1
|
Cho YS, Cho H, Kim HR, Park SJ, Yeo JH, Ko YG, Lee J, Kim SY, Kim K, Byun Y. Macropinocytosis-targeted peptide-docetaxel conjugate for bystander pancreatic cancer treatment. J Control Release 2024; 376:829-841. [PMID: 39491626 DOI: 10.1016/j.jconrel.2024.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are highly prevalent in pancreatic ductal adenocarcinoma (PDAC) and have garnered attention as potential targets for targeted therapies, such as KRAS inhibitors. However, the limited therapeutic efficacy of KRAS allele-specific inhibitors necessitate an efficient pan-KRAS cancer cell killing strategy. Here, we have examined enhanced macropinocytosis pathway in KRAS mutant cancer cells and report improved intracellular delivery of albumin-based therapeutics. We further established an albumin-binding peptide-docetaxel conjugate platform (MPD3), which has a caspase-3 cleavable feature, for macropinocytosis-targeted bystander payload delivery and realization of bystander killing of pan-KRAS cancer cells, complemented with caspase-3 mediated activation of MPD3 to bolster tumoral accumulation of cytotoxic payloads. Utilization of in vitro co-culture system of pan-KRAS cancer cells and pharmacodynamic marker staining revealed potent bystander killing effects of MPD3, highlighting MPD3 as an efficient delivery platform against pan-KRAS cancer. Moreover, MPD3 elicited robust anti-tumor activities in both local and liver metastatic PDAC tumor models in mice. Overall, this work establishes a paradigm for developing translational pan-KRAS cancer treatment and broadens the applicability of albumin binding peptide-drug conjugate against albumin-metabolism enriched cancers.
Collapse
Affiliation(s)
- Young Seok Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanhee Cho
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; School of Medicine, Stanford University, CA 94305, USA
| | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo Hye Yeo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Yoon Gun Ko
- Pharosgen Co.Ltd, 2-404 Jangji-dong 892, Seoul 05852, Republic of Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Mer AH, Mirzaei Y, Misamogooe F, Bagheri N, Bazyari A, Keshtkaran Z, Meyfour A, Shahedi A, Amirkhani Z, Jafari A, Barpour N, Jahandideh S, Rezaei B, Nikmanesh Y, Abdollahpour-Alitappeh M. Progress of antibody-drug conjugates (ADCs) targeting c-Met in cancer therapy; insights from clinical and preclinical studies. Drug Deliv Transl Res 2024; 14:2963-2988. [PMID: 38597995 DOI: 10.1007/s13346-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/11/2024]
Abstract
The cell-surface receptor tyrosine kinase c-mesenchymal-epithelial transition factor (c-Met) is overexpressed in a wide range of solid tumors, making it an appropriate target antigen for the development of anticancer therapeutics. Various antitumor c-Met-targeting therapies (including monoclonal antibodies [mAbs] and tyrosine kinases) have been developed for the treatment of c-Met-overexpressing tumors, most of which have so far failed to enter the clinic because of their efficacy and complications. Antibody-drug conjugates (ADCs), a new emerging class of cancer therapeutic agents that harness the target specificity of mAbs to deliver highly potent small molecules to the tumor with the minimal damage to normal cells, could be an attractive therapeutic approach to circumvent these limitations in patients with c-Met-overexpressing tumors. Of great note, there are currently nine c-Met-targeting ADCs being examined in different phases of clinical studies as well as eight preclinical studies for treating various solid tumors. The purpose of this study is to present a broad overview of clinical- and preclinical-stage c-Met-targeting ADCs.
Collapse
Affiliation(s)
- Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fatemeh Misamogooe
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8813733450, Iran
| | - Ahmadreza Bazyari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Keshtkaran
- Department of Nursing, School of Nursing and Midwifery, Community Based Psychiatric Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shahedi
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Zahra Amirkhani
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeed Jahandideh
- Department of Research and Development, Orchidgene Co, Tehran, 1387837584, Iran
| | - Behzad Rezaei
- Laparoscopy Research Center, Department of Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars Province, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
3
|
Silverstein J, Karlan B, Herrington N, Konecny G. Antibody-drug conjugates as targeted therapy for treating gynecologic cancers: update 2025. Curr Opin Obstet Gynecol 2024:00001703-990000000-00161. [PMID: 39480912 DOI: 10.1097/gco.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW Provide the most up-to-date information on the dynamic landscape of antibody-drug conjugates (ADCs) in gynecologic cancers. We discuss the latest research that supports the approved ADCs and outline the ongoing trials and preliminary results that may lead to ADC approvals in the future. Current gaps in knowledge and areas for future research are discussed. RECENT FINDINGS ADCs are rapidly changing the landscape of gynecologic cancer care. Three ADCs are currently FDA approved and used routinely in clinical practice, with many more currently in clinical development. The most common ADC target is folate receptor alpha of which there are 8 different folate receptor targeting ADCs in development. Other targets under investigation include trophoblast cell surface antigen-2 (Trop-2), claudin-6 (CLDN6), cadherin-6 (CDH6), nectin-4, HER-2 and B7-H4. ADCs can cause new and unique adverse effects, including ocular toxicities and interstitial lung disease. SUMMARY ADCs offer the opportunity for a more effective and personalized treatment approach for gynecologic cancer patients. Side effects must be closely monitored, and preventive measures must be followed to maximize benefit and minimize toxicity. A better understanding of the role of target proteins as biomarkers to predict response to ADCs will be critical for successful clinical implementation of ADCs and further research in this area is necessary.
Collapse
Affiliation(s)
- Jordyn Silverstein
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles (UCLA)
| | - Beth Karlan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nasim Herrington
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles (UCLA)
| | - Gottfried Konecny
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles (UCLA)
| |
Collapse
|
4
|
Chen X, Habib S, Alexandru M, Chauhan J, Evan T, Troka JM, Rahimi A, Esapa B, Tull TJ, Ng WZ, Fitzpatrick A, Wu Y, Geh JLC, Lloyd-Hughes H, Palhares LCGF, Adams R, Bax HJ, Whittaker S, Jacków-Malinowska J, Karagiannis SN. Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma. Cancers (Basel) 2024; 16:3260. [PMID: 39409881 PMCID: PMC11476251 DOI: 10.3390/cancers16193260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape.
