1
|
Elurbide J, Colyn L, Latasa MU, Uriarte I, Mariani S, Lopez-Pascual A, Valbuena E, Castello-Uribe B, Arnes-Benito R, Adan-Villaescusa E, Martinez-Perez LA, Azkargorta M, Elortza F, Wu H, Krawczyk M, Schneider KM, Sangro B, Aldrighetti L, Ratti F, Casadei Gardini A, Marin JJG, Amat I, Urman JM, Arechederra M, Martinez-Chantar ML, Trautwein C, Huch M, Cubero FJ, Berasain C, G Fernandez-Barrena M, Avila MA. Identification of PRMT5 as a therapeutic target in cholangiocarcinoma. Gut 2024:gutjnl-2024-332998. [PMID: 39266051 DOI: 10.1136/gutjnl-2024-332998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a very difficult-to-treat cancer. Chemotherapies are little effective and response to immune checkpoint inhibitors is limited. Therefore, new therapeutic strategies need to be identified. OBJECTIVE We characterised the enzyme protein arginine-methyltransferase 5 (PRMT5) as a novel therapeutic target in CCA. DESIGN We evaluated the expression of PRMT5, its functional partner MEP50 and methylthioadenosine phosphorylase (MTAP)-an enzyme that modulates the sensitivity of PRMT5 to pharmacological inhibitors-in human CCA tissues. PRMT5-targeting drugs, currently tested in clinical trials for other malignancies, were assessed in human CCA cell lines and organoids, as well as in two immunocompetent CCA mouse models. Transcriptomic, proteomic and functional analyses were performed to explore the underlying antitumoural mechanisms. RESULTS PRMT5 and MEP50 proteins were correlatively overexpressed in most CCA tissues. MTAP was absent in 25% of intrahepatic CCA. PRMT5-targeting drugs markedly inhibited CCA cell proliferation, synergising with cisplatin and gemcitabine and hindered the growth of cholangiocarcinoma organoids. PRMT5 inhibition blunted the expression of oncogenic genes involved in chromatin remodelling and DNA repair, consistently inducing the formation of RNA loops and promoting DNA damage. Treatment with PRMT5-targeting drugs significantly restrained the growth of experimental CCA without adverse effects and concomitantly induced the recruitment of CD4 and CD8 T cells to shrinking tumourous lesions. CONCLUSION PRMT5 and MEP50 are frequently upregulated in human CCA, and PRMT5-targeting drugs have significant antitumoural efficacy in clinically relevant CCA models. Our findings support the evaluation of PRMT5 inhibitors in clinical trials, including their combination with cytotoxic and immune therapies.
Collapse
Affiliation(s)
- Jasmin Elurbide
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Leticia Colyn
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
| | - Maria U Latasa
- Hepatology and Gene Therapy, Cima. University of Navarra, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- CIBEREHD, Madrid, Spain
| | - Stefano Mariani
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Oncology, University Hospital of Cagliari Department of Medicine, Cagliari, Italy
| | - Amaya Lopez-Pascual
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- IdiSNA, Pamplona, Spain
| | | | | | - Robert Arnes-Benito
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Luz A Martinez-Perez
- Hepatology Laboratory, CIMA-University of Navarra, Pamplona, Spain
- Universidad de Guadalajara Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | - Mikel Azkargorta
- Proteomics Platform, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, CIC bioGUNE, Bizkaia, Spain
| | - Hanghang Wu
- Immunology, Ophthalmology and ENT, Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Medical University of Warsaw, Warszawa, Poland
| | - Kai Markus Schneider
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Bruno Sangro
- Liver Unit, Dept. of Internal Medicine, Clinica Universitaria de Navarra, Pamplona, Spain
| | | | - Francesca Ratti
- Hepatobiliary surgery division, San Raffaele Hospital, Milano, Italy
| | | | - Jose J G Marin
- CIBEREHD, Madrid, Spain
- HEVEFARM, Physiology and Pharmacology, IBSAL, CIBERehd, University of Salamanca, Salamanca, Spain
| | - Irene Amat
- Department of Pathology, Navarra University Hospital Complex, Pamplona, Spain
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Jesus M Urman
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, Pamplona, Spain
| | | | - Maria Luz Martinez-Chantar
- CIBEREHD, Madrid, Spain
- Liver Disease Lab, BRTA CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), CICbioGUNE, Derio, Spain
| | | | - Meritxell Huch
- Max-Plank Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Francisco Javier Cubero
- CIBEREHD, Madrid, Spain
- Immunology, Ophthalmology and ENT. Health Research Institute Gregorio Marañón (IiSGM), Complutense University of Madrid Faculty of Medicine, Madrid, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
2
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
3
|
