1
|
Hou X, Ai X, Liu Z, Yang J, Wu Y, Zhang D, Feng N. Wheat germ agglutinin modified mixed micelles overcome the dual barrier of mucus/enterocytes for effective oral absorption of shikonin and gefitinib. Drug Deliv Transl Res 2025; 15:325-342. [PMID: 38656402 DOI: 10.1007/s13346-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The combination of shikonin (SKN) and gefitinib (GFB) can reverse the drug resistance of lung cancer cells by affecting energy metabolism. However, the poor solubility of SKN and GFB limits their clinical application because of low bioavailability. Wheat germ agglutinin (WGA) can selectively bind to sialic acid and N-acetylglucosamine on the surfaces of microfold cells and enterocytes, and is a targeted biocompatible material. Therefore, we created a co-delivery micelle system called SKN/GFB@WGA-micelles with the intestinal targeting functions to enhance the oral absorption of SKN and GFB by promoting mucus penetration for nanoparticles via oral administration. In this study, Caco-2/HT29-MTX-E12 co-cultured cells were used to simulate a mucus/enterocyte dual-barrier environment, and HCC827/GR cells were used as a model of drug-resistant lung cancer. We aimed to evaluate the oral bioavailability and anti-tumor effect of SKN and GFB using the SKN/GFB@WGA-micelles system. In vitro and in vivo experimental results showed that WGA promoted the mucus penetration ability of micelles, significantly enhanced the uptake efficiency of enterocytes, improved the oral bioavailability of SKN and GFB, and exhibited good anti-tumor effects by reversing drug resistance. The SKN/GFB@WGA-micelles were stable in the gastrointestinal tract and provided a novel safe and effective drug delivery strategy.
Collapse
Affiliation(s)
- Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Yihan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
2
|
Khilwani R, Singh S. Leveraging Evolutionary Immunology in Interleukin-6 and Interleukin-17 Signaling for Lung Cancer Therapeutics. ACS Pharmacol Transl Sci 2024; 7:3658-3670. [PMID: 39698267 PMCID: PMC11650734 DOI: 10.1021/acsptsci.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Lung cancer is among the most common instances of cancer subtypes and is associated with high mortality rates. Due to the availability of fewer therapies and delayed clinical investigations, the number of cancer incidences is rising dramatically. This is possibly an effect of immune modulations and chemotherapeutic drugs that raises cancer resistance. Among the list, IL-6 and IL-17 are host-derived paradoxical effectors that attune immune responses in malignant lung cells. Their excessive release in the cytokine milieu stabilizes immunosuppressive phenotypes, resulting in cellular perturbations. During tumor development, the significance of these molecules is reflected in their potential to regulate oncogenesis by initiating a myriad of signaling events that influence tumor growth and the metastatic ability of benign cancer cells. Moreover, their transactivation contributes to antiapoptotic mechanisms and favors cancer cell survival via constitutive expression of immunoregulatory molecules. Co-evolution and gene duplication events could be the major drivers behind cytokine evolution, which have prompted generic changes and, hence, the additive effect. The evolutionary model and statistical analysis provide evidence about the cytokines ancestral relationships and site-specific conservation, which is more convincing as both cytokines share cysteine-knot-like structures important in maintaining structural integrity. Funneling through the findings could help find residues that serve a catalytic role in immune functioning. Designing peptides or subunit vaccine formulations against those conserved residues could aid in combating lung cancer pathogenesis.
Collapse
Affiliation(s)
- Riya Khilwani
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, BRIC-National Centre for Cell Science, NCCS Complex,
Ganeshkhind, SPPU Campus, Pune 411007, India
| |
Collapse
|
3
|
Qu R, Zhao Y, Zhang Y. The mechanism of cytokine regulation of cancer occurrence and development in the tumor microenvironment and its application in cancer treatment: a narrative review. Transl Cancer Res 2024; 13:5649-5663. [PMID: 39525000 PMCID: PMC11543031 DOI: 10.21037/tcr-24-679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
Background and Objective The occurrence and development of tumors in human tissues widely depend on their surrounding environment, known as the tumor microenvironment (TME), which comprises various cells, molecules, and blood vessels. Through modifications, organization, and integration, these elements serve as potential therapeutic targets in anti-cancer therapy, supporting and promoting the proliferation, invasion, and metabolism of tumor cells. Cytokines within TME are responsible for immune cell activation, proliferation, and differentiation, thereby influencing the tumor's behavior. This article reviews the use of cytokines in tumor immunotherapy and combs the network signals that cytokines mediate in the development of malignancies. Methods A literature search of international sources was carried out on the PubMed and Web of Science databases, using main keywords such as "tumor immunotherapy", "cytokines", "chemokines", "tumor microenvironment", "recombinant cytokine engineering", and "tumor necrosis factor superfamily". Key Content and Findings The review provides a thorough summary of the functions of tumor necrosis factor superfamilies, chemokines, and interleukins within the TME as well as their therapeutic uses. Their potential as novel targets for tumor treatment is also evaluated. Furthermore, this paper focuses on various feasible strategies for recombinant cytokines reported in recent years, especially the cytokine engineering methods for targeting tumors. Ultimately, this paper contributes to an enhanced understanding among researchers of the mechanisms underlying the impact of the TME on disease development, thereby laying a solid foundation for the future development of new tumor therapies based on cytokines within the TME. Conclusions Cytokine immunotherapy holds promise on antitumor therapy. It is anticipated that the effectiveness of tumor treatment and the quality of life for tumor patients will continue to improve with ongoing research and development in this field.
