1
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Horváth L, Biri-Kovács B, Baranyai Z, Stipsicz B, Méhes E, Jezsó B, Krátký M, Vinšová J, Bősze S. New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma. ACS OMEGA 2024; 9:16927-16948. [PMID: 38645331 PMCID: PMC11024950 DOI: 10.1021/acsomega.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Collapse
Affiliation(s)
- Lilla Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Zsuzsa Baranyai
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Bence Stipsicz
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
- Institute
of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Előd Méhes
- Institute
of Physics, Department of Biological Physics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Jezsó
- Research
Centre for Natural Sciences, Institute of
Enzymology, Budapest 1053, Hungary
- ELTE-MTA
“Momentum” Motor Enzymology Research Group, Department
of Biochemistry, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Martin Krátký
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| |
Collapse
|
3
|
Ahn MH, Kim JH, Choi SJ, Kim HJ, Park DG, Oh KY, Yoon HJ, Hong SD, Lee JI, Shin JA, Cho SD. Neuropilin-2 acts a critical determinant for epithelial-to-mesenchymal transition and aggressive behaviors of human head and neck cancer. Cell Oncol (Dordr) 2024; 47:497-511. [PMID: 37787967 DOI: 10.1007/s13402-023-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
PURPOSE Neuropilin-2 (NRP2) is a multifunctional single-pass transmembrane receptor that binds to two disparate ligands, namely, vascular endothelial growth factors (VEGFs) and semaphorins (SEMAs). It is reportedly involved in neuronal and vascular development. In this study, we uncovered the exact functional role of NRP2 and its molecular mechanism during aggressive behaviors and lymph node (LN) metastasis in human head and neck cancer (HNC) and identified algal methanol extract as a potential novel NRP2 inhibitor. METHODS In silico analyses and immunohistochemistry were used to investigate the relationship between NRP2 expression and the prognosis of HNC patients. The functional role of NRP2 on the proliferation, migration, invasion, and cancer stem cell (CSC) properties of HNC cells was examined by MTS, soft agar, clonogenic, transwell migration and invasion assays, and sphere formation assays. Signaling explorer antibody array, western blot, and qPCR were performed toward the investigation of a molecular mechanism that is related to NRP2. RESULTS NRP2 was highly expressed in HNC and positively correlated with LN metastasis and advanced tumor stage and size in patients. Using loss- or gain-of-function approaches, we found that NRP2 promoted the proliferative, migratory, and invasive capacities of human HNC cells. Furthermore, NRP2 regulated Sox2 expression to exhibit aggressiveness and CSC properties of human HNC cells. We demonstrated that p90 ribosomal S6 kinase 1 (RSK1) elevates the aggressiveness and CSC properties of human HNC cells, possibly by mediating NRP2 and Sox2. Zeb1 was necessary for executing the NRP2/RSK1/Sox2 signaling pathway during the induction of epithelial-to-mesenchymal transition (EMT) and aggressive behaviors of human HNC cells. Moreover, the methanol extract of Codium fragile (MECF) repressed NRP2 expression, inhibiting the RSK1/Sox2/Zeb1 axis, which contributed to the reduction of aggressive behaviors of human HNC cells. CONCLUSIONS These findings suggest that NRP2 is a critical determinant in provoking EMT and aggressive behaviors in human HNC through the RSK1/Sox2/Zeb1 axis, and MECF may have the potential to be a novel NRP2 inhibitor for treating metastasis in HNC patients.
Collapse
Affiliation(s)
- Min-Hye Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun-Ji Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Dong-Guk Park
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jae-Il Lee
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Meng S, Hara T, Sato H, Tatekawa S, Tsuji Y, Saito Y, Hamano Y, Arao Y, Gotoh N, Ogawa K, Ishii H. Revealing neuropilin expression patterns in pancreatic cancer: From single‑cell to therapeutic opportunities (Review). Oncol Lett 2024; 27:113. [PMID: 38304169 PMCID: PMC10831399 DOI: 10.3892/ol.2024.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pancreatic cancer, one of the most fatal types of human cancers, includes several non-epithelial and stromal components, such as activated fibroblasts, vascular cells, neural cells and immune cells, that are involved in different cancers. Vascular endothelial cell growth factor 165 receptors 1 [neuropilin-1 (NRP-1)] and 2 (NRP-2) play a role in the biological behaviors of pancreatic cancer and may appear as potential therapeutic targets. The NRP family of proteins serve as co-receptors for vascular endothelial growth factor, transforming growth factor β, hepatocyte growth factor, fibroblast growth factor, semaphorin 3, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor. Investigations of mechanisms that involve the NRP family of proteins may help develop novel approaches for overcoming therapy resistance in pancreatic cancer. The present review aimed to provide an in-depth exploration of the multifaceted roles of the NRP family of proteins in pancreatic cancer, including recent findings from single-cell analysis conducted within the context of pancreatic adenocarcinoma, which revealed the intricate involvement of NRP proteins at the cellular level. Through these efforts, the present study endeavored to further reveal their relationships with different biological processes and their potential as therapeutic targets in various treatment modalities, offering novel perspectives and directions for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yumiko Hamano
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Bai Z, Yan C, Chang D. Prediction and therapeutic targeting of the tumor microenvironment-associated gene CTSK in gastric cancer. Discov Oncol 2023; 14:200. [PMID: 37930479 PMCID: PMC10628060 DOI: 10.1007/s12672-023-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Cathepsin-K (CTSK) is overexpressed in Gastric cancer (GC) and the mechanism of its overexpression in GC is still unclear. The present work found CTSK as a potential predictive biomarker and immunotherapeutic target for GC based on the tumor microenvironment (TME). METHODS From public databases, gene expression profiles and clinical data of GC were downloaded to analyze the distribution of stromal and immune cells and tumor abundance in TME. Differentially expressed genes (DEGs) associated with TME were obtained by differential analysis, followed by cross-screening to obtain CTSK as a gene associated with TME. Next, a series of methods and tools were employed to explore the relationships between clinicopathological features of GC and CTSK expression as well as prognosis, tumor immune microenvironment, immune checkpoints and drug sensitivity. And GSEA was used to investigate the potential role of CTSK in the tumor microenvironment of GC. RESULTS From the dataset, we obtained a total of 656 DEGs associated with TME and the stromal component of TME was found to be closely involved in GC prognosis. CTSK was cross-screened as the key gene associated with TME by the PPI network and univariate Cox regression analysis. Pan-cancer analysis revealed significant high expression of CTSK in a variety of cancers. Subsequently, we hypothesized that high-expressed CTSK was closely correlated with poor prognosis and lymph node metastasis of tumors, and that CTSK, a GC TME-related gene, was largely involved in a range of biological behaviors of tumors, with a significant correlation between several immune cells. CONCLUSION CTSK was validated as a potential prognostic biomarker related to TME of GC and could be a promising next-generation immunotherapeutic target for GC.
Collapse
Affiliation(s)
- Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Chunyu Yan
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China
| | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
6
|
Puszko AK, Sosnowski P, Hermine O, Hopfgartner G, Lepelletier Y, Misicka A. Structure-activity relationship studies and biological properties evaluation of peptidic NRP-1 ligands: Investigation of N-terminal cysteine importance. Bioorg Med Chem 2023; 94:117482. [PMID: 37774449 DOI: 10.1016/j.bmc.2023.117482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Neuropilin-1 (NRP-1) is a major co-receptor of vascular endothelial growth factor receptor-2 (VEGFR-2). It may also stimulate tumour growth and metastasis independently of VEGF-A165. These functions make VEGF-A165/NRP-1 complex formation and its inhibition of great interest, where NRP-1 is the target for which effective ligands are sought. Design of peptide-like inhibitors represent a strategy with great potential in the treatment of NRP-1-related disorders. Here, we present the synthesis, molecular modelling, structure-activity relationship studies as well as biological evaluation of peptides with the branched sequences H2N-X-Lys(hArg)-Dab-Oic-Arg-OH and H2N-Lys(X-hArg)-Dab-Oic-Arg-OH. Two of the designed peptides, in which Cys was inserted in X position, expressed high affinity (∼40 nM value) for NRP-1 and were resistant to enzymatic digestion in human serum. Moreover, peptide/NRP-1 complex promoted fast intracytoplasmic protein trafficking towards the plasma membrane in breast cancer cells. Our results suggest that these compounds might be good candidates for further development of VEGF-A165/NRP-1 inhibitors.