Collapse
Affiliation(s)
- Xinyi Chen
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Madalina Alexandru
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Theodore Evan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna M. Troka
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Avigail Rahimi
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Thomas J. Tull
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Wen Zhe Ng
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Oncology Department, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London SE1 9RT, UK
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Lais C. G. F. Palhares
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna Jacków-Malinowska
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
5
|
Camarda F, Paderno M, Cannizzaro MC, Nero C, Sabatucci I, Fucà G, Musacchio L, Salutari V, Scambia G, Lorusso D. Antibody drug conjugates in recurrent or metastatic cervical cancer: a focus on tisotumab vedotin state of art. Ther Adv Med Oncol 2024; 16:17588359241277647. [PMID: 39323928 PMCID: PMC11423367 DOI: 10.1177/17588359241277647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/27/2024] Open
Abstract
Cervical cancer (CC) is still characterized by a poor prognosis despite the progress made in its treatment in recent years. Although immunotherapy has improved outcomes for advanced/recurrent disease, there is a significant gap in addressing patients' needs when they progress after platinum and immunotherapy treatments. In this setting, traditional chemotherapy showed limited effectiveness. In this context, antibody-drug conjugates (ADCs) emerged as a promising tool within targeted cancer therapies. Tisotumab vedotin (TV), an ADC targeting tissue factor, represents the first ADC approved by the US Food and Drug Administration for the treatment of recurrent or metastatic CC with disease progression on or after chemotherapy. In phase I-III published trials, TV has already demonstrated an advantage in terms of objective response rate (17.8%-54.4%) and progression-free survival (3.1-6.9 months) in patients who progressed to the first-line standard therapy. Data concerning the addition of TV to platinum/pembrolizumab first-line chemotherapy are still under analysis and strongly expected. However, several questions are still unresolved: (1) the identification of the most suitable timing for ADCs administration in the treatment sequence of advanced/recurrent CC; (2) the evaluation of combination therapies as a tool to minimize the emergence of resistant clones and to enhance overall effectiveness; and (3) the assessment of tolerability and correct management of special toxicities (e.g. ocular and neurological adverse events). In the near future, an improvement in patient selection via biomarker-driven strategies should be crucial for optimizing both treatment benefits and maintaining an acceptable toxicity profile.
Collapse
Affiliation(s)
- Floriana Camarda
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Maria Chiara Cannizzaro
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Camilla Nero
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart-Campus of Rome, Rome, Italy
| | - Ilaria Sabatucci
- Operative Unit of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Giovanni Fucà
- Operative Unit of Gynecologic Oncology, Humanitas San Pio X, Milan, Italy
| | - Lucia Musacchio
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vanda Salutari
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Department of Women's and Children's Health Sciences and Public Health, UOC Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Faculty of Medicine and Surgery, Catholic University of the Sacred Heart-Campus of Rome, Rome, Italy
| | - Domenica Lorusso
- Faculty of Medicine and Surgery, Humanitas University, Milan, Italy
- Operative Unit of Gynecologic Oncology, Humanitas San Pio X, Via Francesco Nava, 31, 20159 Milan, Italy
| |
Collapse
|
6
|
Raja A, Kasana A, Verma V. Next-Generation Therapeutic Antibodies for Cancer Treatment: Advancements, Applications, and Challenges. Mol Biotechnol 2024:10.1007/s12033-024-01270-y. [PMID: 39222285 DOI: 10.1007/s12033-024-01270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The field of cancer treatment has evolved significantly over the last decade with the emergence of next-generation therapeutic antibodies. Conventional treatments like chemotherapy pose significant challenges, including adverse side effects. Monoclonal antibodies have paved the way for more targeted and effective interventions. The evolution from chimeric to humanized and fully human antibodies has led to a reduction in immunogenicity and enhanced tolerance in vivo. The advent of next-generation antibodies, including bispecific antibodies, nanobodies, antibody-drug conjugates, glyco-engineered antibodies, and antibody fragments, represents a leap forward in cancer therapy. These innovations offer increased potency, adaptability, and reduced drug resistance. Challenges such as target validation, immunogenicity, and high production costs exist. However, technological advancements in antibody engineering techniques provide optimism for addressing these issues. The future promises a paradigm shift, where ongoing research will propel these powerful antibodies to the forefront, revolutionizing the fight against cancer and creating new preventive and curative treatments. This review provides an overview of three next-generation antibody-based molecules, namely bispecific antibodies, antibody-drug conjugates, and nanobodies that have shown promising results in cancer treatment. It discusses the evolution of antibodies from conventional forms to next-generation molecules, along with their applications in cancer treatment, production methods, and associated challenges. The review aims to offer researchers insights into the evolving landscape of next-generation antibody-based cancer therapeutics and their potential to revolutionize treatment strategies.
Collapse
Affiliation(s)
- Abhavya Raja
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Abhishek Kasana
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India
| | - Vaishali Verma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, 201310, Uttar Pradesh, India.
| |
Collapse
|
7
|
Khosravanian MJ, Mirzaei Y, Mer AH, Keyhani-Khankahdani M, Abdinia FS, Misamogooe F, Amirkhani Z, Bagheri N, Meyfour A, Jahandideh S, Barpour N, Nikmanesh Y, Shahsavarani H, Abdollahpour-Alitappeh M. Nectin-4-directed antibody-drug conjugates (ADCs): Spotlight on preclinical and clinical evidence. Life Sci 2024; 352:122910. [PMID: 39002610 DOI: 10.1016/j.lfs.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Nectin-4 (Nectin cell adhesion molecule 4), a type I transmembrane cell adhesion protein, was demonstrated to be overexpressed in a variety of tumors, making it an attractive antigen for targeted therapies such as antibody-drug conjugates (ADCs). Of great note, the US Food and Drug Administration (FDA)-approval of the first Nectin-4-directed ADC, enfortumab vedotin (EV), in urothelial cancer (UC) not only introduced Nectin-4 as a clinically validated and reliable target antigen but also confirmed the evolving role of Nectin-4-directed ADCs as novel and promising cancer therapeutics. In addition to EV, there have been or are currently being seven and eleven Nectin-4-directed ADCs, respectively, in various stages of clinical trials and preclinical development, offering a promising future for the treatment of Nectin-4-positive cancer patients. This study reviewed clinical- and preclinical-stage Nectin-4-directed ADCs.