Collapse
Affiliation(s)
- Run Qu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
| | - Yanhong Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
| | - Yuzhe Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
4
|
Zhou D, Li Y, Liu Q, Deng X, Chen L, Li M, Zhang J, Lu X, Zheng H, Dai J. Integrated whole-exome and bulk transcriptome sequencing delineates the dynamic evolution from preneoplasia to invasive lung adenocarcinoma featured with ground-glass nodules. Cancer Med 2024; 13:e7383. [PMID: 38864483 PMCID: PMC11167609 DOI: 10.1002/cam4.7383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVE The genomic and molecular ecology involved in the stepwise continuum progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) to minimally invasive adenocarcinoma (MIA) and subsequent invasive adenocarcinoma (IAC) remains unclear and requires further elucidation. We aimed to characterize gene mutations and expression landscapes, and explore the association between differentially expressed genes (DEGs) and significantly mutated genes (SMGs) during the dynamic evolution from AIS to IAC. METHODS Thirty-five patients with ground-glass nodules (GGNs) lung adenocarcinomas were enrolled. Whole-exome sequencing (WES) and transcriptome sequencing (RNA-Seq) were conducted on all patients, encompassing both tumor samples and corresponding noncancerous tissues. Data obtained from WES and RNA-Seq were subsequently analyzed. RESULTS The findings from WES delineated that the predominant mutations were observed in EGFR (49%) and ANKRD36C (17%). SMGs, including EGFR and RBM10, were associated with the dynamic evolution from AIS to IAC. Meanwhile, DEGs, including GPR143, CCR9, ADAMTS16, and others were associated with the entire process of invasive LUAD. We found that the signaling pathways related to cell migration and invasion were upregulated, and the signaling pathways of angiogenesis were downregulated across the pathological stages. Furthermore, we found that the messenger RNA (mRNA) levels of FAM83A, MAL2, DEPTOR, and others were significantly correlated with CNVs. Gene set enrichment analysis (GSEA) showed that heme metabolism and cholesterol homeostasis pathways were significantly upregulated in patients with EGFR/RBM10 co-mutations, and these patients may have poorer overall survival than those with EGFR mutations. Based on the six calculation methods for the immune infiltration score, NK/CD8+ T cells decreased, and Treg/B cells increased with the progression of early LUAD. CONCLUSIONS Our findings offer valuable insights into the unique genomic and molecular features of LUAD, facilitating the identification and advancement of precision medicine strategies targeting the invasive progression of LUAD from AIS to IAC.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Yan‐qi Li
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Quan‐xing Liu
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xu‐feng Deng
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Liang Chen
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Man‐yuan Li
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Jiao Zhang
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Xiao Lu
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Hong Zheng
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Ji‐gang Dai
- Department of Thoracic SurgeryXinqiao Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
5
|
Moerland JA, Liby KT. The Triterpenoid CDDO-Methyl Ester Reduces Tumor Burden, Reprograms the Immune Microenvironment, and Protects from Chemotherapy-Induced Toxicity in a Preclinical Mouse Model of Established Lung Cancer. Antioxidants (Basel) 2024; 13:621. [PMID: 38929060 PMCID: PMC11201246 DOI: 10.3390/antiox13060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
NRF2 activation protects epithelial cells from malignancy, but cancer cells can upregulate the pathway to promote survival. NRF2 activators including CDDO-Methyl ester (CDDO-Me) inhibit cancer in preclinical models, suggesting NRF2 activation in other cell types may promote anti-tumor activity. However, the immunomodulatory effects of NRF2 activation remain poorly understood in the context of cancer. To test CDDO-Me in a murine model of established lung cancer, tumor-bearing wildtype (WT) and Nrf2 knockout (KO) mice were treated with 50-100 mg CDDO-Me/kg diet, alone or combined with carboplatin/paclitaxel (C/P) for 8-12 weeks. CDDO-Me decreased tumor burden in an Nrf2-dependent manner. The combination of CDDO-Me plus C/P was significantly (p < 0.05) more effective than either drug alone, reducing tumor burden by 84% in WT mice. CDDO-Me reduced the histopathological grade of WT tumors, with a significantly (p < 0.05) higher proportion of low-grade tumors and a lower proportion of high-grade tumors. These changes were augmented by combination with C/P. CDDO-Me also protected WT mice from C/P-induced toxicity and improved macrophage and T cell phenotypes in WT mice, reducing the expression of CD206 and PD-L1 on macrophages, decreasing immunosuppressive FoxP3+ CD4+ T cells, and increasing activation of CD8+ T cells in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA;