Collapse
Affiliation(s)
- Anna K Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Olivier Hermine
- Université Paris Cité, Imagine Institute, 24 boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yves Lepelletier
- Université Paris Cité, Imagine Institute, 24 boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Sankiewicz A, Zelazowska-Rutkowska B, Gorska E, Hermanowicz A, Gorodkiewicz E. New Biosensor for Determination of Neuropilin-1 with Detection by Surface Plasmon Resonance Imaging. SENSORS (BASEL, SWITZERLAND) 2023; 23:4118. [PMID: 37112459 PMCID: PMC10145791 DOI: 10.3390/s23084118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Neuropilin-1 is transmembrane protein with soluble isoforms. It plays a pivotal role in both physiological and pathological processes. NRP-1 is involved in the immune response, formation of neuronal circuits, angiogenesis, survival and migration of cells. The specific SPRI biosensor for the determination of neuropilin-1 was constructed using mouse monoclonal antibody that captures unbound NRP-1 form body fluids. The biosensor exhibits linearity of the analytical signal between 0.01 and 2.5 ng/mL, average precision value 4.7% and recovery between 97% and 104%. The detection limit is 0.011 ng/mL, and the limit of quantification is 0.038 ng/mL. The biosensor was validated by parallel determination of NRP-1 in serum and saliva samples using the ELISA test, with good agreement of the results.
Collapse
Affiliation(s)
- Anna Sankiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| | - Beata Zelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Ewelina Gorska
- Independent Researcher, Stoleczna 7, 15-879 Bialystok, Poland;
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Adam Hermanowicz
- Department of Pediatric Surgery and Urology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Ewa Gorodkiewicz
- Bioanalysis Laboratory, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland;
| |
Collapse
|
8
|
Sabki A, Khelifi L, Kameli A, Baali S. Identification of Four New Chemical Series of Small Drug-Like Natural Products as Potential Neuropilin-1 Inhibitors by Structure-Based Virtual Screening: Pharmacophore-Based Molecular Docking and Dynamics Simulation. Chem Biodivers 2023; 20:e202200933. [PMID: 36799050 DOI: 10.1002/cbdv.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Neuropilin-1 (NRP-1), a surface transmembrane glycoprotein, is one of the most important co-receptors of VEGF-A165 (vascular endothelial growth factor) responsible for pathological angiogenesis. In general, NRP-1 overexpression in cancer correlates with poor prognosis and more tumor aggressiveness. NRP-1 role in cancer has been mainly explained by mediating VEGF-A165-induced effects on tumor angiogenesis. NRP-1 was recently identified as a co-receptor and an independent gateway for SARS-CoV-2 through binding subunit S2 of Spike protein in the same way as VEGF-A165. Thus, NRP-1 is of particular value as a target for cancer therapy and other angiogenesis-dependent diseases as well as for SARS-CoV-2 antiviral intervention. Herein, The Super Natural II, the largest available database of natural products (∼0.33 M), pre-filtered with drug-likeness criteria (absorption, distribution, metabolism and excretion/toxicity), was screened against NRP-1. NRP-1/VEGF-A165 interaction is one of protein-protein interfaces (PPIs) known to be challenging when approached in-silico. Thus, a PPI-suited multi-step virtual screening protocol, incorporating a derived pharmacophore with molecular docking and followed by MD (molecular dynamics) simulation, was designed. Two stages of pharmacophorically constrained molecular docking (standard and extra precisions), a mixed Torsional/Low-mode conformational search and MM-GBSA ΔG binding affinities calculation, resulted in the selection of 100 hits. These 100 hits were subjected to 20 ns MD simulation, that was extended to 100 ns for top hits (20) and followed by post-dynamics analysis (atomic ligand-protein contacts, RMSD, RMSF, MM-GBSA ΔG, Rg, SASA and H-bonds). Post-MD analysis showed that 19 small drug-like nonpeptide natural molecules, grouped in four chemical scaffolds (purine, thiazole, tetrahydropyrimidine and dihydroxyphenyl), well verified the derived pharmacophore and formed stable and compact complexes with NRP-1. The discovered molecules are promising and can serve as a base for further development of new NRP-1 inhibitors.
Collapse
Affiliation(s)
- Abdellah Sabki
- Laboratory of Genetic Resources & Biotechnology, National School of Agricultural Sciences (ENSA), 16004, Algiers, Algeria
| | - Lakhdar Khelifi
- Laboratory of Genetic Resources & Biotechnology, National School of Agricultural Sciences (ENSA), 16004, Algiers, Algeria
| | - Abdelkrim Kameli
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, ENS Kouba, 16050, Algiers, Algeria
| | - Salim Baali
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, ENS Kouba, 16050, Algiers, Algeria
| |
Collapse
|
9
|
Scandium-44 Radiolabeled Peptide and Peptidomimetic Conjugates Targeting Neuropilin-1 Co-Receptor as Potential Tools for Cancer Diagnosis and Anti-Angiogenic Therapy. Biomedicines 2023; 11:biomedicines11020564. [PMID: 36831099 PMCID: PMC9953004 DOI: 10.3390/biomedicines11020564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pathological angiogenesis, resulting from an imbalance between anti- and pro-angiogenic factors, plays a pivotal role in tumor growth, development and metastasis. The inhibition of the angiogenesis process by the VEGF/VEGFR-2/NRP-1 pathway raises interest in the search for such interaction inhibitors for the purpose of the early diagnosis and treatment of angiogenesis-dependent diseases. In this work we designed and tested peptide-based radiocompounds that selectively bind to the neuropilin-1 co-receptor and prevent the formation of the pro-angiogenic VEGF-A165/NRP-1 complex. Three biomolecules, A7R and retro-inverso DR7A peptides, and the branched peptidomimetic Lys(hArg)-Dab-Pro-Arg (K4R), conjugated with macrocyclic chelator through two linkers' types, were labeled with theranostic scandium-44 radionuclide, and studied in vitro as potential targeted radiopharmaceuticals. ELISA (enzyme-linked immunosorbent assay) studies showed no negative effect of the introduced biomolecules' changes and high NRP-1 affinity in the case of A7R- and K4R-radiocompounds and a lack affinity for DR7A-radiocompounds. All radiopeptides showed a hydrophilic nature as well as high stability against ligand exchange reactions in cysteine/histidine solutions. Unfortunately, all radiocompounds showed unsatisfactory nano-scale stability in human serum, especially for use as therapeutic radioagents. Further work is ongoing and focused on the search for angiogenesis inhibitors that are more human serum stable.
Collapse
|
10
|
Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. Eur J Pharm Biopharm 2022; 174:111-130. [DOI: 10.1016/j.ejpb.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
11
|
Masłowska K, Witkowska E, Tymecka D, Halik PK, Misicka A, Gniazdowska E. Synthesis, Physicochemical and Biological Study of Gallium-68- and Lutetium-177-Labeled VEGF-A 165/NRP-1 Complex Inhibitors Based on Peptide A7R and Branched Peptidomimetic. Pharmaceutics 2022; 14:pharmaceutics14010100. [PMID: 35056995 PMCID: PMC8779334 DOI: 10.3390/pharmaceutics14010100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
Neuropilin-1 (NRP-1) is a surface receptor found on many types of cancer cells. The overexpression of NRP-1 and its interaction with vascular endothelial growth factor-165 (VEGF165) are associated with tumor growth and metastasis. Therefore, compounds that block the VEGF165/NRP-1 interaction represent a promising strategy to image and treat NRP-1-related pathologies. The aim of the presented work was to design and synthesize radioconjugates of two known peptide-type inhibitors of the VEGF165/NRP-1 complex: A7R peptide and its shorter analog, the branched peptidomimetic Lys(hArg)-Dab-Pro-Arg. Both peptide-type inhibitors were coupled to a radionuclide chelator (DOTA) via a linker (Ahx) and so radiolabeled with Ga-68 and Lu-177 radionuclides, for diagnostic and therapeutic uses, respectively. The synthesized radioconjugates were tested for their possible use as theranostic-like radiopharmaceuticals for the imaging and therapy of cancers that overexpress NRP-1. The obtained results indicate good efficiency of the radiolabeling reaction and satisfactory stability, at least 3t1/2 for the 68Ga- and 1t1/2 for the 177Lu-radiocompounds, in solutions mimicking human body fluids. However, enzymatic degradation of both the studied inhibitors caused insufficient stability of the radiocompounds in human serum, indicating that further modifications are needed to sufficiently stabilize the peptidomimetics with inhibitory properties against VEGF165/NRP-1 complex formation.
Collapse
Affiliation(s)
- Katarzyna Masłowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
- Correspondence: (K.M.); (A.M.)
| | - Ewa Witkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.W.); (D.T.)
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.W.); (D.T.)
| | - Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.W.); (D.T.)
- Correspondence: (K.M.); (A.M.)
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (P.K.H.); (E.G.)
| |
Collapse
|
12
|
H19- and hsa-miR-338-3p-mediated NRP1 expression is an independent predictor of poor prognosis in glioblastoma. PLoS One 2021; 16:e0260103. [PMID: 34843522 PMCID: PMC8629300 DOI: 10.1371/journal.pone.0260103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and also the most invasive brain cancer. GBM progression is rapid and its prognosis is poor. Therefore, finding molecular targets in GBM is a critical goal that could also play important roles in clinical diagnostics and treatments to improve patient prognosis. We jointly analyzed the GSE103227, GSE103229, and TCGA databases for differentially expressed RNA species, obtaining 52 long non-coding RNAs (lncRNAs), 31 microRNAs (miRNAs), and 186 mRNAs, which were used to build a competing endogenous RNA network. Kaplan–Meier and receiver operating characteristic (ROC) analyses revealed five survival-related lncRNAs: H19, LINC01574, LINC01614, RNF144A-AS1, and OSMR-AS1. With multiple optimization mRNAs, we found the H19-hsa-miR-338-3P-NRP1 regulatory pathway. Additionally, we noted high NRP1 expression in GBM patients, and Kaplan–Meier and ROC analyses showed that NRP1 expression was associated with GBM prognosis. Cox analysis indicated that NRP1 is an independent prognostic factor in GBM patients. In conclusion, H19 and hsa-miR-338-3P regulate NRP1 expression, and this pathway plays an important role in GBM.
