1
|
Ren J, Zhao S, Lai J. Role and mechanism of COL3A1 in regulating the growth, metastasis, and drug sensitivity in cisplatin-resistant non-small cell lung cancer cells. Cancer Biol Ther 2024; 25:2328382. [PMID: 38530094 DOI: 10.1080/15384047.2024.2328382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is among the most difficult malignancies to treat. Type III collagen (COL3A1) can affect the progression and chemoresistance development of NSCLC. We herein explored the mechanism that drives COL3A1 dysregulation in NSCLC. Potential RNA-binding proteins (RBPs) and transcription factors (TFs) that could bind to COL3A1 were searched by bioinformatics. mRNA expression was detected by quantitative PCR. Protein expression was evaluated using immunoblotting and immunohistochemistry. The effects of the variables were assessed by gauging cell growth, invasiveness, migratory capacity, apoptosis, and cisplatin (DDP) sensitivity. The direct YY1/COL3A1 relationship was confirmed by ChIP and luciferase reporter experiments. Xenograft experiments were done to examine COL3A1's function in DDP efficacy. COL3A1 showed enhanced expression in DDP-resistant NSCLC. In H460/DDP and A549/DDP cells, downregulation of COL3A1 exerted inhibitory functions in cell growth, invasiveness, and migration, as well as promoting effects on cell DDP sensitivity and apoptosis. Mechanistically, ELAV-like RNA binding protein 1 (ELAVL1) enhanced the mRNA stability and expression of COL3A1, and Yin Yang 1 (YY1) promoted the transcription and expression of COL3A1. Furthermore, upregulation of COL3A1 reversed ELAVL1 inhibition- or YY1 deficiency-mediated functions in DDP-resistant NSCLC cells. Additionally, COL3A1 downregulation enhanced the anti-tumor efficacy of DDP in vivo. Our investigation demonstrates that COL3A1 upregulation, induced by both RBP ELAVL1 and TF YY1, exerts important functions in phenotypes of NSCLC cells with DDP resistance, offering an innovative opportunity in the treatment of drug-resistant NSCLC.
Collapse
Affiliation(s)
- Jiankun Ren
- Nursing School, Hebi Polytechnic, Hebi City, China
| | - Songwei Zhao
- Nursing School, Hebi Polytechnic, Hebi City, China
| | - Junyu Lai
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Youssef E, Zhao S, Purcell C, Olson GL, El-Deiry WS. Targeting the SMURF2-HIF1α axis: a new frontier in cancer therapy. Front Oncol 2024; 14:1484515. [PMID: 39697237 PMCID: PMC11652374 DOI: 10.3389/fonc.2024.1484515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
The SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) has emerged as a critical regulator in cancer biology, modulating the stability of Hypoxia-Inducible Factor 1-alpha (HIF1α) and influencing a network of hypoxia-driven pathways within the tumor microenvironment (TME). SMURF2 targets HIF1α for ubiquitination and subsequent proteasomal degradation, disrupting hypoxic responses that promote cancer cell survival, metabolic reprogramming, angiogenesis, and resistance to therapy. Beyond its role in HIF1α regulation, SMURF2 exerts extensive control over cellular processes central to tumor progression, including chromatin remodeling, DNA damage repair, ferroptosis, and cellular stress responses. Notably, SMURF2's ability to promote ferroptotic cell death through GSTP1 degradation offers an alternative pathway to overcome apoptosis resistance, expanding therapeutic options for refractory cancers. This review delves into the multifaceted interactions between SMURF2 and HIF1α, emphasizing how their interplay impacts metabolic adaptations like the Warburg effect, immune evasion, and therapeutic resistance. We discuss SMURF2's dual functionality as both a tumor suppressor and, in certain contexts, an oncogenic factor, underscoring its potential as a highly versatile therapeutic target. Furthermore, modulating the SMURF2-HIF1α axis presents an innovative approach to destabilize hypoxia-dependent pathways, sensitizing tumors to chemotherapy, radiotherapy, and immune-based treatments. However, the complexity of SMURF2's interactions necessitate a thorough assessment of potential off-target effects and challenges in specificity, which must be addressed to optimize its clinical application. This review concludes by proposing future directions for research into the SMURF2-HIF1α pathway, aiming to refine targeted strategies that exploit this axis and address the adaptive mechanisms of aggressive tumors, ultimately advancing the landscape of precision oncology.