| | - Karen T. Liby
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, 980 W. Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Lee IH, Wang HY, Chen YY, Chen CY, Liao HF. Synergistic B and T lymphocyte interaction: prognostic implications in non-small cell lung cancer. Am J Cancer Res 2024; 14:1227-1242. [PMID: 38590414 PMCID: PMC10998741 DOI: 10.62347/tdiv2436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
While T-cell-mediated immune responses in solid tumors have been well-established and have driven major therapeutic advances, our understanding of B-cell biology in cancer is comparatively less developed. A total of 60 lung cancer patients were included, of which 53% were diagnosed at an early stage while 47% were diagnosed at an advanced stage. Flow cytometry was used to analyze the proportion of T and B cells in all blood samples, and the levels of human serum cytokines were also assessed. Compared to the control group, cancer patients showed lower frequencies of IgD+CD27+ marginal B cells and CD32+ B cells, and higher frequencies of T cells with lower CD8+ T cells and higher central memory and naïve CD4+ T cells. Additionally, advanced-stage cancer patients exhibited higher levels of cytokines, a higher proportion of effector memory CD8+ T cells, and a lower frequency of CD27+CD28+CD4+/CD8+ T cells. Linear regression analysis revealed significant correlations between cancer stage and the frequency of B and T cell subsets, leukocyte count, and cytokine levels. Survival analysis demonstrated that patients with higher frequency of class-switched B cells had a worse prognosis, while patients with higher frequency of CD8+ effector T cells and lower frequency of CD4+57+ T cells appeared to have a better survival rate. These findings provide valuable insight into the immunological changes that occur during lung cancer progression and have the potential to inform the development of new immunotherapeutic strategies.
Collapse
Affiliation(s)
- I-Hsien Lee
- Department of Internal Medicine, Fu Jen Catholic University HospitalNew Taipei, Taiwan
| | - Hsin-Yi Wang
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchYunlin, Taiwan
- College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Ying-Yin Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchYunlin, Taiwan
- College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Chung-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin BranchYunlin, Taiwan
- College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Hui-Fen Liao
- Department of Biochemical Science and Technology, National Chiayi UniversityChiayi, Taiwan
| |
Collapse
|
7
|
Tuluwengjiang G, Rasulova I, Ahmed S, Kiasari BA, Sârbu I, Ciongradi CI, Omar TM, Hussain F, Jawad MJ, Castillo-Acobo RY, Hani T, Lakshmaiya N, Samaniego SSC. Dendritic cell-derived exosomes (Dex): Underlying the role of exosomes derived from diverse DC subtypes in cancer pathogenesis. Pathol Res Pract 2024; 254:155097. [PMID: 38277745 DOI: 10.1016/j.prp.2024.155097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Exosomes are nanometric membrane vesicles of late endosomal origin that are released by most, if not all, cell types as a sophisticated means of intercellular communication. They play an essential role in the movement of materials and information between cells, transport a variety of proteins, lipids, RNA, and other vital data, and over time, they become an essential part of the drug delivery system and a marker for the early detection of many diseases. Dendritic cells have generated interest in cancer immunotherapy due to their ability to initiate and modify effective immune responses. Apart from their cytokine release and direct interactions with other cell types, DCs also emit nanovesicles, such as exosomes, that contribute to their overall activity. Numerous studies have demonstrated exosomes to mediate and regulate immune responses against cancers. Dendritic cell-derived exosomes (DCs) have attracted a lot of attention as immunotherapeutic anti-cancer treatments since it was found that they contain functional MHC-peptide complexes along with a variety of other immune-stimulating components that together enable immune cell-dependent tumor rejection. By enhancing tumor and immunosuppressive immune cells or changing a pro-inflammatory milieu to inhibit tumor advancement, exosomes generated from dendritic cells can initiate and support tumor growth. This study reviewed the immunogenicity of dendritic cell-derived exosomes and strategies for expanding their immunogenic potential as novel and effective anti-cancer therapies.
Collapse
Affiliation(s)
| | - Irodakhon Rasulova
- Senior Researcher, School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent, 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | - Shamim Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | | |
Collapse
|