1
|
Barathan M, Vellasamy KM, Mariappan V, Venkatraman G, Vadivelu J. Naturally Occurring Phytochemicals to Target Breast Cancer Cell Signaling. Appl Biochem Biotechnol 2024; 196:4644-4660. [PMID: 37773580 DOI: 10.1007/s12010-023-04734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Almost 70% of clinically used antineoplastic drugs are originated from natural products such as plants, marine organism, and microorganisms and some of them are also structurally modified natural products. The naturally occurring drugs may specifically act as inducers of selective cytotoxicity, anti-metastatic, anti-mutagenic, anti-angiogenesis, antioxidant accelerators, apoptosis inducers, autophagy inducers, and cell cycle inhibitors in cancer therapy. Precisely, several reports have demonstrated the involvement of naturally occurring anti-breast cancer drugs in regulating the expression of oncogenic and tumor suppressors associated with carcinogen metabolism and signaling pathways. Anticancer therapies based on nanotechnology have the potential to improve patient outcomes through targeted therapy, improved drug delivery, and combination therapies. This paper has reviewed the current treatment for breast cancer and the potential disadvantages of those therapies, besides the various mechanism used by naturally occurring phytochemicals to induce apoptosis in different types of breast cancer. Along with this, the contribution of nanotechnology in improving the effectiveness of anticancer drugs was also reviewed. With the development of sciences and technologies, phytochemicals derived from natural products are continuously discovered; however, the search for novel natural products as chemoprevention drugs is still ongoing, especially for the advanced stage of breast cancer. Continued research and development in this field hold great promise for advancing cancer care and improving patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
| | - Vanitha Mariappan
- Center of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Jamuna Vadivelu
- MERDU, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Chang CC, Yang CH, Chuang CH, Jiang SJ, Hwang YM, Liou JW, Hsu HJ. A peptide derived from interleukin-10 exhibits potential anticancer activity and can facilitate cell targeting of gold nanoparticles loaded with anticancer therapeutics. Commun Chem 2023; 6:278. [PMID: 38102207 PMCID: PMC10724200 DOI: 10.1038/s42004-023-01079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Human interleukin-10 (IL-10) is an immunosuppressive and anti-inflammatory cytokine, and its expression is upregulated in tumor tissues and serum samples of patients with various cancers. Because of its immunosuppressive nature, IL-10 has also been suggested to be a factor leading to tumor cells' evasion of immune surveillance and clearance by the host immune system. In this study, we refined a peptide with 20 amino acids, named NK20a, derived from the binding region of IL-10 on the basis of in silico analysis of the complex structure of IL-10 with IL-10Ra, the ligand binding subunit of the IL-10 receptor. The binding ability of the peptide was confirmed through in vitro biophysical biolayer interferometry and cellular experiments. The IL-10 inhibitory peptide exerted anticancer effects on lymphoma B cells and could abolish the suppression effect of IL-10 on macrophages. NK20a was also conjugated with gold nanoparticles to target the chemotherapeutic 5-fluorouracil (5-FU)-loaded nanoparticles to enhance the anticancer efficacy of 5-FU against the breast cancer cell line BT-474. Our study demonstrated that NK20a designed in silico with improved binding affinity to the IL-10 receptor can be used as a tool in developing anticancer strategies.
Collapse
Affiliation(s)
- Chun-Chun Chang
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan, ROC
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC
| | - Chin-Hao Yang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC
| | - Chin-Hsien Chuang
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC
| | - Yin-Min Hwang
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC
| | - Je-Wen Liou
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC.
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC.
| | - Hao-Jen Hsu
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC.
- Department of Biomedical Sciences and Engineering, College of Medicine, Tzu Chi University, Hualien, 97004, Taiwan, ROC.
| |
Collapse
|
3
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
4
|
Ostovar S, Pourmadadi M, Shamsabadipour A, Mashayekh P. Nanocomposite of chitosan/gelatin/carbon quantum dots as a biocompatible and efficient nanocarrier for improving the Curcumin delivery restrictions to treat brain cancer. Int J Biol Macromol 2023; 242:124986. [PMID: 37230449 DOI: 10.1016/j.ijbiomac.2023.124986] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Curcumin (CUR) is among the most appropriate and natural-based anticancer drugs that can be applied effectively treat different classes of cancers. However, CUR suffers from a low half-life and stability in the body, which has restricted the efficacy of its delivery applications. This study is dedicated to introducing the pH-sensitive nanocomposite of chitosan (CS)/gelatin (GE)/carbon quantum dots (CQDs) as an applicable nanocarrier for enhancing CUR half-life and its delivery restrictions. The CS/GE hydrogel was synthesized by the physical crosslinking method, which improves the biocompatibility of this hydrogel. Moreover, the water-in-oil-in-water (W/O/W) double emulsion approach is involved in fabricating the drug-loaded CS/GE/CQDs@CUR nanocomposite. Afterward, drug encapsulation (EE) and loading efficiencies (LE) have been determined. Furthermore, FTIR and XRD assessments were performed to confirm the CUR incorporation into the prepared nanocarrier and crystalline features of the nanoparticles. Then, by employing Zeta potential and dynamic light scattering (DLS) analysis, the size distribution and stability of the drug-loaded nanocomposites have been assessed, which indicated monodisperse and stable nanoparticles. Furthermore, field emission scanning electron microscopy (FE-SEM) was utilized that confirmed the homogeneous distribution of the nanoparticles with smooth and quite spherical structures. In vitro drug release pattern was studied and the kinetic analysis was performed using a curve fitting technique to determine the governing release mechanism at both acidic pH and physiological conditions. The obtained outcomes from release data revealed a controlled release behavior with a 22-hour half-life, while the EE% and EL% were acquired at 46.75 % and 87.5 %, respectively. In addition, the MTT assay has been carried out on U-87 MG cell lines to evaluate the cytotoxicity of the nanocomposite. The findings showed that the fabricated nanocomposite of CS/GE/CQDs can be assumed as a biocompatible CUR nanocarrier, while the drug-loaded nanocomposite of CS/GE/CQDs@CUR showed enhanced cytotoxicity compared to the pure CUR. Based on the obtained results, this study suggests the CS/GE/CQDs nanocomposite as a biocompatible and potential nanocarrier for ameliorating CUR delivery restrictions to treat brain cancers.
Collapse
Affiliation(s)
- Shima Ostovar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran.
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran; Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Parsa Mashayekh
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| |
Collapse
|
5
|
Kulikova T, Shamagsumova R, Rogov A, Stoikov I, Padnya P, Shiabiev I, Evtugyn G. Electrochemical DNA-Sensor Based on Macrocyclic Dendrimers with Terminal Amino Groups and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:4761. [PMID: 37430675 DOI: 10.3390/s23104761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105-120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems.
Collapse
Affiliation(s)
- Tatjana Kulikova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Rezeda Shamagsumova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Gennady Evtugyn
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|