation inhibition by CCK8 test. In summary, ATP6V1C2 may be a new therapeutic target for CRC. The illustration is shown in Figure 9.
Collapse
Affiliation(s)
- Jun Li
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Jutang Li
- Hongqiao International Institute of Medicine,Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, China
| | - Jingyao Chen
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Wei Cao
- Department of Breast, The International Peace Maternity and Child Health Hospital, School of Medicine, Jiao Tong University, No. 910 Hengshan Road, Xuhui District, Shanghai 200030, China.
| | - Bingdi Chen
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
19
|
Jian C, Wang B, Mou H, Zhang Y, Yang C, Huang Q, Ou Y. A GAD1 inhibitor suppresses osteosarcoma growth through the Wnt/β-catenin signaling pathway. Heliyon 2024; 10:e31444. [PMID: 38803976 PMCID: PMC11128529 DOI: 10.1016/j.heliyon.2024.e31444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Background As a marker of the GABAergic system, the expression of glutamate decarboxylase 1 (GAD1) is mainly restricted to the central nervous system. Emerging studies have shown that aberrant expression of GAD1 in tumor tissues may promote tumor cell growth. The role of GAD1 in the development of osteosarcoma (OS) remains unclear, so this study sought to investigate the expression status of GAD1 and the effect of its specific inhibitor 3-mercaptopropionic acid (3-MPA) on OS. Methods The R2 database was used to analyze the relationship between the expression of GAD1 and clinical prognosis in OS patients. Immunohistochemistry was used to compare the expression profile of GAD1 between OS and matched neighboring tissues. The potential antitumor effects of 3-MPA on cell viability, colony formation and the cell cycle were examined. Moreover, the in vivo effect of 3-MPA on tumor growth was investigated using tumor-bearing nude mice. Results The expression level of GAD1 was aberrantly upregulated in OS tissues, but almost no expression of GAD1 was found in matched neighboring tissues. Western blotting analyses showed upregulation of GAD1 in OS cells compared to human osteoblast cells. In vitro and in vivo, 3-MPA significantly suppressed the growth of OS. Regarding the mechanism, 3-MPA inhibited β-catenin and cyclin D1 in OS cells, thereby inactivating the Wnt/β-catenin pathway. Conclusions OS displays increased expression of the GABAergic neuronal marker GAD1, and 3-MPA significantly reduces OS growth by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Changchun Jian
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ben Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Hai Mou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ye Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chaohua Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Qiu Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
20
|
Zhang J, Li Z, Chen Z, Shi W, Xu Y, Huang Z, Lin Z, Dou R, Lin S, Jiang X, Li M, Jiang S. Comprehensive analysis of macrophage-related genes in prostate cancer by integrated analysis of single-cell and bulk RNA sequencing. Aging (Albany NY) 2024; 16:6809-6838. [PMID: 38663915 PMCID: PMC11087116 DOI: 10.18632/aging.205727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 05/08/2024]
Abstract
Macrophages, as essential components of the tumor immune microenvironment (TIME), could promote growth and invasion in many cancers. However, the role of macrophages in tumor microenvironment (TME) and immunotherapy in PCa is largely unexplored at present. Here, we investigated the roles of macrophage-related genes in molecular stratification, prognosis, TME, and immunotherapeutic response in PCa. Public databases provided single-cell RNA sequencing (scRNA-seq) and bulk RNAseq data. Using the Seurat R package, scRNA-seq data was processed and macrophage clusters were identified automatically and manually. Using the CellChat R package, intercellular communication analysis revealed that tumor-associated macrophages (TAMs) interact with other cells in the PCa TME primarily through MIF - (CD74+CXCR4) and MIF - (CD74+CD44) ligand-receptor pairs. We constructed coexpression networks of macrophages using the WGCNA to identify macrophage-related genes. Using the R package ConsensusClusterPlus, unsupervised hierarchical clustering analysis identified two distinct macrophage-associated subtypes, which have significantly different pathway activation status, TIME, and immunotherapeutic efficacy. Next, an 8-gene macrophage-related risk signature (MRS) was established through the LASSO Cox regression analysis with 10-fold cross-validation, and the performance of the MRS was validated in eight external PCa cohorts. The high-risk group had more active immune-related functions, more infiltrating immune cells, higher HLA and immune checkpoint gene expression, higher immune scores, and lower TIDE scores. Finally, the NCF4 gene has been identified as the hub gene in MRS using the "mgeneSim" function.