Collapse
Affiliation(s)
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nursing, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | | | | | - Fatemeh Misamogooe
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Zahra Amirkhani
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813733450, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Jahandideh
- Department of Research and Development, Orchidgene co, Tehran 1387837584, Iran
| | - Nesa Barpour
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983963113, Iran
| | | |
Collapse
|
8
|
Sun W, Hu S, Wang X. Update of antibody-drug conjugates for hematological malignancies. Curr Opin Oncol 2024; 36:430-436. [PMID: 39007226 DOI: 10.1097/cco.0000000000001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW Antibody-drug conjugates (ADCs), consisting of monoclonal antibodies (mAbs) covalently linked to cytotoxic drugs via chemical linkers, are a kind of promising tumor immunotherapy. ADCs also face a number of challenges, including unavoidable adverse effects, drug resistance, tumor targeting and payload release. To address these issues, in addition to optimizing the individual components of ADCs, such as new payloads, linkage sites and new targets, and using bispecific antibodies to increase precision, attention should be paid to optimizing the dosage of ADCs. RECENT FINDINGS There are currently 7 ADCs approved for marketing by the Food and Drug Administration (FDA) for hematological malignancies, and dozens of other ADCs are either in clinical trials or in the process of applying for marketing. In recent clinical studies targeting ADCs in hematologic malignancies, in addition to validating effectiveness in different indications, researchers have attempted to combine ADCs with other chemotherapeutic agents in anticipation of increased therapeutic efficacy. Furthermore, the availability of bispecific antibodies may increase the safety and efficacy of ADCs. SUMMARY This review summarized the progress of research on ADCs in hematological malignancies, the challenges being faced, and possible future directions to improve the efficacy of ADCs, which can provide novel insight into the future exploration of ADCs in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan
| | - Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University
- Taishan Scholars Program of Shandong Province
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Kathad U, Biyani N, Peru y Colón De Portugal RL, Zhou J, Kochat H, Bhatia K. Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis. PLoS One 2024; 19:e0308604. [PMID: 39186767 PMCID: PMC11346940 DOI: 10.1371/journal.pone.0308604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024] Open
Abstract
Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma's proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR®). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
Collapse
Affiliation(s)
- Umesh Kathad
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Neha Biyani
- Lantern Pharma Inc., Dallas, TX, United States of America
| | | | - Jianli Zhou
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Harry Kochat
- The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kishor Bhatia
- Lantern Pharma Inc., Dallas, TX, United States of America
| |
Collapse
|
10
|
Moore EJ, Rice M, Roy G, Zhang W, Marelli M. Emerging conjugation strategies and protein engineering technologies aim to improve ADCs in the fight against cancer. Xenobiotica 2024; 54:469-491. [PMID: 39329289 DOI: 10.1080/00498254.2024.2339993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 09/28/2024]
Abstract
Antibody drug conjugates are an exciting therapeutic modality that combines the targeting specificity of antibodies with potent cytotoxins to selectively kill cancer cells. The targeting component improves efficacy and protects non-target cells from the harmful effects of the payload. To date 15 ADCs have been approved by regulatory agencies for commercial use and shown to be valuable tools in the treatment of cancer.The assembly of an ADC requires the chemical ligation of a linker-payload to an antibody. Conventional conjugation methods targeting accessible lysines and cysteines have produced all the ADCs currently on the market. While successful, technologies aiming to improve the homogeneity and stability of ADCs are being developed and tested.Here we provide a review of developing methods for ADC construction. These include enzymatic methods, oligosaccharide remodelling, and technologies using genetic code expansion techniques. The virtues and limitations of each technology are discussed.Emerging conjugation technologies are being applied to produce new formats of ADCs with enhanced functionality including bispecific ADCs, dual-payload ADCs, and nanoparticles for targeted drug delivery. The benefits of these novel formats are highlighted.
Collapse
|
11
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
12
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
13
|
Cheung A, Chenoweth AM, Johansson A, Laddach R, Guppy N, Trendell J, Esapa B, Mavousian A, Navarro-Llinas B, Haider S, Romero-Clavijo P, Hoffmann RM, Andriollo P, Rahman KM, Jackson P, Tsoka S, Irshad S, Roxanis I, Grigoriadis A, Thurston DE, Lord CJ, Tutt ANJ, Karagiannis SN. Anti-EGFR Antibody-Drug Conjugate Carrying an Inhibitor Targeting CDK Restricts Triple-Negative Breast Cancer Growth. Clin Cancer Res 2024; 30:3298-3315. [PMID: 38772416 PMCID: PMC11292198 DOI: 10.1158/1078-0432.ccr-23-3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE Anti-EGFR antibodies show limited response in breast cancer, partly due to activation of compensatory pathways. Furthermore, despite the clinical success of cyclin-dependent kinase (CDK) 4/6 inhibitors in hormone receptor-positive tumors, aggressive triple-negative breast cancers (TNBC) are largely resistant due to CDK2/cyclin E expression, whereas free CDK2 inhibitors display normal tissue toxicity, limiting their therapeutic application. A cetuximab-based antibody drug conjugate (ADC) carrying a CDK inhibitor selected based on oncogene dysregulation, alongside patient subgroup stratification, may provide EGFR-targeted delivery. EXPERIMENTAL DESIGN Expressions of G1/S-phase cell cycle regulators were evaluated alongside EGFR in breast cancer. We conjugated cetuximab with CDK inhibitor SNS-032, for specific delivery to EGFR-expressing cells. We assessed ADC internalization and its antitumor functions in vitro and in orthotopically grown basal-like/TNBC xenografts. RESULTS Transcriptomic (6,173 primary, 27 baseline, and matched post-chemotherapy residual tumors), single-cell RNA sequencing (150,290 cells, 27 treatment-naïve tumors), and spatial transcriptomic (43 tumor sections, 22 TNBCs) analyses confirmed expression of CDK2 and its cyclin partners in basal-like/TNBCs, associated with EGFR. Spatiotemporal live-cell imaging and super-resolution confocal microscopy demonstrated ADC colocalization with late lysosomal clusters. The ADC inhibited cell cycle progression, induced cytotoxicity against high EGFR-expressing tumor cells, and bystander killing of neighboring EGFR-low tumor cells, but minimal effects on immune cells. Despite carrying a small molar fraction (1.65%) of the SNS-032 inhibitor, the ADC restricted EGFR-expressing spheroid and cell line/patient-derived xenograft tumor growth. CONCLUSIONS Exploiting EGFR overexpression, and dysregulated cell cycle in aggressive and treatment-refractory tumors, a cetuximab-CDK inhibitor ADC may provide selective and efficacious delivery of cell cycle-targeted agents to basal-like/TNBCs, including chemotherapy-resistant residual disease.