Collapse
Affiliation(s)
- Emile Youssef
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Medical & Pharmacovigilance, Kapadi, Inc., Raleigh, NC, United States
| | - Shuai Zhao
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Connor Purcell
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Gary L. Olson
- Medicinal Chemistry & Drug Discovery, Provid Pharmaceuticals, Inc., Monmouth Junction, NJ, United States
| | - Wafik S. El-Deiry
- Research & Development, SMURF-Therapeutics, Inc., Providence, RI, United States
- Department of Pathology & Laboratory Medicine, Legorreta Cancer Center at Brown University, Providence, RI, United States
| |
Collapse
|
3
|
Yin X, Wang J, Shen Z, Jia Q, Bian Y, Yang Z, Liu Y, Li Y, Zhang H. ENAH transcriptionally activated by YY1 promotes growth and invasion of laryngocarcinoma cells through PI3K/AKT signaling. Eur J Pharmacol 2024; 983:176991. [PMID: 39265883 DOI: 10.1016/j.ejphar.2024.176991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Laryngocarcinoma is a common malignancy in the upper respiratory tract. Enabled homolog (ENAH) is an actin-binding protein that is associated with the development of various cancers. However, its role and mechanism in laryngocarcinoma remain unknown. METHODS The ENAH level in laryngocarcinoma was examined in silico, in vitro and in vivo. The prognostic analysis of the ENAH level was assessed on laryngocarcinoma patients. Gain- and loss-of-function assays were conducted in AMC-HN-8 and TU686 cells. Sh-ENAH-containing AMC-HN-8 cells were implanted into naked mice. The role and mechanism of ENAH in laryngocarcinoma were investigated by CCK-8, transwell, immunofluorescence, dual luciferase, RT-qPCR, immunohistochemistry, and western blotting experiments. RESULTS The ENAH level was upregulated in laryngocarcinoma, which predicted a poor prognosis in laryngocarcinoma patients. Gain- and loss-of-function results showed that ENAH promoted proliferation, invasion and EMT of laryngocarcinoma cells. Moreover, ENAH was transcriptionally activated by YY1, and YY1/ENAH axis enhanced these malignant progresses of laryngocarcinoma cells. Besides, ENAH activated the PI3K/AKT pathway, and 740Y-P abolished the accelerative role of ENAH in proliferation, invasion and EMT of laryngocarcinoma cells. Furthermore, knockdown of ENAH reduced tumor size and weight, and the expression level of vimentin and PI3K/AKT pathway in tumor-bearing mice. CONCLUSION ENAH transcriptionally activated by YY1 promotes cell growth, invasion and EMT of laryngocarcinoma through the activation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Jingmiao Wang
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Ziyi Shen
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Qiaojing Jia
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Yanrui Bian
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Zhichao Yang
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Yuning Liu
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Yan Li
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China
| | - Haizhong Zhang
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Hebei Medical University, China.