Collapse
Affiliation(s)
- Jili Zhang
- Department of Urology, The First Navy Hospital of Southern Theater Command, Zhanjiang, Guangdong, China
| | - Zhihao Li
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhenlin Chen
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenzhen Shi
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yue Xu
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhangcheng Huang
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Zequn Lin
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruiling Dou
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shaoshan Lin
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xin Jiang
- Department of Urology, The First Navy Hospital of Southern Theater Command, Zhanjiang, Guangdong, China
| | - Mengqiang Li
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shaoqin Jiang
- Department of Urology, Fujian Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Zhan Y, Yang Z, Zeng H, Yu J, Chen X, Wu Y. Extracellular vesicle-derived non-coding RNAs in remodeling melanoma. Biomed Pharmacother 2024; 172:116213. [PMID: 38306847 DOI: 10.1016/j.biopha.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Melanoma is one of the most lethal cutaneous malignancies. Despite great advances in radiotherapy, chemotherapy, and immunotherapy, the survival rate and prognosis of patients with melanoma remain poor. The abundant and sophisticated reciprocal communication network between melanoma cells and non-tumor cells contributes to the high heterogeneity of the melanoma microenvironment and is intimately related to varying treatment responses and clinical courses. Extracellular vesicles (EVs) are membrane structures generated by nearly all cell types. EVs contain biologically active molecules, mainly comprising proteins, lipids, and RNAs, and undoubtedly play multifaceted roles in numerous diseases, represented by melanoma. Non-coding RNAs (ncRNAs) mainly encompass long non-coding RNAs, microRNAs, and circular RNAs and constitute the majority of the human transcriptome. Multiple ncRNAs encapsulated in EVs coordinate various pathophysiological processes in melanoma. This review summarizes the mechanisms by which EV-ncRNAs modulate biological behaviors and immunity, and their potential diagnostic and therapeutic applications in melanoma. Undoubtedly, further insight into EV-ncRNAs and their functions in melanoma will contribute to the clinical treatment of melanoma and the implementation of precision medicine.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Zhang L, Chai R, Tai Z, Miao F, Shi X, Chen Z, Zhu Q. Noval advance of histone modification in inflammatory skin diseases and related treatment methods. Front Immunol 2024; 14:1286776. [PMID: 38235133 PMCID: PMC10792063 DOI: 10.3389/fimmu.2023.1286776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Inflammatory skin diseases are a group of diseases caused by the disruption of skin tissue due to immune system disorders. Histone modification plays a pivotal role in the pathogenesis and treatment of chronic inflammatory skin diseases, encompassing a wide range of conditions, including psoriasis, atopic dermatitis, lupus, systemic sclerosis, contact dermatitis, lichen planus, and alopecia areata. Analyzing histone modification as a significant epigenetic regulatory approach holds great promise for advancing our understanding and managing these complex disorders. Additionally, therapeutic interventions targeting histone modifications have emerged as promising strategies for effectively managing inflammatory skin disorders. This comprehensive review provides an overview of the diverse types of histone modification. We discuss the intricate association between histone modification and prevalent chronic inflammatory skin diseases. We also review current and potential therapeutic approaches that revolve around modulating histone modifications. Finally, we investigated the prospects of research on histone modifications in the context of chronic inflammatory skin diseases, paving the way for innovative therapeutic interventions and improved patient outcomes.