Collapse
Affiliation(s)
- Anthony Cheung
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Alicia M. Chenoweth
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Annelie Johansson
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- Cancer Bioinformatics, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London, United Kingdom
| | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Jennifer Trendell
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Antranik Mavousian
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Blanca Navarro-Llinas
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Pablo Romero-Clavijo
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Ricarda M. Hoffmann
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Paolo Andriollo
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Khondaker M. Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Paul Jackson
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, London, United Kingdom
| | - Sheeba Irshad
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- Cancer Bioinformatics, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
| | - David E. Thurston
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Christopher J. Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Andrew N. J. Tutt
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sophia N. Karagiannis
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London, United Kingdom
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
14
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
15
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
16
|
Ma Y, Huang Y, Zhao Y, Zhao S, Xue J, Yang Y, Fang W, Guo Y, Han Y, Yang K, Li Y, Yang J, Fu Z, Chen G, Chen L, Zhou N, Zhou T, Zhang Y, Zhou H, Liu Q, Zhu Y, Zhu H, Xiao S, Zhang L, Zhao H. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol 2024; 25:901-911. [PMID: 38823410 DOI: 10.1016/s1470-2045(24)00159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Antibody-drug conjugates have promising clinical activity in the treatment of solid tumours. BL-B01D1 is a first-in-class EGFR-HER3 bispecific antibody-drug conjugate. We aimed to assess the safety and preliminary antitumour activity of BL-B01D1 in patients with locally advanced or metastatic solid tumours. METHODS This first-in-human, open-label, multicentre, dose-escalation and dose-expansion phase 1 trial was conducted in seven hospitals in China, enrolling patients aged 18-75 years (dose escalation; phase 1a) or older than 18 years (dose expansion; phase 1b), with a life expectancy of at least 3 months, an Eastern Cooperative Oncology Group performance status of 0-1, and histologically or cytologically confirmed locally advanced or metastatic solid tumours that had progressed on current standard treatment. In the phase 1a i3+3 design, patients received intravenous BL-B01D1 at three different schedules: 0·27 mg/kg, 1·5 mg/kg, and 3·0 mg/kg weekly; 2·5 mg/kg, 3·0 mg/kg, and 3·5 mg/kg on days 1 and 8 of each cycle every 3 weeks; or 5·0 mg/kg and 6·0 mg/kg on day 1 of each cycle every 3 weeks. The primary objectives of phase 1a were to identify the safety, maximum tolerated dose, and dose-limiting toxicity. In phase 1b, patients were treated in two schedules: 2·5 and 3·0 mg/kg on days 1 and 8 every 3 weeks, or 4·5, 5·0, and 6·0 mg/kg on day 1 every 3 weeks. The primary objectives of phase 1b were to assess the safety and recommended phase 2 dose of BL-B01D1, and objective response rate was a key secondary endpoint. Safety was analysed in all patients with safety records who received at least one dose of BL-B01D1. Antitumour activity was assessed in the activity analysis set which included all patients who received at least one dose of BL-B01D1 every 3 weeks. This trial is registered with China Drug Trials, CTR20212923, and ClinicalTrials.gov, NCT05194982, and recruitment is ongoing. FINDINGS Between Dec 8, 2021, and March 13, 2023, 195 patients (133 [65%] men and 62 [32%] women; 25 in phase 1a and 170 in phase 1b) were consecutively enrolled, including 113 with non-small-cell lung cancer, 42 with nasopharyngeal carcinomas, 13 with small-cell lung cancer, 25 with head and neck squamous cell carcinoma, one with thymic squamous cell carcinoma, and one with submandibular lymphoepithelioma-like carcinoma. In phase 1a, four dose-limiting toxicities were observed (two at 3·0 mg/kg weekly and two at 3·5 mg/kg on days 1 and 8 every 3 weeks; all were febrile neutropenia), thus the maximum tolerated dose was reached at 3·0 mg/kg on days 1 and 8 every 3 weeks and 6·0 mg/kg on day 1 every 3 weeks. Grade 3 or worse treatment-related adverse events occurred in 139 (71%) of 195 patients; the most common of which were neutropenia (91 [47%]), anaemia (76 [39%]), leukopenia (76 [39%]), and thrombocytopenia (63 [32%]). 52 (27%) patients had a dose reduction and five (3%) patients discontinued treatment due to treatment-related adverse events. One patient was reported as having interstitial lung disease. Treatment-related deaths occurred in three (2%) patients (one due to pneumonia, one due to septic shock, and one due to myelosuppression). In 174 patients evaluated for activity, median follow-up was 6·9 months (IQR 4·5-8·9) and 60 (34%; 95% CI 27-42) patients had an objective response. INTERPRETATION Our results suggest that BL-B01D1 has preliminary antitumour activity in extensively and heavily treated advanced solid tumours with an acceptable safety profile. Based on the safety and antitumour activity data from both phase 1a and 1b, 2·5 mg/kg on days 1 and 8 every 3 weeks was selected as the recommended phase 2 dose in Chinese patients. FUNDING Sichuan Baili Pharmaceutical. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shen Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaqian Han
- Department of Head and Neck Radiotherapy, Hunan Cancer Hospital, Changsha, China
| | - Kunyu Yang
- Clinical Oncology Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenming Fu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ningning Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yaxiong Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huaqiang Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qianwen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Zhu
- Sichuan Baili Pharmaceutical, Chengdu, China
| | - Hai Zhu
- Sichuan Baili Pharmaceutical, Chengdu, China
| | - Sa Xiao