| |
Collapse
|
4
|
Yang J. Emerging roles of long non-coding RNA FOXP4-AS1 in human cancers: From molecular biology to clinical application. Heliyon 2024; 10:e39857. [PMID: 39539976 PMCID: PMC11558633 DOI: 10.1016/j.heliyon.2024.e39857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Forkhead box P4 antisense RNA 1 (FOXP4-AS1) is a long non-coding RNA (lncRNA) situated on the human chromosome 6p21.1 locus. Previous research has demonstrated that FOXP4-AS1 is dysregulated in various cancers and exhibits a dual purpose as a tumor suppressor or oncogene in specific types of cancer. The levels of FOXP4-AS1 are significantly correlated with clinical features of cancer as well as prognosis. Additionally, FOXP4-AS1 is stimulated by transcription factors ATF3, YY1, PAX5, and SP4. The molecular mechanisms of FOXP4-AS1 in cancer are quite complex. It competitively sponges multiple miRNAs, bidirectionally regulates the levels of host gene FOXP4, activates the PI3K/AKT, Wnt/β-catenin, and ERK/MAPK signaling pathways, and recruits chromatin-modifying enzymes or interacts with other proteins to regulate malignant phenotypes of tumors, including proliferation, invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In this review, we provide an overview of the latest developments in FOXP4-AS1 oncology research, outlines its molecular regulatory networks in cancer, and discusses its prospective relevance as a cancer therapeutic target as well as a biomarker for prognosis and diagnosis.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
5
|
Braga EA, Filippova EA, Uroshlev LA, Lukina SS, Pronina IV, Kazubskaya TP, Kushlinskiy DN, Loginov VI, Fridman MV, Burdennyy AM, Kushlinskii NE. LncRNA Genes of the SNHG Family: Co-methylation and Common Functions in Ovarian Cancer. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2051-2068. [PMID: 39647832 DOI: 10.1134/s0006297924110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 12/10/2024]
Abstract
Genes of the small nucleolar RNA host gene (SNHG) family may participate in oncogenesis through the regulatory functions of encoded long non-coding RNAs (lncRNAs) and by influencing formation of small nucleolar RNAs and ribosome biogenesis. The aim of this work was to evaluate changes in the methylation levels and extent of co-methylation of the SNHG family lncRNA genes (SNHG1, GAS5/SNHG2, SNHG6, SNHG12, SNHG17) in clinical samples of ovarian cancer (OC) as an indication for the similarity of their roles in oncogenesis. Analysis of a representative set of 122 OC samples by quantitative methylation-specific PCR showed a statistically significant (p < 0.01-0.0001) increase in the methylation level of all five studied lncRNA genes. There was also a correlation between the increased methylation levels of GAS5, SNHG6, and SNHG12 and OC progression (clinical stage, tumor size, and metastasis), indicating possible functional significance of hypermethylation of these genes. For four genes (SNHG1, GAS5, SNHG6, and SNHG12), a statistically significant pairwise positive correlation of methylation levels (co-methylation) was observed (rs > 0.35; p ≤ 0.001), which was in agreement with the GEPIA 2.0 data (426 OC samples) showing co-expression of these genes (rs > 0.5; p < 0.001). The correlation between the expression levels of GAS5 and SNHG6 was confirmed by RT-qPCR (rs = 0.46; p = 0.007). Bioinformatics analysis predicted miRNAs common for the SNHG1, GAS5, SNHG6, and SNHG12 lncRNA and potentially capable of interacting with one or more of these lncRNAs via competing endogenous RNA mechanism, as well as mRNAs, whose expression might be affected by the studied lncRNAs. We also investigated a possible involvement of genes for these mRNAs in oncogenesis-related processes, such as RNA processing and splicing and epithelial-mesenchymal transition. As a result of this work, four SNHG family lncRNAs with coregulation and joint putative biological functions in the pathogenesis of OC were identified.
Collapse
Affiliation(s)
- Eleonora A Braga
- Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia.
| | - Elena A Filippova
- Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - Leonid A Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Svetlana S Lukina
- Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - Irina V Pronina
- Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - Tatyana P Kazubskaya
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Dmitry N Kushlinskiy
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Vitaliy I Loginov
- Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia
| | - Marina V Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey M Burdennyy
- Research Institute of General Pathology and Pathophysiology, Moscow, 125315, Russia.