Collapse
Affiliation(s)
- Lichen Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Rongrong Chai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinwei Shi
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Feng Q, Duan H, Zhou X, Wang Y, Zhang J, Zhang H, Chen G, Bao X. DNA Methyltransferase 3A: A Significant Target for the Discovery of Inhibitors as Potent Anticancer Drugs. Mini Rev Med Chem 2024; 24:507-520. [PMID: 37642180 DOI: 10.2174/1389557523666230825100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
DNA methyltransferase (DNMT) is a conserved family of Cytosine methylases, which plays a crucial role in the regulation of Epigenetics. They have been considered promising therapeutic targets for cancer. Among the DNMT family, mutations in the DNMT3A subtype are particularly important in hematologic malignancies. The development of specific DNMT3A subtype inhibitors to validate the therapeutic potential of DNMT3A in certain diseases is a significant task. In this review, we summarized the small molecule inhibitors of DNMT3A discovered in recent years and their inhibitory activities, and classified them based on their inhibitory mechanisms.
Collapse
Affiliation(s)
- Qixun Feng
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Honggao Duan
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinglong Zhou
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuning Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinda Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Haoge Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuefei Bao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
24
|
Song Z, Su M, Li X, Xie J, Han F, Yao J. A novel endoplasmic reticulum stress-related lncRNA signature for prognosis prediction and immune response evaluation in Stomach adenocarcinoma. BMC Gastroenterol 2023; 23:432. [PMID: 38066437 PMCID: PMC10709857 DOI: 10.1186/s12876-023-03001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Stomach adenocarcinoma (STAD) is a significant contributor to cancer-related mortality worldwide. Although previous research has identified endoplasmic reticulum stress (ERS) as a regulator of various tumor-promoting properties of cancer cells, the impact of ERS-related long non-coding RNAs (lncRNAs) on STAD prognosis has not yet been investigated. Therefore, our study aims to develop and validate an ERS-related lncRNA signature that can accurately predict the prognosis of STAD patients. METHODS We collected RNA expression profiles and clinical data of STAD patients from The Cancer Genome Atlas (TCGA) and identified ERS-related genes from the Molecular Signature Database (MSigDB). Co-expression analysis enabled us to identify ERS-related lncRNAs, and we applied univariate Cox, least absolute shrinkage, and selection operator (LASSO), and multivariate Cox regression analyses to construct a predictive signature comprising of 9 ERS-related lncRNAs. We assessed the prognostic accuracy of our signature using Kaplan-Meier survival analysis, and validated our predictive signature in an independent gene expression omnibus (GEO) cohort. We also performed tumor mutational burden (TMB) and tumor immune microenvironment (TIME) analyses. Enrichment analysis was used to investigate the functions and biological processes of the signature, and we identified two distinct STAD patient subgroups through consensus clustering. Finally, we performed drug sensitivity analysis and immunologic efficacy analysis to explore further insights. RESULTS The 9 ERS related-lncRNAs signature demonstrated satisfactory predictive performance as an independent prognostic marker and was significantly associated with STAD clinicopathological characteristics. Furthermore, patients in the high-risk group displayed a worse STAD prognosis than those in the low-risk group. Notably, gene set enrichment analysis (GSEA) revealed significant enrichment of extracellular matrix pathways in the high-risk group, indicating their involvement in STAD progression. Additionally, the high-risk group exhibited significantly lower TMB expression levels than the low-risk group. Consensus clustering revealed two distinct STAD patient subgroups, with Cluster 1 exhibiting higher immune cell infiltration and more active immune functions. Drug sensitivity analysis suggested that the low-risk group was more responsive to oxaliplatin, epirubicinl, and other drugs. CONCLUSION Our study highlights the crucial regulatory roles of ERS-related lncRNAs in STAD, with significant clinical implications. The 9-lncRNA signature we have constructed represents a reliable prognostic indicator that has the potential to inform more personalized treatment decisions for STAD patients. These findings shed new light on the pathogenesis of STAD and its underlying molecular mechanisms, offering opportunities for novel therapeutic strategies to be developed for STAD patients.