- Sichuan Baili Pharmaceutical, Chengdu, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
17
|
Kwon WA, Lee SY, Jeong TY, Kim HH, Lee MK. Antibody-Drug Conjugates in Urothelial Cancer: From Scientific Rationale to Clinical Development. Cancers (Basel) 2024; 16:2420. [PMID: 39001482 PMCID: PMC11240765 DOI: 10.3390/cancers16132420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have been a significant advancement in cancer therapy, particularly for urothelial cancer (UC). These innovative treatments, originally developed for hematological malignancies, use target-specific monoclonal antibodies linked to potent cytotoxic agents. This rational drug design efficiently delivers cancer cell-killing agents to cells expressing specific surface proteins, which are abundant in UC owing to their high antigen expression. UC is an ideal candidate for ADC therapy, as it enhances on-target efficacy while mitigating systemic toxicity. In recent years, considerable progress has been made in understanding the biology and mechanisms of tumor progression in UC. However, despite the introduction of immune checkpoint inhibitors, advanced UC is characterized by rapid progression and poor survival rates. Targeted therapies that have been developed include the anti-nectin 4 ADC enfortumab vedotin and the fibroblast growth factor receptor inhibitor erdafitinib. Enfortumab vedotin has shown efficacy in prospective studies in patients with advanced UC, alone and in combination with pembrolizumab. The anti-Trop-2 ADC sacituzumab govitecan has also demonstrated effectiveness in single-armed studies. This review highlights the mechanism of action of ADCs, their application in mono- and combination therapies, primary mechanisms of resistance, and future perspectives for their clinical use in UC treatment. ADCs have proven to be an increasingly vital component of the therapeutic landscape for urothelial carcinoma, filling a gap in the treatment of this progressive disease.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Seo-Yeon Lee
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Tae Yoong Jeong
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Hyeon Hoe Kim
- Department of Urology, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| | - Min-Kyung Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Gyeonggi-do, Republic of Korea
| |
Collapse
|
18
|
Rosenberg AJ, Perez CA, Guo W, de Oliveira Novaes JM, da Silva Reis KFO, McGarrah PW, Price KAR. Breaking Ground in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Novel Therapies Beyond PD-L1 Immunotherapy. Am Soc Clin Oncol Educ Book 2024; 44:e433330. [PMID: 38718318 DOI: 10.1200/edbk_433330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The treatment for recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) with immune checkpoint inhibitors (anti-PD1) with or without chemotherapy has led to an improvement in survival. Yet, despite this therapeutic advancement, only 15%-19% of patients remain alive at four years, highlighting the poor survival and unmet need for improved therapies for this patient population. Some of the key evolving novel therapeutics beyond anti-PD1 in R/M HNSCC have included therapeutic vaccine therapies, bispecific antibodies/fusion proteins and multitargeted kinase inhibitors, and antibody-drug conjugates (ADCs). Multiple concurrent investigations of novel therapeutics for patients with R/M HNSCC beyond anti-PD(L)1 inhibition are currently underway with some promising early results. Beyond immune checkpoint inhibition, novel immunotherapeutic strategies including therapeutic vaccines ranging from targeting human papillomavirus-specific epitopes to personalized neoantigen vaccines are ongoing with some early efficacy signals and large, randomized trials. Other novel weapons including bispecific antibodies, fusion proteins, and multitargeted kinase inhibitors leverage multiple concurrent targets and modulation of the tumor microenvironment to harness antitumor immunity and inhibition of protumorigenic signaling pathways with emerging promising results. Finally, as with other solid tumors, ADCs remain a promising therapeutic intervention either alone or in combination with immunotherapy for patients with R/M HNSCC. With early enthusiasm across novel therapies in R/M HNSCC, results of larger randomized trials in R/M HNSCC are eagerly awaited.
Collapse
Affiliation(s)
- Ari J Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL
| | - Cesar A Perez
- Sarah Cannon Research Institute at Florida Cancer Specialists, Orlando, FL
| | - Wenji Guo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL
| | | | | | | | | |
Collapse
|
19
|
Sanvicente García A, Pedregal M, Paniagua-Herranz L, Díaz-Tejeiro C, Nieto-Jiménez C, Pérez Segura P, Munkácsy G, Győrffy B, Calvo E, Moreno V, Ocaña A. Clinical and Immunologic Characteristics of Colorectal Cancer Tumors Expressing LY6G6D. Int J Mol Sci 2024; 25:5345. [PMID: 38791382 PMCID: PMC11121234 DOI: 10.3390/ijms25105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The identification of targets that are expressed on the cell membrane is a main goal in cancer research. The Lymphocyte Antigen 6 Family Member G6D (LY6G6D) gene codes for a protein that is mainly present on the surface of colorectal cancer (CRC) cells. Therapeutic strategies against this protein like the development of T cell engagers (TCE) are currently in the early clinical stage. In the present work, we interrogated public genomic datasets including TCGA to evaluate the genomic and immunologic cell profile present in tumors with high expression of LY6G6D. We used data from TCGA, among others, and the Tumor Immune Estimation Resource (TIMER2.0) platform for immune cell estimations and Spearman correlation tests. LY6G6D expression was exclusively present in CRC, particularly in the microsatellite stable (MSS) subtype, and was associated with left-side tumors and the canonical genomic subgroup. Tumors with mutations of APC and p53 expressed elevated levels of LY6G6D. This protein was expressed in tumors with an inert immune microenvironment with an absence of immune cells and co-inhibitory molecules. In conclusion, we described clinical, genomic and immune-pathologic characteristics that can be used to optimize the clinical development of agents against this target. Future studies should be performed to confirm these findings and potentially explore the suggested clinical development options.