| | - Nikolay E Kushlinskii
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| |
Collapse
|
6
|
Mustafa A, Shabbir M, Badshah Y, Khan K, Abid F, Trembley JH, Afsar T, Almajwal A, Razak S. Genetic polymorphism in untranslated regions of PRKCZ influences mRNA structure, stability and binding sites. BMC Cancer 2024; 24:1147. [PMID: 39272077 PMCID: PMC11401371 DOI: 10.1186/s12885-024-12900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Variations in untranslated regions (UTR) alter regulatory pathways impacting phenotype, disease onset, and course of disease. Protein kinase C Zeta (PRKCZ), a serine-threonine kinase, is implicated in cardiovascular, neurological and oncological disorders. Due to limited research on PRKCZ, this study aimed to investigate the impact of UTR genetic variants' on binding sites for transcription factors and miRNA. RNA secondary structure, eQTLs, and variation tolerance analysis were also part of the study. METHODS The data related to PRKCZ gene variants was downloaded from the Ensembl genome browser, COSMIC and gnomAD. The RegulomeDB database was used to assess the functional impact of 5' UTR and 3'UTR variants. The analysis of the transcription binding sites (TFBS) was done through the Alibaba tool, and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) was employed to identify pathways associated with PRKCZ. To predict the effect of variants on microRNA binding sites, PolymiRTS was utilized for 3' UTR variants, and the SNPinfo tool was used for 5' UTR variants. RESULTS The results obtained indicated that a total of 24 variants present in the 3' UTR and 25 variants present in the 5' UTR were most detrimental. TFBS analysis revealed that 5' UTR variants added YY1, repressor, and Oct1, whereas 3' UTR variants added AP-2alpha, AhR, Da, GR, and USF binding sites. The study predicted TFs that influenced PRKCZ expression. RNA secondary structure analysis showed that eight 5' UTR and six 3' UTR altered the RNA structure by either removal or addition of the stem-loop. The microRNA binding site analysis highlighted that seven 3' UTR and one 5' UTR variant altered the conserved site and also created new binding sites. eQTLs analysis showed that one variant was associated with PRKCZ expression in the lung and thyroid. The variation tolerance analysis revealed that PRKCZ was an intolerant gene. CONCLUSION This study laid the groundwork for future studies aimed at targeting PRKCZ as a therapeutic target.
Collapse
Affiliation(s)
- Aneela Mustafa
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Maria Shabbir
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | | | - Fizzah Abid
- Department of Healthcare BiotechnologyAtta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Huang T, Ren K, Ling X, Li Z, Chen L. Transcription factor Yin Yang 1 enhances epithelial-mesenchymal transition, migration, and stemness of non-small cell lung cancer cells by targeting sonic hedgehog. Mol Cell Biochem 2024:10.1007/s11010-024-05104-y. [PMID: 39261409 DOI: 10.1007/s11010-024-05104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a frequent type of lung cancer. Transcription factor Yin Yang 1 (YY1), an endogenous transcription factor containing zinc finger structure, can accelerate NSCLC progression. However, the impact of YY1 on the stemness of NSCLC cells and the mechanism of promoting NSCLC cell progression is unclear. YY1 and Sonic hedgehog (Shh) expressions were monitored by RT-qPCR, western blot, and immunohistochemistry. Overall survival was tested through Kaplan-Meier analysis. The interaction between YY1 and Shh was confirmed. Then, cell migration, stemness, and epithelial-mesenchymal transition (EMT) were assessed with functional experiments in vitro and in vivo. YY1 and Shh were highly expressed in NSCLC tissues and positively correlated with the poor OS of NSCLC patients. Functional experiments denoted that YY1 or Shh overexpression could accelerate EMT, migration, and stemness of NSCLC cells, and YY1 or Shh knockdown played the opposite role to its overexpression. Mechanism analysis disclosed that Shh, as a target gene of YY1, was positively related to YY1. The rescued experiment manifested that Shh silencing could reverse the induction effect of YY1 overexpression on EMT, migration, and stemness of NSCLC cells. In vivo experiments also confirmed that YY1 could accelerate tumor growth and EMT and weaken apoptosis. YY1 promotes NSCLC EMT, migration, and stemness by Shh, which might be novel diagnostic markers and therapeutic targets for NSCLC therapy.
Collapse
Affiliation(s)
- Tonghai Huang
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China.