Collapse
|
13
|
Regulation of granulosa cell functions through NRP-1 mediated internalization of follicular fluid non-exosomal miR-210. Cell Tissue Res 2021; 386:649-660. [PMID: 34599690 DOI: 10.1007/s00441-021-03524-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Crosstalk between follicular fluid (FF) and granulosa cells (GCs) plays a vital role in the regulation of folliculogenesis, ensuring regular reproductive cycle in mammals. This crosstalk is primarily mediated by hormones and signaling molecules, such as cytokines and chemokines. Recently, extracellular microRNAs (miRNAs) have gained a lot of attention in cell-to-cell communication. Extracellular miRNA transportation occurs through exosomes, a kind of micro-vesicles produced from almost all cells. However, the mode of non-exosomal miRNA internalization is not much studied. In the present study, we explored the role of neuropilin-1 (NRP-1) as a receptor in internalizing FF non-exosomal miRNAs in GCs. We first confirmed the expression of NRP-1 in GCs during follicular development followed by its role in the internalization of miR-210, a non-exosomal miRNA. This study showed that incubation of GCs with a non-exosomal fraction of FF increased the content of miR-210 in GCs as compared to their control. To illustrate the role of NRP-1 as a receptor, NRP-1 was knockdown using siRNA. Silencing experimental results showed a significant decrease in uptake of miR-210 in NRP-1 knockdown GCs. Furthermore, downstream expression analysis of miR-210 target genes (CYP19A1, PCNA, and EFNA3) also confirmed the NRP-1 mediated miR-210 internalization. Results of the present study clearly demonstrated that FF non-exosomal miR-210 can be internalized through the NRP-1 receptor. Furthermore, differential expression of NRP-1 in GCs suggests its role in follicular development. Overall, these findings suggest that FF non-exosomal miRNA plays an important role in GC functions and female reproduction.
Collapse
|
14
|
Abdullah A, Akhand SS, Paez JSP, Brown W, Pan L, Libring S, Badamy M, Dykuizen E, Solorio L, Andy Tao W, Wendt MK. Epigenetic targeting of neuropilin-1 prevents bypass signaling in drug-resistant breast cancer. Oncogene 2021; 40:322-333. [PMID: 33128042 PMCID: PMC7808937 DOI: 10.1038/s41388-020-01530-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-amplified breast cancers are treated using targeted antibodies and kinase inhibitors, but resistance to these therapies leads to systemic tumor recurrence of metastatic disease. Herein, we conducted gene expression analyses of HER2 kinase inhibitor-resistant cell lines as compared to their drug-sensitive counterparts. These data demonstrate the induction of epithelial-mesenchymal transition (EMT), which included enhanced expression of fibroblast growth factor receptor 1 (FGFR1) and axonal guidance molecules known as neuropilins (NRPs). Immunoprecipitation of FGFR1 coupled with mass spectroscopy indicated that FGFR1 forms a physical complex with NRPs, which is enhanced upon induction of EMT. Confocal imaging revealed that FGFR1 and NRP1 predominantly interact throughout the cytoplasm. Along these lines, short hairpin RNA-mediated depletion of NRP1, but not the use of NRP1-blocking antibodies, inhibited FGFR signaling and reduced tumor cell growth in vitro and in vivo. Our results further indicate that NRP1 upregulation during EMT is mediated via binding of the chromatin reader protein, bromodomain containing 4 (BRD4) in the NRP1 proximal promoter region. Pharmacological inhibition of BRD4 decreased NRP1 expression and ablated FGF-mediated tumor cell growth. Overall, our studies indicate that NRPs facilitate aberrant growth factor signaling during EMT-associated drug resistance and metastasis. Pharmacological combination of epigenetic modulators with FGFR-targeted kinase inhibitors may provide improved outcomes for breast cancer patients with drug-resistant metastatic disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ammara Abdullah
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Saeed Salehin Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Sebastian Paez Paez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Wells Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Pan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Badamy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Emily Dykuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Puszko AK, Sosnowski P, Rignault-Bricard R, Hermine O, Hopfgartner G, Pułka-Ziach K, Lepelletier Y, Misicka A. Urea-Peptide Hybrids as VEGF-A 165/NRP-1 Complex Inhibitors with Improved Receptor Affinity and Biological Properties. Int J Mol Sci 2020; 22:ijms22010072. [PMID: 33374715 PMCID: PMC7793531 DOI: 10.3390/ijms22010072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022] Open
Abstract
Neuropilin-1 (NRP-1), the major co-receptor of vascular endothelial growth factor receptor-2 (VEGFR-2), may also independently act with VEGF-A165 to stimulate tumour growth and metastasis. Therefore, there is great interest in compounds that can block VEGF-A165/NRP-1 interaction. Peptidomimetic type inhibitors represent a promising strategy in the treatment of NRP-1-related disorders. Here, we present the synthesis, affinity, enzymatic stability, molecular modeling and in vitro binding evaluation of the branched urea–peptide hybrids, based on our previously reported Lys(hArg)-Dab-Oic-Arg active sequence, where the Lys(hArg) branching has been modified by introducing urea units to replace the peptide bond at various positions. One of the resulting hybrids increased the affinity of the compound for NRP-1 more than 10-fold, while simultaneously improving resistance for proteolytic stability in serum. In addition, ligand binding to NRP-1 induced rapid protein stock exocytotic trafficking to the plasma membrane in breast cancer cells. Examined properties characterize this compound as a good candidate for further development of VEGF165/NRP-1 inhibitors.
Collapse
Affiliation(s)
- Anna K. Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Correspondence: (A.K.P.); (A.M.)
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland; (P.S.); (G.H.)
| | - Rachel Rignault-Bricard
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (R.R.-B.); (O.H.); (Y.L.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Olivier Hermine
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (R.R.-B.); (O.H.); (Y.L.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland; (P.S.); (G.H.)
| | | | - Yves Lepelletier
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (R.R.-B.); (O.H.); (Y.L.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
- Correspondence: (A.K.P.); (A.M.)
| |
Collapse
|
16
|
Ahammad I. A comprehensive review of tumor proliferative and suppressive role of semaphorins and therapeutic approaches. Biophys Rev 2020; 12:1233-1247. [PMID: 32577918 PMCID: PMC7575654 DOI: 10.1007/s12551-020-00709-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
Semaphorins have been traditionally known as axon guidance proteins that negatively regulate axonal growth. However, in the past couple of decades, their versatile role in so many other biological processes has come to prominence as well. One such example is their role in cancer. In this review article, the focus was on the tumor proliferative and tumor suppressive role of all 20 semaphorin family members under the 7 semaphorin classes found in vertebrates and invertebrates as well as the ongoing and emerging therapeutic approaches to combat semaphorin-mediated cancers. Except sema6C, 19 of the 20 non-viral semaphorin family members have been discovered to be associated with cancer in one way or another. Eleven semaphorin family members have been discovered to be tumor proliferative and 8 to be tumor suppressive. Six therapeutic avenues and their safety profiles have been discussed which are currently at use or at the various stages of development. Finally, perspectives on which approach is the best for treating cancers associated with semaphorins have been given.
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh.
| |
Collapse
|
17
|
Clinicopathological Significance of Neuropilin 1 Expression in Gastric Cancer: A Meta-Analysis. DISEASE MARKERS 2020; 2020:4763492. [PMID: 33014187 PMCID: PMC7520665 DOI: 10.1155/2020/4763492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/21/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022]
Abstract
Background Neuropilin 1 (NRP1) is involved in tumorigenesis, development, invasion, and metastasis by promoting angiogenesis of tumors. The study is aimed at evaluating the correlation between the expression of NRP1 protein and clinicopathological features of gastric cancer by meta-analysis. Methods The published studies were searched in databases including CNKI, Wanfang, Chongqing VIP, Web of Science, and PubMed online. Clinical case studies were included to compare the correlation between NRP1 protein expression and clinicopathological characteristics of gastric cancer. The quality of the included literatures was evaluated by NOS scale. Meta-analysis was performed by Stata software to calculate the odds ratio (OR) and 95% confidence interval (CI). Results A total of 12 studies were included in this analysis, involving 1,225 patients with gastric cancer. The analysis indicated that the expression of NRP1 protein in gastric cancer tissues was lower in the group of early stage versus advanced stage (OR = 0.128, 95%CI = 0.059 − 0.277, P ≤ 0.001), tumor size less than 5 cm versus more than 5 cm (OR = 0.443, 95%CI = 0.310 − 0.632, P ≤ 0.001), TNM stage I-II group versus stage III-IV patients (OR = 0.736, 95%CI = 0.589 − 0.919, P = 0.007), well to medium differentiation group versus poor differentiation group (OR = 0.735, 95%CI = 0.632 − 0.854, P ≤ 0.001), and nonlymph node metastasis group versus lymph node metastasis group (OR = 0.667, 95%CI = 0.522 − 0.854, P ≤ 0.001). The expression of NRP1 protein in gastric cancer was not related to gender, age, and Laurèn's classification. Conclusion The expression of NRP1 protein in gastric cancer is closely correlated to clinical stage, tumor size, TNM stage, differentiation, and lymph node metastasis.