Collapse
Affiliation(s)
- Adrián Sanvicente García
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Pedregal
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
| | - Lucía Paniagua-Herranz
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
| | - Cristina Díaz-Tejeiro
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
| | - Pedro Pérez Segura
- Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Gyöngyi Munkácsy
- Department of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary; (G.M.); (B.G.)
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, H-1094 Budapest, Hungary; (G.M.); (B.G.)
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Emiliano Calvo
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
- START Madrid-HM Centro Integral Oncológico Clara Campal (CIOCC), Early Phase Program, HM Sanchinarro University Hospital, 28050 Madrid, Spain
| | - Víctor Moreno
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
| | - Alberto Ocaña
- Experimental Therapeutics in Cancer Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.G.); (L.P.-H.); (C.D.-T.); (C.N.-J.)
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain; (M.P.); (E.C.); (V.M.)
- Medical Oncology Department, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
20
|
Zhou DD, Zhai XT, Zhang LW, Xie ZH, Wang Y, Zhen YS, Gao RJ, Miao QF. A new TROP2-targeting antibody-drug conjugate shows potent antitumor efficacy in breast and lung cancers. NPJ Precis Oncol 2024; 8:94. [PMID: 38654141 DOI: 10.1038/s41698-024-00584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Trophoblast cell surface antigen 2 (Trop2) is considered to be an attractive therapeutic target in cancer treatments. We previously generated a new humanized anti-Trop2 antibody named hIMB1636, and designated it as an ideal targeting carrier for cancer therapy. Lidamycin (LDM) is a new antitumor antibiotic, containing an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). AE and LDP can be separated and reassembled, and the reassembled LDM possesses cytotoxicity similar to that of native LDM; this has made LDM attractive in the preparation of gene-engineering drugs. We herein firstly prepared a new fusion protein hIMB1636-LDP composed of hIMB1636 and LDP by genetic engineering. This construct showed potent binding activities to recombinant antigen with a KD value of 4.57 nM, exhibited binding to Trop2-positive cancer cells and internalization and transport to lysosomes, and demonstrated powerful tumor-targeting ability in vivo. We then obtained the antibody-drug conjugate (ADC) hIMB1636-LDP-AE by molecular reconstitution. In vitro, hIMB1636-LDP-AE inhibited the proliferation, migration, and tumorsphere formation of tumor cells with half-maximal inhibitory concentration (IC50) values at the sub-nanomolar level. Mechanistically, hIMB1636-LDP-AE induced apoptosis and cell-cycle arrest. In vivo, hIMB1636-LDP-AE also inhibited the growth of breast and lung cancers in xenograft models. Moreover, compared to sacituzumab govitecan, hIMB1636-LDP-AE showed more potent antitumor activity and significantly lower myelotoxicity in tumors with moderate Trop2 expression. This study fully revealed the potent antitumor efficacy of hIMB1636-LDP-AE, and also provided a new preparation method for LDM-based ADC, as well as a promising candidate for breast cancer and lung cancer therapeutics.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Tian Zhai
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Chen X, Zeng C. Pioneering the Way: The Revolutionary Potential of Antibody-Drug Conjugates in NSCLC. Curr Treat Options Oncol 2024; 25:556-584. [PMID: 38520605 DOI: 10.1007/s11864-024-01196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
OPINION STATEMENT Despite targeted therapy and immunotherapy being recognized as established frontline treatments for advanced non-small cell lung cancer (NSCLC), the unavoidable development of resistance and disease progression poses ongoing challenges. Antibody-drug conjugates (ADCs) offer a potent treatment option for NSCLC through the specific delivery of cytotoxic agents to tumor cells that display distinct antigens. This review delves into the latest evidence regarding promising ADC agents for NSCLC, focusing on their targets, effectiveness, and safety assessments. Additionally, our study provides insights into managing toxicities, identifying biomarkers, devising methods to counter resistance mechanisms, tackling prevailing challenges, and outlining prospects for the clinical implementation of these innovative ADCs and combination regimens in NSCLC.
Collapse
Affiliation(s)
- Xiehui Chen
- Department of Geriatric Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| |
Collapse
|
22
|
Choi Y, Choi Y, Hong S. Recent Technological and Intellectual Property Trends in Antibody-Drug Conjugate Research. Pharmaceutics 2024; 16:221. [PMID: 38399275 PMCID: PMC10892729 DOI: 10.3390/pharmaceutics16020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Antibody-drug conjugate (ADC) therapy, an advanced therapeutic technology comprising antibodies, chemical linkers, and cytotoxic payloads, addresses the limitations of traditional chemotherapy. This study explores key elements of ADC therapy, focusing on antibody development, linker design, and cytotoxic payload delivery. The global rise in cancer incidence has driven increased investment in anticancer agents, resulting in significant growth in the ADC therapy market. Over the past two decades, notable progress has been made, with approvals for 14 ADC treatments targeting various cancers by 2022. Diverse ADC therapies for hematologic malignancies and solid tumors have emerged, with numerous candidates currently undergoing clinical trials. Recent years have seen a noteworthy increase in ADC therapy clinical trials, marked by the initiation of numerous new therapies in 2022. Research and development, coupled with patent applications, have intensified, notably from major companies like Pfizer Inc. (New York, NY, USA), AbbVie Pharmaceuticals Inc. (USA), Regeneron Pharmaceuticals Inc. (Tarrytown, NY, USA), and Seagen Inc. (Bothell, WA, USA). While ADC therapy holds great promise in anticancer treatment, challenges persist, including premature payload release and immune-related side effects. Ongoing research and innovation are crucial for advancing ADC therapy. Future developments may include novel conjugation methods, stable linker designs, efficient payload delivery technologies, and integration with nanotechnology, driving the evolution of ADC therapy in anticancer treatment.