| | - Kangqi Ren
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Xiean Ling
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Zeyao Li
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| | - Lin Chen
- Department of Thoracic Surgery, Shenzhen People's Hospital, 1st Affiliated Hospital of Southern University of Science and Technology, 2, Clinical Medical College of Jinan University, No.1017, East Gate Rd, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
8
|
Zhou Y, Chen Y, Zhao P, Xian T, Gao Y, Fan S, Fang JH, Huang M, Bi H. The YY1-CPT1C signaling axis modulates the proliferation and metabolism of pancreatic tumor cells under hypoxia. Biochem Pharmacol 2024; 227:116422. [PMID: 38996932 DOI: 10.1016/j.bcp.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Carnitine palmitoyltransferase 1C (CPT1C) is an enzyme that regulates tumor cell proliferation and metabolism by modulating mitochondrial function and lipid metabolism. Hypoxia, commonly observed in solid tumors, promotes the proliferation and progression of pancreatic cancer by regulating the metabolic reprogramming of tumor cells. So far, the metabolic regulation of hypoxic tumor cells by CPT1C and the upstream mechanisms of CPT1C remain poorly understood. Yin Yang 1 (YY1) is a crucial oncogene for pancreatic tumorigenesis and acts as a transcription factor that is involved in multiple metabolic processes. This study aimed to elucidate the relationship between YY1 and CPT1C under hypoxic conditions and explore their roles in hypoxia-induced proliferation and metabolic alterations of tumor cells. The results showed enhancements in the proliferation and metabolism of PANC-1 cells under hypoxia, as evidenced by increased cell growth, cellular ATP levels, up-regulation of mitochondrial membrane potential, and decreased lipid content. Interestingly, knockdown of YY1 or CPT1C inhibited hypoxia-induced rapid cell proliferation and vigorous cell metabolism. Importantly, for the first time, we reported that YY1 directly activated the transcription of CPT1C and clarified that CPT1C was a novel target gene of YY1. Moreover, the YY1 and CPT1C were found to synergistically regulate the proliferation and metabolism of hypoxic cells through transfection with YY1 siRNA to CRISPR/Cas9-CPT1C knockout PANC-1 cells. Taken together, these results indicated that the YY1-CPT1C axis could be a new target for the intervention of pancreatic cancer proliferation and metabolism.
Collapse
Affiliation(s)
- Yanying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Yixin Chen
- School of Pharmaceutical Sciences, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province 511436, China
| | - Pengfei Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Tu Xian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province 510006, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
9
|
Zhang G, Wei W, Li S, Yang J. Transcription Factor yin-Yang 1 augments nucleoporin 93 oncogene activity and modulates bladder Cancer malignancy. Toxicol In Vitro 2024; 99:105875. [PMID: 38857852 DOI: 10.1016/j.tiv.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE This study aims to investigate the functional interplay between transcription factor YY1 and nucleoporin 93 (NUP93) in regulating the malignancy of bladder cancer cells. METHODS NUP93 expressions in bladder cancer tissues and normal counterparts were analyzed using a public dataset and clinical samples. NUP93 and Yin Yang 1 (YY1) mRNA expression and protein levels in T24 and RT4 cells were determined by Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The effect of NUP93 knockdown on the proliferation, migration, and invasion capabilities of cells was evaluated. Concurrently, transcriptional regulation of NUP93 by YY1 was confirmed using a dual luciferase assay. The effect of NUP93 knockdown on tumorigenesis was evaluate in a subcutaneous xenograft mouse model. RESULTS Elevated levels of NUP93 in bladder cancer tissues and cell lines were observed. Silencing NUP93 significantly suppressed glycolysis, impeded the growth, migration, invasion and tumor formation of bladder cancer cells. The transcription factor YY1 acted as a positive regulator to upregulate NUP93 expression. YY1 overexpression partially rescued the effects of NUP93 silencing on bladder cancer cells. CONCLUSION Our results uncovered transcription factor YY1 as a positive regulator of NUP93 expression, and NUP93 serves as an oncogenic factor to sustain the malignancy of bladder cancer cells. These findings suggest that targeting the YY1-NUP93 axis could offer novel therapeutic strategies for bladder cancer treatment.
Collapse
Affiliation(s)
- Gang Zhang
- Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Wei Wei
- Department of Urology section, Dalian Friendship Hospital, Dalian, Liaoning 116001, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning,116044, China
| | - Jinyi Yang
- Department of Urology section, Dalian Friendship Hospital, Dalian, Liaoning 116001, China.