Collapse
|
18
|
Preparation of truncated tissue factor antineuropilin-1 monoclonal antibody conjugate and identification of its selective thrombosis in tumor blood vessels. Anticancer Drugs 2020; 30:441-450. [PMID: 30807552 DOI: 10.1097/cad.0000000000000767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent decades, selectively inducing tumor vascular thrombosis, followed by necrosis of tumor tissues has been a promising and potential anticancer strategy. In this report, we prepared a kind of vascular targeting drug that consists of anti-neuropilin-1 monoclonal antibody (anti-NRP-1 mAb) and truncated tissue factor (tTF). Anti-NRP-1 mAb could guide tTF to the surface of tumor vascular endothelial cells and lead to subsequent vascular embolization. This vascular targeting drug, which is also one of the antibody drug conjugates, was generated using a coupling method with water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccimide. Afterwards, in-vitro and in-vivo assays were performed to characterize its potential coagulation ability and antitumor activity. In-vitro experiments indicated that tTF-anti-NRP-1 monoclonal antibody (tTF-mAb) retained both the targeting activity of anti-NRP-1 mAb and the procoagulant activity of tTF. Live imaging system was used to assess its biodistribution and tumor-binding capability, which also yielded promising results. Furthermore, in-vivo studies showed that tTF-mAb was capable of significantly inducing tumor vascular thrombosis and inhibiting tumor growth in nude mice bearing subcutaneous xenografts, and histopathologic changes were rarely observed in normal organs.
Collapse
|
19
|
Sun Z, Chen H, Han Z, Huang W, Hu Y, Zhao M, Lin T, Yu J, Liu H, Jiang Y, Li G. Genomics Score Based on Genome-Wide Network Analysis for Prediction of Survival in Gastric Cancer: A Novel Prognostic Signature. Front Genet 2020; 11:835. [PMID: 32849822 PMCID: PMC7423976 DOI: 10.3389/fgene.2020.00835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose Gastric cancer (GC) is a product of multiple genetic abnormalities, including genetic and epigenetic modifications. This study aimed to integrate various biomolecules, such as miRNAs, mRNA, and DNA methylation, into a genome-wide network and develop a nomogram for predicting the overall survival (OS) of GC. Materials and Methods A total of 329 GC cases, as a training cohort with a random of 150 examples included as a validation cohort, were screened from The Cancer Genome Atlas database. A genome-wide network was constructed based on a combination of univariate Cox regression and least absolute shrinkage and selection operator analyses, and a nomogram was established to predict 1-, 3-, and 5-year OS in the training cohort. The nomogram was then assessed in terms of calibration, discrimination, and clinical usefulness in the validation cohort. Afterward, in order to confirm the superiority of the whole gene network model and further reduce the biomarkers for the improvement of clinical usefulness, we also constructed eight other models according to the different combinations of miRNAs, mRNA, and DNA methylation sites and made corresponding comparisons. Finally, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also performed to describe the function of this genome-wide network. Results A multivariate analysis revealed a novel prognostic factor, a genomics score (GS) comprising seven miRNAs, eight mRNA, and 19 DNA methylation sites. In the validation cohort, comparing to patients with low GS, high-GS patients (HR, 12.886; P < 0.001) were significantly associated with increased all-cause mortality. Furthermore, after stratification of the TNM stage (I, II, III, and IV), there were significant differences revealed in the survival rates between the high-GS and low-GS groups as well (P < 0.001). The 1-, 3-, and 5-year C-index of whole genomics-based nomogram were 0.868, 0.895, and 0.928, respectively. The other models have comparable or relatively poor comprehensive performance, while they had fewer biomarkers. Besides that, DAVID 6.8 further revealed multiple molecules and pathways related to the genome-wide network, such as cytomembranes, cell cycle, and adipocytokine signaling. Conclusion We successfully developed a GS based on genome-wide network, which may represent a novel prognostic factor for GC. A combination of GS and TNM staging provides additional precision in stratifying patients with different OS prognoses, constituting a more comprehensive sub-typing system. This could potentially play an important role in future clinical practice.
Collapse
Affiliation(s)
- Zepang Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weicai Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingli Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tian Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
O'Brien SJ, Bishop C, Hallion J, Fiechter C, Scheurlen K, Paas M, Burton J, Galandiuk S. Long non-coding RNA (lncRNA) and epithelial-mesenchymal transition (EMT) in colorectal cancer: a systematic review. Cancer Biol Ther 2020; 21:769-781. [PMID: 32730165 PMCID: PMC7515495 DOI: 10.1080/15384047.2020.1794239] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related death. Epithelial-mesenchymal transition (EMT) is a major process in tumor metastasis development. This systematic review aims to describe the role of long non-coding RNA (lncRNA) in EMT in CRC. METHODS The electronic databases, PubMed, Cochrane, and EMBASE, were searched from January1990 to June 2019 to identify studies examining lncRNA and their role in mediating EMT in CRC. Studies examining clinical specimens and/or in vitro experiments were included. RESULTS In 61 identified studies, 54 lncRNAs were increased in CRC compared to normal colorectal epithelium. Increased lncRNA expression was frequently associated with worse survival. Many lncRNAs mediate their effect through competitive endogenous RNA or transcription factor regulation. The ZEB1, 2/E-cadherin, Wnt/β-catenin signaling, and chromatin remodeling pathways are discussed in particular. CONCLUSIONS lncRNAs are major regulators of EMT and predictor adverse outcome in CRC patients. Future research must focus on delineating lncRNA function prior to potential clinical use.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| | - Campbell Bishop
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| | - Jacob Hallion
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| | - Casey Fiechter
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| | - Katharina Scheurlen
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| | - Mason Paas
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| | - James Burton
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| | - Susan Galandiuk
- Price Institute of Surgical Research, Department of Surgery, University of Louisville , Louisville, KY, USA
| |
Collapse
|
21
|
Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, Hasnain MS, Nayak AK, Aminabhavi TM. Molecular insights and novel approaches for targeting tumor metastasis. Int J Pharm 2020; 585:119556. [PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/01/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon 21000, France
| | - Mohammed Tahir Ansari
- School of Pharmacy, University of Nottingham Malaysia, Jalan Broga, Semenyih, Kajang, Selangor 43500, Malaysia
| | - Muneera D F ALKahtani
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 102275, Riyadh 11675, Saudi Arabia
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Md Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha 244236, U.P., India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj 757086, Odisha, India.
| | | |
Collapse
|
22
|
Guan S, Zhang Q, Bao J, Hu R, Czech T, Tang J. Recognition Sites for Cancer-targeting Drug Delivery Systems. Curr Drug Metab 2020; 20:815-834. [PMID: 31580248 DOI: 10.2174/1389200220666191003161114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Target-homing drug delivery systems are now gaining significant attention for use as novel therapeutic approaches in antitumor targeting for cancer therapy. Numerous targeted drug delivery systems have been designed to improve the targeting effects because these systems can display a range of favorable properties, thus, providing suitable characteristics for clinical applicability of anticancer drugs, such as increasing the solubility, and improving the drug distribution at target sites. The majority of these targeting systems are designed with respect to differences between cancerous and normal tissues, for instance, the low pH of tumor tissues or overexpressed receptors on tumor cell membranes. Due to the growing number of targeting possibilities, it is important to know the tumor-specific recognition strategies for designing novel, targeted, drug delivery systems. Herein, we identify and summarize literature pertaining to various recognition sites for optimizing the design of targeted drug delivery systems to augment current chemotherapeutic approaches. OBJECTIVE This review focuses on the identification of the recognition sites for developing targeted drug delivery systems for use in cancer therapeutics. METHODS We have reviewed and compiled cancer-specific recognition sites and their abnormal characteristics within tumor tissues (low pH, high glutathione, targetable receptors, etc.), tumor cells (receptor overexpression or tumor cell membrane changes) and tumor cell organelles (nuclear and endoplasmic reticular dysregulation) utilizing existing scientific literature. Moreover, we have highlighted the design of some targeted drug delivery systems that can be used as homing tools for these recognition sites. RESULTS AND CONCLUSION Targeted drug delivery systems are a promising therapeutic approach for tumor chemotherapy. Additional research focused on finding novel recognition sites, and subsequent development of targeting moieties for use with drug delivery systems will aid in the evaluation and clinical application of new and improved chemotherapeutics.