Collapse
Affiliation(s)
- Youngbo Choi
- Department of Safety Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea;
- Department of BigData, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Youbeen Choi
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| | - Surin Hong
- Department of Biotechnology, CHA University, Pocheon 11160, Gyeonggi, Republic of Korea;
| |
Collapse
|
23
|
Metrangolo V, Engelholm LH. Antibody-Drug Conjugates: The Dynamic Evolution from Conventional to Next-Generation Constructs. Cancers (Basel) 2024; 16:447. [PMID: 38275888 PMCID: PMC10814585 DOI: 10.3390/cancers16020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Introduced almost two decades ago, ADCs have marked a breakthrough in the targeted therapy era, providing clinical benefits to many cancer patients. While the inherent complexity of this class of drugs has challenged their development and broad application, the experience gained from years of trials and errors and recent advances in construct design and delivery have led to an increased number of ADCs approved or in late clinical development in only five years. Target and payload diversification, along with novel conjugation and linker technologies, are at the forefront of next-generation ADC development, renewing hopes to broaden the scope of these targeted drugs to difficult-to-treat cancers and beyond. This review highlights recent trends in the ADC field, focusing on construct design and mechanism of action and their implications on ADCs' therapeutic profile. The evolution from conventional to innovative ADC formats will be illustrated, along with some of the current hurdles, including toxicity and drug resistance. Future directions to improve the design of next-generation ADCs will also be presented.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark;
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark;
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Koumprentziotis IA, Theocharopoulos C, Foteinou D, Angeli E, Anastasopoulou A, Gogas H, Ziogas DC. New Emerging Targets in Cancer Immunotherapy: The Role of B7-H3. Vaccines (Basel) 2024; 12:54. [PMID: 38250867 PMCID: PMC10820813 DOI: 10.3390/vaccines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Immune checkpoints (ICs) are molecules implicated in the fine-tuning of immune response via co-inhibitory or co-stimulatory signals, and serve to secure minimized host damage. Targeting ICs with various therapeutic modalities, including checkpoint inhibitors/monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and CAR-T cells has produced remarkable results, especially in immunogenic tumors, setting a paradigm shift in cancer therapeutics through the incorporation of these IC-targeted treatments. However, the large proportion of subjects who experience primary or secondary resistance to available IC-targeted options necessitates further advancements that render immunotherapy beneficial for a larger patient pool with longer duration of response. B7-H3 (B7 Homolog 3 Protein, CD276) is a member of the B7 family of IC proteins that exerts pleiotropic immunomodulatory effects both in physiologic and pathologic contexts. Mounting evidence has demonstrated an aberrant expression of B7-H3 in various solid malignancies, including tumors less sensitive to current immunotherapeutic options, and has associated its expression with advanced disease, worse patient survival and impaired response to IC-based regimens. Anti-B7-H3 agents, including novel mAbs, bispecific antibodies, ADCs, CAR-T cells, and radioimmunotherapy agents, have exhibited encouraging antitumor activity in preclinical models and have recently entered clinical testing for several cancer types. In the present review, we concisely present the functional implications of B7-H3 and discuss the latest evidence regarding its prognostic significance and therapeutic potential in solid malignancies, with emphasis on anti-B7-H3 modalities that are currently evaluated in clinical trial settings. Better understanding of B7-H3 intricate interactions in the tumor microenvironment will expand the oncological utility of anti-B7-H3 agents and further shape their role in cancer therapeutics.
Collapse
|
25
|
Rached L, Geraud A, Frelaut M, Ap Thomas Z, Goldschmidt V, Beraud-Chaulet G, Nagera-Lazarovici C, Danlos FX, Henon C, Parisi C, Gazzah A, Bahleda R, Postel Vinay S, Smolenschi C, Hollebecque A, Michot JM, Ribrag V, Loriot Y, Champiat S, Ouali K, Massard C, Ponce Aix S, Bringuier M, Baldini C. Antibody drug conjugates in older patients: State of the art. Crit Rev Oncol Hematol 2024; 193:104212. [PMID: 38007063 DOI: 10.1016/j.critrevonc.2023.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023] Open
Abstract
More than half of cancer cases occur in patients aged 65 years or older. The efficacy and safety of antibody drug conjugates (ADCs) in older patients remains an unclear subject as available evidence is limited. Geriatric population is underrepresented in clinical trials. Consequently, most of our knowledge regarding innovative therapeutics was studied on a younger population. In this review of published literature, we report the available information on efficacy, safety and pharmacokinetics of FDA approved ADCs for hematologic malignancies and solid tumors in the geriatric population. We explore the results of clinical trials dedicated for older individuals as well as subgroup analyses of the geriatric population in major trials evaluating these drugs. Available data suggest a similar efficacy in older adults as compared to general population. However, older patients might be prone to a higher rate of adverse events in incidence with a potential impact on quality of life. We lack data to support primary dose reductions or schedule modifications in this category of patients. No pharmacokinetic differences were reported between age groups. It is crucial to encourage the development of clinical trials dedicated to older patients with geriatric parameters (G8 score, G-CODE…) so that results can be more representative of this population outside of clinical trials.