Collapse
Affiliation(s)
- Zhaoxiang Song
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Su
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyu Li
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinlin Xie
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Han
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianning Yao
- Depratment of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
25
|
Meng X, Song W, Zhou B, Liang M, Gao Y. Prognostic and immune correlation analysis of mitochondrial autophagy and aging-related genes in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:16311-16335. [PMID: 37698683 DOI: 10.1007/s00432-023-05390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Mitophagy and aging (MiAg) are very important pathophysiological mechanisms contributing to tumorigenesis. MiAg-related genes have prognostic value in lung adenocarcinoma (LUAD). However, prognostic, and immune correlation studies of MiAg-related genes in LUAD are lacking. METHODS MiAg differentially expressed genes (DEGs) in LUAD were obtained from public sequencing datasets. A prognostic model including MiAg DEGs was constructed according to patients divided into low- and high-risk groups. Gene Ontology, gene set enrichment analysis, gene set variation analysis, CIBERSORT immune infiltration analysis, and clinical characteristic correlation analyses were performed for functional annotation and correlation of MiAgs with prognosis in patients with LUAD. RESULTS Seven MiAg DEGs of LUAD were identified: CAV1, DSG2, DSP, MYH11, NME1, PAICS, PLOD2, and the expression levels of these genes were significantly correlated (P < 0.05). The RiskScore of the MiAg DEG prognostic model demonstrated high predictive ability of overall survival of patients diagnosed with LUAD. Patients with high and low MiAg phenotypic scores exhibited significant differences in the infiltration levels of eight types of immune cells (P < 0.05). The multi-factor DEG regression model showed higher efficacy in predicting 5-year survival than 3- and 1-year survival of patients with LUAD. CONCLUSIONS Seven MiAg-related genes were identified to be significantly associated with the prognosis of patients diagnosed with LUAD. Moreover, the identified MiAg DEGs might affect the immunotherapy strategy of patients with LUAD.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Weijian Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Boxuan Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Mei Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan, Nanli 17, Beijing, 100021, People's Republic of China.
| |
Collapse
|
26
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
27
|
Zou X, Huang Z, Zhan Z, Yuan M, Zhang Y, Liu T, Hu X, Fan W, Chen P, Qin H, Zhang S, Xia Y, Zheng S, Pan Z, Huang P. The alcohol extracts of Sceptridium ternatum (Thunb.) Lyon exert anti-pulmonary fibrosis effect through targeting SETDB1/STAT3/p-STAT3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116520. [PMID: 37120058 DOI: 10.1016/j.jep.2023.116520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a pathological process of irreversible scarring of lung tissues, with limited treatment means. Sceptridium ternatum (Thunb.) Lyon (STE) is a traditional Chinese herbal medicine that has a traditional use in relieving cough and asthma, resolving phlegm, clearing heat, and detoxicating in China. However, its role in PF has not been reported. AIM OF THE STUDY This study aims to investigate the protective role of STE in PF and the underlying mechanisms. MATERIALS AND METHODS Sprague-Dawley (SD) rats were divided into control group, PF model group, positive drug (pirfenidone) group and STE group. After 28 days of STE administration in bleomycin (BLM)-induced PF rats, living Nuclear Magnetic Resonance Imaging (NMRI) was used to observe the structural changes of lung tissues. H&E and Masson's trichrome staining were used to observe PF-associated pathological alteration, and immunohistochemistry (IHC) staining, western blotting, and qRT-PCR were used to detect the expression of PF-related marker proteins in the lung tissues. ELISA was used to detect PF-associated biochemical criteria in the lung tissue homogenates. The proteomics technology was used to screen the different proteins. Co-immunoprecipitation, western blotting, and IHC staining were used to confirm the underlying targets of STE as well as its downstream signaling. UPLC-Triple-TOF/MS assay was used to explore the effective components in the alcohol extracts of STE. Autodock vina was used to detect the potential binding between the above effective components and SETDB1. RESULTS STE prevented PF by inhibiting the activation of lung fibroblasts and ECM deposition in BLM-induced PF rats. Mechanism analyses demonstrated that STE could inhibit the up-regulation of SETDB1 induced by BLM and TGF-β1, which further blocked the binding of SETDB1 and STAT3 as well as the phosphorylation of STAT3, ultimately preventing the activation and proliferation of lung fibroblasts. CONCLUSION STE played a preventive role in PF by targeting the SETBD1/STAT3/p-STAT3 pathway, which may be a potential therapeutic agent for PF.