| |
Collapse
|
10
|
Zhao JQ, Zhou QQ, Sun Y, Yu T, Jiang Y, Li HJ. The anti-non-small cell lung cancer effect of Diosbulbin B: Targeting YY1 induced cell cycle arrest and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155734. [PMID: 38761775 DOI: 10.1016/j.phymed.2024.155734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Toxic components frequently exhibit unique characteristics and activities, offering ample opportunities for the advancement of anti-cancer medications. As the main hepatotoxic component of Dioscorea bulbifera L. (DB), Diosbulbin B (DIOB) has been widely studied for its anti-tumor activity at nontoxic doses. However, the effectiveness and mechanism of DIOB against non-small cell lung cancer (NSCLC) remains unclear. PURPOSE To evaluate the anti-NSCLC activity of DIOB and to elucidate the specific mechanism of action. METHOD The effect of DIOB on NSCLCL in vitro was evaluated through CCK8, colony formation, and flow cytometry. The in vivo efficacy and safety of DIOB in treating NSCLC were assessed using various techniques, including HE staining, tunel staining, immunohistochemistry, and biochemical index detection. To understand the underlying mechanism, cell transfection, western blotting, molecular docking, cellular thermal shift assay (CESTA), and surface plasmon resonance (SPR) were employed for investigation. RESULTS DIOB effectively hindered the progression of NSCLC both in vitro and in vivo settings at a no-observed-adverse-effect concentration (NOAEC) and a safe dosage. Specifically, DIOB induced significant G0/G1 phase arrest and apoptosis in A549, PC-9, and H1299 cells, while also notably inhibiting the growth of subcutaneous tumors in nude mice. Mechanistically, DIOB could directly interact with oncogene Yin Yang 1 (YY1) and inhibit its expression. The reduction in YY1 resulted in the triggering of the tumor suppressor P53, which induced cell cycle arrest and apoptosis in NSCLC cells by inhibiting the expression of Cyclin A2, B2, CDK1, CDK2, CDK4, BCL-2, and inducing the expression of BAX. In NSCLC cells, the induction of G0/G1 phase arrest and apoptosis by DIOB was effectively reversed when YY1 was overexpressed or P53 was knocked down. Importantly, we observed that DIOB exerted the same effect by directly influencing the expression of YY1-regulated c-Myc and BIM, particularly in the absence of P53. CONCLUSION For the inaugural investigation, this research unveiled the anti-NSCLC impact of DIOB, alongside its fundamental mechanism. DIOB has demonstrated potential as a treatment agent for NSCLC due to its impressive efficacy in countering NSCLC.
Collapse
Affiliation(s)
- Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Qi-Qi Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Ting Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
11
|
Navasardyan I, Zaravinos A, Bonavida B. Therapeutic Implications of Targeting YY1 in Glioblastoma. Cancers (Basel) 2024; 16:2074. [PMID: 38893192 PMCID: PMC11171050 DOI: 10.3390/cancers16112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The transcription factor Yin Yang 1 (YY1) plays a pivotal role in the pathogenesis of glioblastoma multiforme (GBM), an aggressive form of brain tumor. This review systematically explores the diverse roles of YY1 overexpression and activities in GBM, including its impact on the tumor microenvironment (TME) and immune evasion mechanisms. Due to the poor response of GBM to current therapies, various findings of YY1-associated pathways in the literature provide valuable insights into novel potential targeted therapeutic strategies. Moreover, YY1 acts as a significant regulator of immune checkpoint molecules and, thus, is a candidate therapeutic target in combination with immune checkpoint inhibitors. Different therapeutic implications targeting YY1 in GBM and its inherent associated challenges encompass the use of nanoparticles, YY1 inhibitors, targeted gene therapy, and exosome-based delivery systems. Despite the inherent complexities of such methods, the successful targeting of YY1 emerges as a promising avenue for reshaping GBM treatment strategies, presenting opportunities for innovative therapeutic approaches and enhanced patient outcomes.