Collapse
Affiliation(s)
- Layal Rached
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Arthur Geraud
- Gustave Roussy, Department of Medical Oncology , 94805 Villejuif, France.
| | - Maxime Frelaut
- Gustave Roussy, Department of Medical Oncology , 94805 Villejuif, France.
| | - Zoe Ap Thomas
- Gustave Roussy, Department of Medical Oncology , 94805 Villejuif, France.
| | - Vincent Goldschmidt
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | | | | | - Francois-Xavier Danlos
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Clemence Henon
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Claudia Parisi
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Anas Gazzah
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Rastilav Bahleda
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Sophie Postel Vinay
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Cristina Smolenschi
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Antoine Hollebecque
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Jean-Marie Michot
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Vincent Ribrag
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Yohann Loriot
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Stephane Champiat
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Kaissa Ouali
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Christophe Massard
- Centre Eugène Marquis, Department of Medical Oncology, 35000 Rennes, France.
| | - Santiago Ponce Aix
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| | - Michael Bringuier
- Institut Curie, PSL Research University, Department of Medical Oncology and Department of Supportive Care, UCOG Paris Ouest, F-92210 Saint-Cloud, France.
| | - Capucine Baldini
- Gustave Roussy, Department of Therapeutic Innovation and Early Phase Trials, 94805 Villejuif, France.
| |
Collapse
|
26
|
Leitis Z, Sakaine G, Brokāne K, Smits G. Concise access to C2-ethylidene pyrrolo[1,4]benzodiazepine natural products. Org Biomol Chem 2023; 21:9061-9064. [PMID: 37937611 DOI: 10.1039/d3ob01430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A 3-step route toward pyrrolo[1,4]benzodiazepine (PBD) antitumor antibiotic class members oxo-prothracarcin and boseongazepine B has been developed. This methodology also enables preparing oxo-tomaymycin in only 4 linear steps representing the shortest total synthesis known to date. The synthesis features an olefination with sterically demanding Julia-Kocienski reagents as the key step.
Collapse
Affiliation(s)
- Zigmārs Leitis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| | - Guna Sakaine
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| | - Katrīna Brokāne
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| | - Gints Smits
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia.
| |
Collapse
|
27
|
Rubinstein JD, O’Brien MM. Inotuzumab ozogamicin in B-cell precursor acute lymphoblastic leukemia: efficacy, toxicity, and practical considerations. Front Immunol 2023; 14:1237738. [PMID: 37600823 PMCID: PMC10435844 DOI: 10.3389/fimmu.2023.1237738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Inotuzumab ozogamicin (InO) is an antibody drug conjugate composed of a humanized monoclonal antibody targeting the cell surface receptor CD22 coupled to a cytotoxic calicheamicin payload via an acid labile linker. InO has shown significant activity in relapsed and refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in both single agent and combination chemotherapy regimens in adult and pediatric trials. Its use in newly diagnosed elderly patients has also been established while clinical trials investigating its use in newly diagnosed pediatric patients and fit adults are ongoing. Notable toxicities include sinusoidal obstruction syndrome (SOS), particularly in patients who undergo hematopoietic stem cell transplantation (HSCT) after InO as well as myelosuppression and B-cell aplasia which confer increased infection risk, particularly in combination with cytotoxic chemotherapy. In the relapsed/refractory (R/R) setting, the planned subsequent curative therapy modality must be considered when using InO to mitigate SOS risk if proceeding to HSCT and account for potential B-cell aplasia if proceeding to chimeric antigen receptor CAR-T therapy. Studies exploring mechanisms of resistance or failure of InO are ongoing but modulation or loss CD22 expression, alternative CD22 splicing, and high Bcl-2 expression have been implicated. In this review, we will summarize the currently available data on InO, with an emphasis on pediatric trials, and explore future directions including combinatorial therapy.
Collapse
Affiliation(s)
- Jeremy D. Rubinstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Maureen M. O’Brien
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
28
|
Hurwitz J, Haggstrom LR, Lim E. Antibody-Drug Conjugates: Ushering in a New Era of Cancer Therapy. Pharmaceutics 2023; 15:2017. [PMID: 37631232 PMCID: PMC10458257 DOI: 10.3390/pharmaceutics15082017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) have provided new therapeutic options and significant promise for patients with cancer, particularly where existing treatments are limited. Substantial effort in ADC development is underway globally, with 13 ADCs currently approved and many more in development. The therapeutic benefits of ADCs leverage the ability to selectively target cancer cells through antibody binding, resultant relative sparing of non-malignant tissues, and the targeted delivery of a cytotoxic payload. Consequently, this drug class has demonstrated activity in multiple malignancies refractory to standard therapeutic options. Despite this, limitations exist, including narrow therapeutic windows, unique toxicity profiles, development of therapeutic resistance, and appropriate biomarker selection. This review will describe the development of ADCs, their mechanisms of action, pivotal trials, and approved indications and identify common themes. Current challenges and opportunities will be discussed for this drug class in cancer therapeutics at a time when significant developments in antibody therapies, immunotherapy, and targeted agents are occurring.
Collapse
Affiliation(s)
- Joshua Hurwitz
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | - Elgene Lim
- St. Vincent’s Clinical School, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW 2053, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
29
|
Zhu Y, Zhou M, Kong W, Li C. Antibody-drug conjugates: the clinical development in gastric cancer. Front Oncol 2023; 13:1211947. [PMID: 37305567 PMCID: PMC10250015 DOI: 10.3389/fonc.2023.1211947] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor of the digestive system worldwide, ranking among the top five in terms of incidence and mortality. However, the clinical efficacy of conventional treatments for gastric cancer remains limited, with a median overall survival of approximately eight months for advanced cases. In recent years, researchers have increasingly focused on antibody-drug conjugates (ADCs) as a promising approach. ADCs are potent chemical drugs that selectively target cancer cells by binding to specific cell surface receptors with antibodies. Notably, ADCs have demonstrated promising results in clinical studies and have made significant strides in the treatment of gastric cancer. Currently, several ADCs are under investigation in clinical trials for gastric cancer patients, targeting various receptors such as EGFR, HER-2, HER-3, CLDN18.2, Mucin 1, among others. This review offers a comprehensive exploration of ADC drug characteristics and provides an overview of the research progress in ADC-based therapies for gastric cancer.
Collapse
Affiliation(s)
- Yingze Zhu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Miao Zhou
- Tangshan Central Hospital, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|