Mansoor A, Kamran H, Rizwan H, Akhter A, Roshan TM, Shabani-Rad MT, Bavi P, Stewart D. Expression of "DNA damage response" pathway genes in diffuse large B-cell lymphoma: The potential for exploiting synthetic lethality. Hematol Oncol 2024; 42:e3225. [PMID: 37795760 DOI: 10.1002/hon.3225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are two of the most prevalent non-Hodgkin's lymphoma subtypes. Despite advances, treatment resistance and patient relapse remain challenging issues. Our study aimed to scrutinize gene expression distinctions between DLBCL and FL, employing a cohort of 53 DLBCL and 104 FL samples that underwent rigorous screening for genetic anomalies. The NanoString nCounter assay evaluated 730 cancer-associated genes, focusing on densely tumorous areas in diagnostic samples. Employing the Lymph2Cx method, we determined the cell-of-origin (COO) for DLBCL cases. Our meticulous analysis, facilitated by Qlucore Omics Explorer software, unveiled a substantial 37% of genes with significantly differential expression patterns between DLBCL and FL, pointing to nuanced mechanistic disparities. Investigating the impact of FL disease stage and DLBCL COO on gene expression yielded minimal differences, prompting us to direct our attention to consistently divergent genes in DLBCL. Intriguingly, our Gene Set Enrichment Analysis spotlighted 21% of these divergent genes, converging on the DNA damage response (DDR) pathway, vital for cell survival and cancer evolution. Strong positive correlations among most DDR genes were noted, with key genes like BRCA1, FANCA, FEN1, PLOD1, PCNA, and RAD51 distinctly upregulated in DLBCL compared to FL and normal tissue controls. These findings were subsequently validated using RNA seq data on normal controls and DLBCL samples from public databases like The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, enhancing the robustness of our results. Considering the established significance of these DDR genes in solid cancer therapies, our study underscores their potential applicability in DLBCL treatment strategies. In conclusion, our investigation highlights marked gene expression differences between DLBCL and FL, with particular emphasis on the essential DDR pathway. The identification of these DDR genes as potential therapeutic targets encourages further exploration of synthetic lethality-based approaches for managing DLBCL.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Hamza Kamran
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Hassan Rizwan
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Ariz Akhter
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Tariq Mahmood Roshan
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Meer-Taher Shabani-Rad
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Prashant Bavi
- Department of Pathology & Laboratory Medicine, University of Calgary, and Alberta Precision Laboratories (APL), Calgary, Alberta, Canada
| | - Douglas Stewart
- Department of Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Stefaniak P, Kraziński BE, Kieżun J, Majewska H, Godlewski J. Altered immunoexpression of DNA polymerase delta 1 catalytic subunit (POLD1) in colorectal cancer. Contemp Oncol (Pozn) 2023; 27:147-154. [PMID: 38239863 PMCID: PMC10793622 DOI: 10.5114/wo.2023.133505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/25/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The study aimed to determine the immunoexpression levels of polymerase delta 1 catalytic subunit (POLD1), a catalytic and proofreading subunit of DNA polymerase delta, in the sections of colorectal cancer (CRC), and to evaluate the significance of POLD1 as a potential prognostic factor in CRC. Material and methods Paired, tumour and non-cancerous tissue samples of the large intestine distant to the neoplasm were collected from the postoperative material of 78 patients who underwent surgical resection of CRC tumours. Polymerase delta 1 catalytic subunit protein levels were determined using immunohistochemistry. Clinical, pathomorphological, and survival data of the patients were pooled. In addition, POLD1 mRNA expression levels of 599 CRC patients were extracted from The Cancer Genome Atlas (TCGA) datasets and subjected to statistical and survival analysis including the Kaplan-Meier method followed by the log-rank test. Results Immunoexpression of POLD1 was found in the nuclei of the tumour cells and epithelial cells of unchanged intestinal mucosa. Polymerase delta 1 catalytic subunit immunoreactivity in the tumour was heterogenous, and the average immunoreactivity score was decreased in cancer cells when compared to the mucosa of matched sections of unchanged large intestine (p = 0.0259). However, POLD1 expression at the protein and mRNA levels did not associate with clinicopathological characteristics of the patients and their survival. Conclusions Despite previous studies suggesting that POLD1 genetic alterations could be promising molecular biomarkers in CRC, our results do not support any prognostic significance of POLD1 expression in CRC.
Collapse
Affiliation(s)
- Przemysław Stefaniak
- Surgical Oncology Clinic, Hospital Ministry of Internal Affairs with Warmia and Mazury Oncology Centre, Olsztyn, Poland
| | - Bartłomiej Emil Kraziński
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Jacek Kieżun
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Hanna Majewska
- Department of Pathomorphology and Forensic Medicine, School of Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Janusz Godlewski
- Surgical Oncology Clinic, Hospital Ministry of Internal Affairs with Warmia and Mazury Oncology Centre, Olsztyn, Poland
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|