Collapse
Affiliation(s)
- Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Sun T, Zhang P, Zhang Q, Wang B, Zhao Q, Liu F, Ma X, Zhao C, Zhou X, Chen R, Ouyang S. Transcriptome analysis reveals PRKCA as a potential therapeutic target for overcoming cisplatin resistance in lung cancer through ferroptosis. Heliyon 2024; 10:e30780. [PMID: 38765024 PMCID: PMC11096979 DOI: 10.1016/j.heliyon.2024.e30780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024] Open
Abstract
Cisplatin-based chemotherapy is the current standard care for lung cancer patients; however, drug resistance frequently develops during treatment, thereby limiting therapeutic efficacy.The molecular mechanisms underlying cisplatin resistance remain elusive. In this study, we conducted an analysis of microarray data from the Gene Expression Omnibus (GEO) database under the accession numbers GSE21656, which encompassed expression profiling of cisplatin-resistant H460 (DDP-H460)and the parental cells (H460). Subsequently, we calculated the differentially expressed genes (DEGs) between DDP-H460 and H460. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs demonstrated significant impact on the Rap1, PI3K/AKT and MAPK signaling pathways. Moreover, protein and protein interaction (PPI) network analysis identified PRKCA, DET1, and UBE2N as hub genes that potentially contribute predominantly to cisplatin resistance. Ultimately, PRKCA was selected for validation due to its significant prognostic effect, which predicts unfavorable overall survival and disease-free survival in patients with lung cancer. Network analysis conducted on The Cancer Genome Atlas (TCGA) database revealed a strong gene-level correlation between PRKCA and TP53, CDKN2A, BYR2, TTN, KRAS, and PIK3CA; whereas at the protein level, it exhibited a high correlation with EGFR, Lck, Bcl2, and Syk. The in vitro experiments revealed that PRKCA was upregulated in the cisplatin-resistant A549 cells (DDP-A549), while knockdown of PRKCA increased DDP-A549 apoptosis upon cisplatin treatment. Moreover, we observed that PRKCA knockdown attenuated DDP-A549 proliferation, migration and invasion ability. Western blot analysis demonstrated that PRKCA knockdown downregulated phosphorylation of PI3K expression while upregulated the genes involved in ferroptosis signaling. In summary, our results elucidate the role of PRKCA in acquiring resistance to cisplatin and underscore its potential as a therapeutic target for cisplatin-resistant lung cancer.
Collapse
Affiliation(s)
- Ting Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Penghua Zhang
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binhui Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Qitai Zhao
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fenghui Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaohua Ma
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chunling Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaolei Zhou
- Department of Respiratory medicine, Henan Province Chest Hospital, Zhengzhou 450052, Henan, China
| | - Ruiying Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Songyun Ouyang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
13
|
Shao ZY, Yang WD, Qiu H, He ZH, Lu MR, Shen Q, Ding J, Zheng JN, Bai J. The role of USP7-YY1 interaction in promoting colorectal cancer growth and metastasis. Cell Death Dis 2024; 15:347. [PMID: 38769122 PMCID: PMC11106261 DOI: 10.1038/s41419-024-06740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health issue with high incidence and mortality. Yin Yang 1 (YY1) is a powerful transcription factor that acts dual roles in gene activation and repression. High expression level of YY1 has been reported in CRC, indicating the existence of stable factors of YY1 in CRC cells. We aimed to identify the key molecules and underlying mechanisms responsible for stabilizing YY1 expression in CRC. Mass spectrometry analysis was utilized to identify USP7 as a potential molecule that interacted with YY1. Mechanically, USP7 stabilizes YY1 expression at the protein level by interfering its K63 linkage ubiquitination. YY1 exerts its oncogenic function through transcriptionally activating TRIAP1 but suppressing LC3B. In addition, at the pathological level, there is a positive correlation between the expression of YY1 and the budding of CRC. This study has revealed the intricate interplay between YY1 and USP7 in CRC, suggesting that they could serve as novel therapeutic targets or predictive biomarkers for CRC patients.
Collapse
Affiliation(s)
- Zhi-Ying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Clinical Trial, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wen-Dong Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Hong He
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng-Ru Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qi Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Jun-Nian Zheng
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
14
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
15
|
Ahamed A, Hosea R, Wu S, Kasim V. The Emerging Roles of the Metabolic Regulator G6PD in Human Cancers. Int J Mol Sci 2023; 24:17238. [PMID: 38139067 PMCID: PMC10743588 DOI: 10.3390/ijms242417238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic reprogramming, especially reprogrammed glucose metabolism, is a well-known cancer hallmark related to various characteristics of tumor cells, including proliferation, survival, metastasis, and drug resistance. Glucose-6-phosphate dehydrogenase (G6PD) is the first and rate-limiting enzyme of the pentose phosphate pathway (PPP), a branch of glycolysis, that converts glucose-6-phosphate (G6P) into 6-phosphogluconolactone (6PGL). Furthermore, PPP produces ribose-5-phosphate (R5P), which provides sugar-phosphate backbones for nucleotide synthesis as well as nicotinamide adenine dinucleotide phosphate (NADPH), an important cellular reductant. Several studies have shown enhanced G6PD expression and PPP flux in various tumor cells, as well as their correlation with tumor progression through cancer hallmark regulation, especially reprogramming cellular metabolism, sustaining proliferative signaling, resisting cell death, and activating invasion and metastasis. Inhibiting G6PD could suppress tumor cell proliferation, promote cell death, reverse chemoresistance, and inhibit metastasis, suggesting the potential of G6PD as a target for anti-tumor therapeutic strategies. Indeed, while challenges-including side effects-still remain, small-molecule G6PD inhibitors showing potential anti-tumor effect either when used alone or in combination with other anti-tumor drugs have been developed. This review provides an overview of the structural significance of G6PD, its role in and regulation of tumor development and progression, and the strategies explored in relation to G6PD-targeted therapy.