Collapse
Affiliation(s)
- Siyu Guan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Hefei 230038, China
| | - Tori Czech
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
23
|
Resistance of melanoma cells to anticancer treatment: a role of vascular endothelial growth factor. Postepy Dermatol Alergol 2020; 37:11-18. [PMID: 32467677 PMCID: PMC7247075 DOI: 10.5114/ada.2020.93378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is one of the most aggressive and resistant to treatment neoplasms. There are still many challenges despite many promising advances in anticancer treatment. Currently, the main problem for all types of treatment is associated with heterogeneity. Due to heterogeneity of cancer cells, "precise" targeting of a medicine against a single phenotype limits the efficacy of treatment and affects resistance to applied therapy. Therefore it is important to understand aetiology and reasons for heterogeneity in order to develop effective and long-lasting treatment. This review summarises roles of vascular endothelial growth factor (VEGF) that may stimulate growth of a melanoma tumour irrespective of its proangiogenic effects, contributing to cancer heterogeneity. VEGF triggers processes associated with extracellular matrix remodelling, cell migration, invasion, angiogenesis, inhibition of immune responses and favours phenotypic plasticity and epithelial-mesenchymal transition. Consequently, it participates in mechanisms of interactions between melanoma cancer cells and microenvironment and it can modify sensitivity to therapeutic factors.
Collapse
|
24
|
Adhikari A, Tiwari AK, Shukla A, Mishra AK, Datta A. Synthesis and Preclinical Evaluation of Radioligand,
99m
Tc‐DO3A‐Et‐RPAR for Imaging NRP‐1 Specific Tumor. ChemistrySelect 2019. [DOI: 10.1002/slct.201902556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anupriya Adhikari
- Institute of Nuclear Medicine and Allied Sciences, DRDO Delhi India
- Department of ChemistryBabasaheb Bhimrao Ambedkar University, Lucknow Uttar Pradesh India
| | - Anjani K. Tiwari
- Department of ChemistryBabasaheb Bhimrao Ambedkar University, Lucknow Uttar Pradesh India
| | - Abha Shukla
- Department of ChemistryGurukul Kangri Vishwavidyalaya, Haridwar Uttarakhand India
| | - Anil K. Mishra
- Institute of Nuclear Medicine and Allied Sciences, DRDO Delhi India
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, DRDO Delhi India
| |
Collapse
|
25
|
Wu W, Zhong S, Gong Y, Shan Y, Yuan L, Wang L, Chen J, Zhang Z. A new molecular probe: An NRP-1 targeting probe for the grading diagnosis of glioma in nude mice. Neurosci Lett 2019; 714:134617. [PMID: 31705924 DOI: 10.1016/j.neulet.2019.134617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
Magnetic resonance molecular imaging, as a safe imaging technology, provides a new idea for the early qualitative and hierarchical diagnosis of gliomas. The purpose of this study was to design and evaluate the value of neuropilin-1 (NRP-1) targeting molecular probes in the hierarchical diagnosis of gliomas. First, we created an NRP-1 targeted magnetic resonance molecular probe (USPIO-PEG-tLyP-1) by combining the polypeptide tLyP-1 with ultra-small superparamagnetic iron oxide nanoparticles (USPIONs), detecting the physical properties by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Second, in vivo experiments, we established two different degrees of malignant gliomas in-situ in nude mice by injecting U87 and CHG-5 cells. Then, to detect the binding ability of the probe with different grades of tumour tissues, we injected the probe into the tumour-bearing mice through the tail vein. Next, MRI was performed before injection, and 6 h, 12 h, 24 h after injection, and we found significantly more iron particles in the tumour tissues of U87 tumour-bearing mice than in tumour tissues of CHG-5 tumour-bearing mice. The signal intensities of the T2-weighted images of the tumour tissues of each group as well as microscopic observations by Prussian blue staining indicated that the binding ability of this molecular probe to U87 glioma (HGG) with high NRP-1 expression was significantly greater than that of CHG-5 glioma (LGG) with low NRP-1 expression (P < 0.01). Therefore, this study confirms that the novel molecular probe USPIO-PEG-tLyP-1 can be used for the grading diagnosis by MRI for gliomas of high and low grade with different NRP-1 expression levels.
Collapse
Affiliation(s)
- Weizhou Wu
- Department of Neurology, Specialty Medical Center of People's Armed Police Force, Tianjin, 300162, China; Department of Neurology, The 985th Hospital of the Joint Logistics Support Force, Taiyuan, 030001, China
| | - Shijiang Zhong
- Department of Neurology, Specialty Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
| | - Yuheng Shan
- Department of Neurology, Specialty Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - LiNa Yuan
- Department of Neurology, The 985th Hospital of the Joint Logistics Support Force, Taiyuan, 030001, China
| | - Li Wang
- Nursing Department, People's Hospital of Yu ci, Jinzhong, 030600, China
| | - Jian Chen
- Graduate Department, Logistics University of People's Armed Police Force, Tianjin, 300309, China.
| | - Zhe Zhang
- Graduate Department, Logistics University of People's Armed Police Force, Tianjin, 300309, China.
| |
Collapse
|
26
|
Gamper C, Spenlé C, Boscá S, van der Heyden M, Erhardt M, Orend G, Bagnard D, Heinlein M. Functionalized Tobacco Mosaic Virus Coat Protein Monomers and Oligomers as Nanocarriers for Anti-Cancer Peptides. Cancers (Basel) 2019; 11:cancers11101609. [PMID: 31652529 PMCID: PMC6826726 DOI: 10.3390/cancers11101609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Components with self-assembly properties derived from plant viruses provide the opportunity to design biological nanoscaffolds for the ordered display of agents of diverse nature and with complementing functions. With the aim of designing a functionalized nanoscaffold to target cancer, the coat protein (CP) of Tobacco mosaic virus (TMV) was tested as nanocarrier for an insoluble, highly hydrophobic peptide that targets the transmembrane domain of the Neuropilin-1 (NRP1) receptor in cancer cells. The resulting construct CPL-K (CP-linker-“Kill”) binds to NRP1 in cancer cells and disrupts NRP1 complex formation with PlexA1 as well as downstream Akt survival signaling. The application of CPL-K also inhibits angiogenesis and cell migration. CP was also fused to a peptide that targets the extracellular domain of NRP1 and this fusion protein (CPL-F, CP-Linker-“Find”) is shown to bind to cultured cancer cells and to inhibit NRP1-dependent angiogenesis as well. CPL-K and CPL-F maintain their anti-angiogenic properties upon co-assembly to oligomers/nanoparticles together with CPL. The observations show that the CP of TMV can be employed to generate a functionalized nanoparticle with biological activity. Remarkably, fusion to CPL allowed us to solubilize the highly insoluble transmembrane NRP1 peptide and to retain its anti-angiogenic effect.
Collapse
Affiliation(s)
- Coralie Gamper
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Caroline Spenlé
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Sonia Boscá
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
| | - Michael van der Heyden
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
| | - Gertraud Orend
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, The Tumor Microenvironment Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
| | - Dominique Bagnard
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- University of Strasbourg Institute of Advanced Study (USIAS), 67000 Strasbourg, France.
| |
Collapse
|
27
|
Synthesis, 3D-structure and stability analyses of NRPa-308, a new promising anti-cancer agent. Bioorg Med Chem Lett 2019; 29:126710. [PMID: 31699610 DOI: 10.1016/j.bmcl.2019.126710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
We report herein the synthesis of a newly described anti-cancer agent, NRPa-308. This compound antagonizes Neuropilin-1, a multi-partners transmembrane receptor overexpressed in numerous tumors, and thereby validated as promising target in oncology. The preparation of NRPa-308 proved challenging because of the orthogonality of the amide and sulphonamide bonds formation. Nevertheless, we succeeded a gram scale synthesis, according to an expeditious three steps route, without intermediate purification. This latter point is of utmost interest in reducing the ecologic impact and production costs in the perspective of further scale-up processes. The purity of NRPa-308 has been attested by means of conventional structural analyses and its crystallisation allowed a structural assessment by X-Ray diffraction. We also reported the remarkable chemical stability of this molecule in acidic, neutral and basic aqueous media. Eventually, we observed for the first time the accumulation of NRPa-308 in two types of human breast cancer cells MDA-MB231 and BT549.
Collapse
|
28
|
Huang X, Ye Q, Chen M, Li A, Mi W, Fang Y, Zaytseva YY, O'Connor KL, Vander Kooi CW, Liu S, She QB. N-glycosylation-defective splice variants of neuropilin-1 promote metastasis by activating endosomal signals. Nat Commun 2019; 10:3708. [PMID: 31420553 PMCID: PMC6697747 DOI: 10.1038/s41467-019-11580-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neuropilin-1 (NRP1) is an essential transmembrane receptor with a variety of cellular functions. Here, we identify two human NRP1 splice variants resulting from the skipping of exon 4 and 5, respectively, in colorectal cancer (CRC). Both NRP1 variants exhibit increased endocytosis/recycling activity and decreased levels of degradation, leading to accumulation on endosomes. This increased endocytic trafficking of the two NRP1 variants, upon HGF stimulation, is due to loss of N-glycosylation at the Asn150 or Asn261 site, respectively. Moreover, these NRP1 variants enhance interactions with the Met and β1-integrin receptors, resulting in Met/β1-integrin co-internalization and co-accumulation on endosomes. This provides persistent signals to activate the FAK/p130Cas pathway, thereby promoting CRC cell migration, invasion and metastasis. Blocking endocytosis or endosomal Met/β1-integrin/FAK signaling profoundly inhibits the oncogenic effects of both NRP1 variants. These findings reveal an important role for these NRP1 splice variants in the regulation of endocytic trafficking for cancer cell dissemination.