Collapse
Affiliation(s)
- Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Zhongjie Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310014, China.
| | - Zibo Zhan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310014, China.
| | - Mengnan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Ting Liu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Weijiao Fan
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China.
| | - Pengcheng Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Su Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Yuxuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
28
|
Galappaththi SL, Katz B, Howze PH, Hoover G, Grelet S. A CRISPR/Cas9-Based Assay for High-Throughput Studies of Cancer-Induced Innervation. Cancers (Basel) 2023; 15:cancers15072026. [PMID: 37046688 PMCID: PMC10093009 DOI: 10.3390/cancers15072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The aggressive nature of certain cancers and their adverse effects on patient outcomes have been linked to cancer innervation, where neurons infiltrate and differentiate within the cancer stroma. Recently we demonstrated how cancer plasticity and TGFβ signaling could promote breast cancer innervation that is associated with increased cancer aggressivity. Despite the promising potential of cancer innervation as a target for anti-cancer therapies, there is currently a significant lack of effective methods to study cancer-induced neuronal differentiation, hindering the development of high-throughput approaches for identifying new targets or pharmacological inhibitors against cancer innervation. To overcome this challenge, we used CRISPR-based endogenous labeling of the neuronal marker β3-tubulin in neuronal precursors to investigate cancer-induced neuronal differentiation in nerve-cancer cocultures and provide a tool that allows for better standardization and reproducibility of studies about cancer-induced innervation. Our approach demonstrated that β3-tubulin gene editing did not affect neuronal behavior and enabled accurate reporting of cancer-induced neuronal differentiation dynamics in high-throughput settings, which makes this approach suitable for screening large cohorts of cells or testing various biological contexts. In a more context-based approach, by combining this method with a cell model of breast cancer epithelial-mesenchymal transition, we revealed the role of cancer cell plasticity in promoting neuronal differentiation, suggesting that cancer innervation represents an underexplored path for epithelial-mesenchymal transition-mediated cancer aggressivity.
Collapse
Affiliation(s)
- Sapthala Loku Galappaththi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Mitchell Cancer Institute, The University of South Alabama, Mobile, AL 36604, USA
| | - Brenna Katz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Mitchell Cancer Institute, The University of South Alabama, Mobile, AL 36604, USA
| | - Patrick H. Howze
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Mitchell Cancer Institute, The University of South Alabama, Mobile, AL 36604, USA
| | - Gregory Hoover
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Mitchell Cancer Institute, The University of South Alabama, Mobile, AL 36604, USA
| | - Simon Grelet
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Mitchell Cancer Institute, The University of South Alabama, Mobile, AL 36604, USA
- Correspondence:
| |
Collapse
|
29
|
The Impact of Molecular Biology in the Seeding, Treatment Choices and Follow-Up of Colorectal Cancer Liver Metastases-A Narrative Review. Int J Mol Sci 2023; 24:ijms24021127. [PMID: 36674640 PMCID: PMC9863977 DOI: 10.3390/ijms24021127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
There is a clear association between the molecular profile of colorectal cancer liver metastases (CRCLM) and the degree to which aggressive progression of the disease impacts patient survival. However, much of our knowledge of the molecular behaviour of colorectal cancer cells comes from experimental studies with, as yet, limited application in clinical practice. In this article, we review the current advances in the understanding of the molecular behaviour of CRCLM and present possible future therapeutic applications. This review focuses on three important steps in CRCLM development, progression and treatment: (1) the dissemination of malignant cells from primary tumours and the seeding to metastatic sites; (2) the response to modern regimens of chemotherapy; and (3) the possibility of predicting early progression and recurrence patterns by molecular analysis in liquid biopsy.
Collapse
|