Collapse
Affiliation(s)
- Alfar Ahamed
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rendy Hosea
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing 400030, China
| |
Collapse
|
16
|
Chandnani N, Gupta I, Thakkar V, Sarkar K. Epigenetic regulation of enhancer of zeste homolog 2 (EZH2) -Yin Yang 1 (YY1) axis in cancer. Pathol Res Pract 2023; 251:154885. [PMID: 37862922 DOI: 10.1016/j.prp.2023.154885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
In accordance with the World Health Organization, cancer is the second leading cause of death in patients. In recent years, the number of cancer patients has been growing, and the occurrence of cancer in people is becoming more common, primarily due to lifestyle factors. Yin Yang 1 (YY1) is a transcription factor that is widespread throughout. It is a zinc finger protein, falling under the GLI-Kruppel class. YY1 is known to regulate transcriptional activation and repression of various genes associated with different cellular processes such as DNA repair, autophagy, cell survival and apoptosis, and cell division. Meanwhile, EZH2 is a histone-lysine N-methyltransferase enzyme encoded by gene 7 in humans. Its main function involves catalyzing the addition of methyl groups to histone H3 at lysine 27 (H3K27me3), and it is involved in regulating CD8 + T cell fate and function. It is a subunit of a Polycomb repressor complex 2 (PRC2). The EZH2 gene encodes for an enzyme that is involved in histone methylation and transcriptional repression. It adds methyl groups to lysine 27 on histone H3 (H3K27me3) with the help of the cofactor S-adenosyl-L-methionine. In addition to its role in epigenetic regulation, EZH2 also acts as a regulator of CD8+ T cell fate and function. EZH2 has been implicated in T Cell Receptor (TCR) signaling via the regulation of actin polymerization. In fact, EZH2 is involved in numerous signaling pathways that lead to tumorigenesis. EZH2 is mutated in cancer and shows overexpression. Due to its mutation and overexpression, the cells that help combat cancer are suppressed and carcinogenicity is promoted. The association of EZH2 and YY1 poses an intriguing mechanism in relation to cancer.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Vidhi Thakkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
17
|
Baritaki S, Zaravinos A. Cross-Talks between RKIP and YY1 through a Multilevel Bioinformatics Pan-Cancer Analysis. Cancers (Basel) 2023; 15:4932. [PMID: 37894300 PMCID: PMC10605344 DOI: 10.3390/cancers15204932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies suggest that PEBP1 (also known as RKIP) and YY1, despite having distinct molecular functions, may interact and mutually influence each other's activity. They exhibit reciprocal control over each other's expression through regulatory loops, prompting the hypothesis that their interplay could be pivotal in cancer advancement and resistance to drugs. To delve into this interplay's functional characteristics, we conducted a comprehensive analysis using bioinformatics tools across a range of cancers. Our results confirm the association between elevated YY1 mRNA levels and varying survival outcomes in diverse tumors. Furthermore, we observed differing degrees of inhibitory or activating effects of these two genes in apoptosis, cell cycle, DNA damage, and other cancer pathways, along with correlations between their mRNA expression and immune infiltration. Additionally, YY1/PEBP1 expression and methylation displayed connections with genomic alterations across different cancer types. Notably, we uncovered links between the two genes and different indicators of immunosuppression, such as immune checkpoint blockade response and T-cell dysfunction/exclusion levels, across different patient groups. Overall, our findings underscore the significant role of the interplay between YY1 and PEBP1 in cancer progression, influencing genomic changes, tumor immunity, or the tumor microenvironment. Additionally, these two gene products appear to impact the sensitivity of anticancer drugs, opening new avenues for cancer therapy.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus
| |
Collapse
|