Collapse
Affiliation(s)
- Xiuping Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Min Chen
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenting Mi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Craig W Vander Kooi
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| |
Collapse
|
29
|
Xu P, Zou M, Wang S, Li T, Liu C, Wang L, Wang L, Luo F, Wu T, Yan J. Construction and characterization of a truncated tissue factor‑coagulation‑based composite system for selective thrombosis in tumor blood vessels. Int J Oncol 2019; 55:823-832. [PMID: 31432158 PMCID: PMC6741845 DOI: 10.3892/ijo.2019.4855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
The selective induction of tumor vascular thrombosis using truncated tissue factor (tTF) delivered via a target ligand is a promising novel antitumor strategy. In the present study, an anti-neuropilin-1 (NRP-1) monoclonal antibody (mAb)-streptavidin (SA):tTF-biotin (B) composite system was established. In this system, anti-NRP-1-mAb located tTF to the tumor vascular endothelial cell surface and induced vascular embolization. Due to their high binding affinity, SA and B were used to enhance thrombogenic activity. mAb was conjugated with SA using a coupling method with water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide. Biotinylated tTF (tTF-B) was prepared using a B-labeling kit subsequent to the generation and purification of fusion protein tTF. Confocal microscopy and flow cytometry indicated that the anti-NRP-1-mAb-SA conjugate retained mAb targeting activity. The preservation of B-conjugate binding capacity was confirmed using a competitive ELISA, and factor X-activation analysis revealed that tTF-B retained the procoagulant activity exhibited by tTF. Live imaging was performed to assess mAb-SA distribution and tumor-targeting capability, and this yielded promising results. The results of in vivo studies in mice with subcutaneous xenografts demonstrated that this composite system significantly induced tumor vascular thrombosis and inhibited tumor growth, whereas these histological changes were not observed in normal organs.
Collapse
Affiliation(s)
- Peilan Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Mingyuan Zou
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Shengyu Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Cong Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Lanlan Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
30
|
Yong SB, Chung JY, Song Y, Kim J, Ra S, Kim YH. Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials 2019; 219:119401. [PMID: 31398571 DOI: 10.1016/j.biomaterials.2019.119401] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022]
Abstract
The tumor microenvironmental immune cells (TMICs) consists of myeloid cells (tumor-associated macrophages, dendritic cells, myeloid-derived suppressor cells, etc.) and lymphocytes (T cells and B cells), all of which could be immunologically suppressed through their interactions with cancer cells. Immunological understanding of the tumor microenvironment (TME) has led to great success in the development of clinical cancer immunotherapeutic. The most advanced cancer immunotherapies are chimeric antigen receptor-modified T cells (CAR-T cells) and checkpoint inhibiting antibodies blocking CTLA4, PD-1 and PD-L1. However, many hurdles remain that should be addressed for improved therapeutic efficacy and reduced side effects such as cytokine release syndrome and patient-death. In recent decades, nanoparticles have been demonstrated as an efficient drug delivery tool due to their ease of modification, biocompatibility and intrinsic tumor targeting effect, and also been applied for cancer immunotherapy. In this review, we briefly introduce the immunosuppressive functions of TMICs and review recent advances in the development of TMIC-targeted nanotherapeutics for cancer immunotherapy. Tumor-associated macrophage (TAM)-targeted systems have shown to deplete or repolarize macrophages to M1 state for anti-tumoral immune responses. Tumor-infiltrating T cell (TIT)-targeted strategies have provided the activation of effector T cells and suppression of regulatory T cells in tumor, overcoming the current hurdles of single regimen checkpoint inhibitors. Lastly, recent studies on dendritic cell-targeted mRNA vaccination are discussed and the future perspectives of nano-immunotherapeutic for next-generation of cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Seok-Beom Yong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Jee Young Chung
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Yoonsung Song
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Jaehyun Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Sehee Ra
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, BK 21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 133-791, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Oplawski M, Dziobek K, Grabarek B, Zmarzły N, Dąbruś D, Januszyk P, Brus R, Tomala B, Boroń D. Expression of NRP-1 and NRP-2 in Endometrial Cancer. Curr Pharm Biotechnol 2019; 20:254-260. [PMID: 30806307 PMCID: PMC6635647 DOI: 10.2174/1389201020666190219121602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 01/23/2023]
Abstract
Background: Neuropilins (NRPs) participate in many processes related to cancer development such as angiogenesis, lymphangiogenesis and metastasis. Although endometrial cancer is one of the most common gynecological cancers, it has not been studied in terms of NRPs expression. Objective: The aim of this study was to investigate the potential utility of NRPs as important factors in the diagnosis and treatment of endometrial cancer. Methods: Our study consisted of 45 women diagnosed with endometrial cancer at the following degrees of histological differentiation: G1, 17; G2, 15; G3, 13 cases. The control group included 15 women without neoplastic changes. The immunohistochemical reactions were evaluated using light microscopy. Results: We did not detect the expression of NRP-1 and NRP-2 in the control group. NRP-1 expression was found exclusively in cancer cells. It was higher in G2 and G3 and reached about 190% of G1. NRP-2 expression was observed in the endothelium and was similar across all three cancer grades. In cancer cells, NRP-2 expression increased with the degree of histological differentiation. Conclusion: NRP1 and NRP2 are candidates for complementary diagnostic molecular markers and promising new targets for molecular, personalized anticancer therapies.
Collapse
Affiliation(s)
- Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Krakow, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Dariusz Dąbruś
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Piotr Januszyk
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Ryszard Brus
- Department of Nurse, High School of Strategic Planning, Koscielna 6, 41-303, Dabrowa Gornicza, Poland
| | - Barbara Tomala
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland
| | - Dariusz Boroń
- Faculty of Health Science, Public Higher Medical Professional School in Opole, Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland.,Katowice School of Technology, The University of Science and Art, Katowice, Poland
| |
Collapse
|
32
|
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. JOURNAL OF ONCOLOGY 2019; 2019:9367845. [PMID: 31346334 PMCID: PMC6617877 DOI: 10.1155/2019/9367845] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Poor penetration into the tumor parenchyma and the reduced therapeutic efficacy of anticancer drugs and other medications are the major problems in tumor treatment. A new tumor-homing and penetrating peptide, iRGD (CRGDK/RGPD/EC), can be effectively used to combine and deliver imaging agents or anticancer drugs into tumors. The different “vascular zip codes” expressed in different tissues can serve as targets for docking-based (synaptic) delivery of diagnostic and therapeutic molecules. αv-Integrins are abundantly expressed in the tumor vasculature, where they are recognized by peptides containing the RGD integrin recognition motif. The iRGD peptide follows a multistep tumor-targeting process: First, it is proteolytically cleaved to generate the CRGDK fragment by binding to the surface of cells expressing αv integrins (αvβ3 and αvβ5). Then, the fragment binds to neuropilin-1 and penetrates the tumor parenchyma more deeply. Compared with conventional RGD peptides, the affinity of iRGD for αv integrins is in the mid to low nanomolar range, and the CRGDK fragment has a stronger affinity for neuropilin-1 than that for αv integrins because of the C-terminal exposure of a conditional C-end Rule (CendR) motif (R/KXXR/K), whose receptor proved to be neuropilin-1. Consequently, these advantages facilitate the transfer of CRGDK fragments from integrins to neuropilin-1 and consequently deeper penetration into the tumor. Due to its specific binding and strong affinity, the iRGD peptide can deliver imaging agents and anticancer drugs into tumors effectively and deeply, which is useful in detecting the tumor, blocking tumor growth, and inhibiting tumor metastasis. This review aims to focus on the role of iRGD in the imaging and treatment of various cancers.
Collapse
|
33
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
34
|
Dong Y, Yu T, Ding L, Laurini E, Huang Y, Zhang M, Weng Y, Lin S, Chen P, Marson D, Jiang Y, Giorgio S, Pricl S, Liu X, Rocchi P, Peng L. A Dual Targeting Dendrimer-Mediated siRNA Delivery System for Effective Gene Silencing in Cancer Therapy. J Am Chem Soc 2018; 140:16264-16274. [PMID: 30346764 DOI: 10.1021/jacs.8b10021] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Small interfering RNA (siRNA) is emerging as a novel therapeutic for treating various diseases, provided a safe and efficient delivery is available. In particular, specific delivery to target cells is critical for achieving high therapeutic efficacy while reducing toxicity. Amphiphilic dendrimers are emerging as novel promising carriers for siRNA delivery by virtue of the combined multivalent cooperativity of dendrimers with the self-assembling property of lipid vectors. Here, we report a ballistic approach for targeted siRNA delivery to cancer cells using an amphiphilic dendrimer equipped with a dual targeting peptide bearing an RGDK warhead. According to the molecular design, the amphiphilic dendrimer was expected to deliver siRNA effectively, while the aim of the targeting peptide was to home in on tumors via interaction of its warhead with integrin and the neuropilin-1 receptor on cancer cells. Coating the positively charged siRNA/dendrimer delivery complex with the negatively charged segment of the targeting peptide via electrostatic interactions led to small and stable nanoparticles which were able to protect siRNA from degradation while maintaining the accessibility of RGDK for targeting cancer cells and preserving the ability of the siRNA to escape from endosomes. The targeted system had enhanced siRNA delivery, stronger gene silencing, and more potent anticancer activity compared to nontargeted or covalent dendrimer-based systems. In addition, neither acute toxicity nor induced inflammation was observed. Consequently, this delivery system constitutes a promising nonviral vector for targeted delivery and can be further developed to provide RNAi-based personalized medicine against cancer. Our study also gives new perspectives on the use of nanotechnology based on self-assembling dendrimers in various biomedical applications.
Collapse
Affiliation(s)
- Yiwen Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials , China Pharmaceutical University , 24 Tong Jia Xiang , 210009 Nanjing , People's Republic of China
| | - Tianzhu Yu
- Aix-Marseille Université , CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", 13288 Marseille , France
| | - Ling Ding
- Aix-Marseille Université , CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", 13288 Marseille , France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science and School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China.,School of Pharmacy , Hunan University of Chinese Medicine , Changsha 410208 , People's Republic of China
| | - Mengjie Zhang
- Advanced Research Institute of Multidisciplinary Science and School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science and School of Life Science , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Shuting Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials , China Pharmaceutical University , 24 Tong Jia Xiang , 210009 Nanjing , People's Republic of China
| | - Peng Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials , China Pharmaceutical University , 24 Tong Jia Xiang , 210009 Nanjing , People's Republic of China
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Yifan Jiang
- Aix-Marseille Université , CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", 13288 Marseille , France
| | - Suzanne Giorgio
- Aix-Marseille Université , CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", 13288 Marseille , France
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA , University of Trieste , 34127 Trieste , Italy
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials , China Pharmaceutical University , 24 Tong Jia Xiang , 210009 Nanjing , People's Republic of China.,Aix-Marseille Université , CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", 13288 Marseille , France
| | - Palma Rocchi
- Inserm, Aix-Marseille Université , Institut Paoli-Calmettes, CNRS, CRCM, 13009 Marseille , France
| | - Ling Peng
- Aix-Marseille Université , CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, "Equipe Labellisée Ligue Contre le Cancer", 13288 Marseille , France
| |
Collapse
|
35
|
Branched pentapeptides as potent inhibitors of the vascular endothelial growth factor 165 binding to Neuropilin-1: Design, synthesis and biological activity. Eur J Med Chem 2018; 158:453-462. [DOI: 10.1016/j.ejmech.2018.08.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
|
36
|
β-asarone induces cell apoptosis, inhibits cell proliferation and decreases migration and invasion of glioma cells. Biomed Pharmacother 2018; 106:655-664. [DOI: 10.1016/j.biopha.2018.06.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023] Open
|
37
|
Mozhi A, Ahmad I, Kaleem QM, Tuguntaev RG, Eltahan AS, Wang C, Yang R, Li C, Liang XJ. Nrp-1 receptor targeting peptide-functionalized TPGS micellar nanosystems to deliver 10-hydroxycampothecin for enhanced cancer chemotherapy. Int J Pharm 2018; 547:582-592. [DOI: 10.1016/j.ijpharm.2018.05.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/31/2023]
|
38
|
Ding Y, Zhou J, Wang S, Li Y, Mi Y, Gao S, Xu Y, Chen Y, Yan J. Anti-neuropilin-1 monoclonal antibody suppresses the migration and invasion of human gastric cancer cells via Akt dephosphorylation. Exp Ther Med 2018; 16:537-546. [PMID: 30116312 PMCID: PMC6090285 DOI: 10.3892/etm.2018.6234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/24/2017] [Indexed: 01/06/2023] Open
Abstract
Neuropilin-1 (NRP-1) is involved in a range of physiological and pathological processes, including neuronal cell guidance, cardiovascular development, immunity, angiogenesis and the pathogenesis of cancer. Targeting of NRP-1 is considered to be a potential cancer therapy and a number of approaches have been investigated, including the use of small interfering RNA, peptides, soluble NRP antagonists and monoclonal antibodies. The present study used a novel anti-neuropilin-1 monoclonal antibody (anti-NRP-1 mAb) to investigate its potential anti-tumor effects on human gastric cancer cells in vitro and in vivo, as well as its underlying mechanisms of action. Using an MTT assay, it was observed that anti-NRP-1 mAb (<150 µg/ml) had no effects on the viability of gastric cancer cell line BGC-823, while a Boyden chamber assay indicated that treatment with anti-NRP-1 mAb suppressed the migration and invasion of BGC-823 cells. Western blot analysis also demonstrated that phosphorylation of Akt was reduced in BGC-823 cells treated with anti-NRP-1 mAb. Furthermore, anti-NRP-1 mAb suppressed the growth of gastric cancer xenograft tumors and downregulated the expression of vascular endothelial growth factor proteins within tumors in nude mice. These data indicate the potential effects of anti-NRP-1 mAb on malignant tumors and suggest that inhibition of NRP-1 function with anti-NRP-1 mAb may be a novel therapeutic approach in the treatment of cancer.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Juan Zhou
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shengyu Wang
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yue Li
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yanjun Mi
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Shihua Gao
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yun Xu
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yuqiang Chen
- Department of Oncology, The 174th Hospital of the Chinese People's Liberation Army, The Affiliated Chenggong Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jianghua Yan
- Cancer Research Center, Medical College of Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|
39
|
Role of the NRP-1-mediated VEGFR2-independent pathway on radiation sensitivity of non-small cell lung cancer cells. J Cancer Res Clin Oncol 2018; 144:1329-1337. [DOI: 10.1007/s00432-018-2667-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/14/2018] [Indexed: 01/09/2023]
|
40
|
Zhu L, Zhao H, Zhou Z, Xia Y, Wang Z, Ran H, Li P, Ren J. Peptide-Functionalized Phase-Transformation Nanoparticles for Low Intensity Focused Ultrasound-Assisted Tumor Imaging and Therapy. NANO LETTERS 2018; 18:1831-1841. [PMID: 29419305 DOI: 10.1021/acs.nanolett.7b05087] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, we successfully developed novel tumor homing-penetrating peptide-functionalized drug-loaded phase-transformation nanoparticles (tLyP-1-10-HCPT-PFP NPs) for low intensity focused ultrasound (LIFU)-assisted tumor ultrasound molecular imaging and precise therapy. With the nanoscale particle size, tLyP-1-10-HCPT-PFP NPs could pass through the tumor vascular endothelial cell gap. Induced by tLyP-1 peptide with targeting and penetrating efficiency, tLyP-1-10-HCPT-PFP NPs could increase tumor accumulation and penetrate deeply into the extravascular tumor tissue, penetrating through extracellular matrix and the cellular membrane to the cytoplasm. With LIFU assistance, tLyP-1-10-HCPT-PFP NPs could phase-transform into microbubbles and enhance tumor ultrasound molecular imaging for tumor diagnosis. Furthermore, after further irradiation by LIFU, an intracellular "explosion effect" caused by acoustic droplet vaporization, ultrasound targeted microbubble destruction, and release of 10-HCPT could realize physicochemical synergistic antitumor therapy.
Collapse
Affiliation(s)
- LeiLei Zhu
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - HongYun Zhao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - ZhiYi Zhou
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - YongHong Xia
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - ZhiGang Wang
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - HaiTao Ran
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - Pan Li
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| | - JianLi Ren
- Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University , Chongqing 400010 , China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging , Chongqing 400010 , China
| |
Collapse
|
41
|
Hu C, Chen X, Huang Y, Chen Y. Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci Rep 2018; 8:2274. [PMID: 29396568 PMCID: PMC5797073 DOI: 10.1038/s41598-018-20715-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/22/2018] [Indexed: 02/08/2023] Open
Abstract
To improve the specificity and penetration of anticancer peptides against tumors, in this study, we examined the effects of co-administration of the membrane-active peptide HPRP-A1 and the tumor homing/penetrating peptide iRGD. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide targeting to αvβ3 integrins and neuropilin-1 (NRP-1) receptors, which show high expression in many tumor cells. The anticancer activity, cancer specificity and penetration activity in vitro and in vivo of the co-administered peptides were examined on 2D monolayer cells, 3D multi-cellular spheroids (MCS) and xenograft nude mice. Co-administration of iRGD and HPRP-A1 exhibited stronger anticancer activity and tumor specificity against A549 non-small cell lung cancer cells with NRP-1 receptor overexpression compared with HPRP-A1 alone. A549 cells showed uptake of the peptide combination and destruction of the integrity of the cell membrane, as well as adherence to the mitochondrial net, resulting in induction of apoptosis by a caspase-dependent pathway. The iRGD peptide dramatically increased the penetration depth of HPRP-A1 on A549 MCS and anticancer efficacy in an A549 xenograft mouse model. Our results suggest that the co-administration strategy of anticancer and penetrating peptides could be a potential therapeutic approach for cancer treatment in clinical practice.
Collapse
Affiliation(s)
- Cuihua Hu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Xiaolong Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China
- College of Life Sciences, Jilin University, Changchun, 130021, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130021, China.
- College of Life Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
42
|
NRPa-308, a new neuropilin-1 antagonist, exerts in vitro anti-angiogenic and anti-proliferative effects and in vivo anti-cancer effects in a mouse xenograft model. Cancer Lett 2018; 414:88-98. [DOI: 10.1016/j.canlet.2017.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
43
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J, Tang J. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett 2018; 418:176-184. [PMID: 29339213 DOI: 10.1016/j.canlet.2018.01.040] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
Abstract
Neuropilin-2 (NRP-2) not only functions as a receptor for semaphorins, a family of neural axon guidance factors, but also interacts with VEGFs, a family of vascular endothelial growth factors. As an independent receptor or a co-receptor, NRP-2 binds to ligands VEGF-C/D, activates the VEGF-C/D-NRP-2 signaling axis, and further regulates lymphangiogenesis-associated factors in both lymphatic endothelial cells (LECs) and some tumor cells during tumor progression. Via VEGF-C/D-NRP-2 axis, NRP-2 induces LEC proliferation, reconstruction and lymphangiogenesis and subsequently promotes tumor cell migration, invasion and lymphatic metastasis. There are similarities and differences among NRP-1, NRP-2 and VEGFR-3 in chemical structure, ligand specificity, chromosomal location, soluble protein forms, cellular functions and expression profiles. High expression of NRP-2 in LECs and tumor cells has been observed in different anatomic sites, histological patterns and progression stages of various tumors, especially during tumor lymphangiogenesis and lymphatic metastasis, and therefore the NRP-2 and VEGF-C/D-NRP-2 axis are closely related to tumor development, progression, invasion, and metastasis. In addition, it is important for prognosis of tumor. The studies on NRP-2 targeted therapy have recently achieved some successes, utilizing NRP-2 blocking antibodies, NRP-2 inhibitory peptides, soluble NRP-2 antagonists, small molecule inhibitors and various NRP-2 gene therapeutic strategies.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China; Institute of Medical Technology, Ningbo College of Health Science, No.51, XueFu Road, Ningbo Zhejiang 315100, China
| | - Yuhong Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Boyi Xing
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Wei Xuan
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Honghai Wang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - He Huang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jiayu Yang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Key Laboratory for Tumor Metastasis and Intervention of Liaoning Province, 9 West, Lvshun Southern Road, Dalian Liaoning 116044, China.
| |
Collapse
|
44
|
Abstract
Recent studies suggest that neuropilin-1 (NRP-1) promotes angiogenesis mainly via VEGF and its receptors. It promotes tumorigenesis via formation of the NRP-1/ VEGF (vascular endothelial growth factor)/VEGFR2 (vascular endothelial growth factor receptor 2) complex. In addition to VEGF and its receptors, NRP-1 also binds with other growth factors such as platelet-derived growth factor (PDGF) and platelet-derived growth factor receptor (PDGFR). PDGF plays important roles in cellular proliferation and, in particular, blood vessel formation. Moreover, recent studies show that NRP-1 promotes angiogenesis via the NRP-1-ABL pathway, but independent of VEGF-VEGFR2. RAD51 is a protein involved in the signaling pathways of NRP1-ABL and PDGF(R), the expression of which is positively associated with cell radioresistance and chemoresistance. NRP-1 activates the signaling pathways of ABL and PDGF(R) to upregulate RAD51, which induces resistance to radiotherapy and chemotherapy in cancer cells. Furthermore, NRP-1 activates the tumor microenvironment by binding with fibronectin and activating ABL, thereby promoting tumor growth. Inhibition of NRP-1 may overcome the limitations of individually inhibiting the VEGF-VEGFR2 pathway in cancer therapy and provide new ideas for cancer treatment. Therefore, we review the role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China
| | - Xiaodong Jiang
- Department of Radiation Oncology, Lianyungang First People's Hospital, No.182, Tongguan Road, Lianyungang City, 222002, Jiangsu Province, China.
| |
Collapse
|
45
|
Roy S, Bag AK, Singh RK, Talmadge JE, Batra SK, Datta K. Multifaceted Role of Neuropilins in the Immune System: Potential Targets for Immunotherapy. Front Immunol 2017; 8:1228. [PMID: 29067024 PMCID: PMC5641316 DOI: 10.3389/fimmu.2017.01228] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropilins (NRPs) are non-tyrosine kinase cell surface glycoproteins expressed in all vertebrates and widely conserved across species. The two isoforms, such as neuropilin-1 (NRP1) and neuropilin-2 (NRP2), mainly act as coreceptors for class III Semaphorins and for members of the vascular endothelial growth factor family of molecules and are widely known for their role in a wide array of physiological processes, such as cardiovascular, neuronal development and patterning, angiogenesis, lymphangiogenesis, as well as various clinical disorders. Intriguingly, additional roles for NRPs occur with myeloid and lymphoid cells, in normal physiological as well as different pathological conditions, including cancer, immunological disorders, and bone diseases. However, little is known concerning the molecular pathways that govern these functions. In addition, NRP1 expression has been characterized in different immune cellular phenotypes including macrophages, dendritic cells, and T cell subsets, especially regulatory T cell populations. By contrast, the functions of NRP2 in immune cells are less well known. In this review, we briefly summarize the genomic organization, structure, and binding partners of the NRPs and extensively discuss the recent advances in their role and function in different immune cell subsets and their clinical implications.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh K Singh
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - James E Talmadge
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
46
|
p53-R273H upregulates neuropilin-2 to promote cell mobility and tumor metastasis. Cell Death Dis 2017; 8:e2995. [PMID: 28796261 PMCID: PMC5596564 DOI: 10.1038/cddis.2017.376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/12/2017] [Accepted: 07/02/2017] [Indexed: 02/06/2023]
Abstract
Mounting evidence indicates that hotspot p53 mutant proteins often possess gain-of-function property in promoting cell mobility and tumor metastasis. However, the molecular mechanisms are not totally understood. In this study, we demonstrate that the hotspot mutation, p53-R273H, promotes cell migration, invasion in vitro and tumor metastasis in vivo. p53-R273H significantly represses expression of DLX2, a homeobox protein involved in cell proliferation and pattern formation. We show that p53-R273H-mediated DLX2 repression leads to upregulation of Neuropilin-2 (NRP2), a multifunctional co-receptor involved in tumor initiation, growth, survival and metastasis. p53-R273H-induced cell mobility is effectively suppressed by DLX2 expression. Furthermore, knockdown of NRP2 significantly inhibits p53-R273H-induced tumor metastasis in xenograft mouse model. Together, these results reveal an important role for DLX2-NRP2 in p53-R273H-induced cell mobility and tumor metastasis.
Collapse
|
47
|
Dong X, Guo W, Zhang S, Wu T, Sun Z, Yan S, Zheng S. Elevated expression of neuropilin-2 associated with unfavorable prognosis in hepatocellular carcinoma. Onco Targets Ther 2017; 10:3827-3833. [PMID: 28814881 PMCID: PMC5546826 DOI: 10.2147/ott.s139044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neuropilin-2 (NRP2) is a single-pass transmembrane glycoprotein and has recently been detected in several human cancer cells. However, its clinical relevance in hepatocellular carcinoma (HCC) remains unclear. This study aimed at evaluating NRP2 expression and clinicopathological significance in HCC patients. Tissue microarray of 190 HCC patients from the First Affiliated Hospital of Zhejiang University was established, and immunohistochemical staining was performed for NRP2. The Kaplan-Meier analysis and Cox proportional hazard model were used to analyze the survival rate. We found that NRP2 expression in HCC was significantly associated with tumor histological degree (P=0.023) and cirrhosis (P=0.040). Furthermore, NRP2-positive HCC patients demonstrated shorter disease-free survival (DFS) and overall survival (OS) than those of NRP2-negative patients. Then, the multivariate Cox analysis showed that hazard ratios of NRP2-positive patients with DFS and OS were 2.167 (95% CI: 1.626, 2.889) and 2.317 (95% CI: 1.548, 3.469), respectively. Our results suggested that NRP2 expression was considered as an independent factor for the prediction of unfavorable prognosis in HCC patients, and we believe that NRP2 could serve as a biomarker of poor prognosis and a novel target in treating HCC tumors.
Collapse
Affiliation(s)
- Xiaogang Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Department of Hepatobiliary and Pancreatic Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Wenjia Guo
- Department of Cancer Research Institute, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region
| | - Shizhen Zhang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Tianchun Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Zhongquan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Sheng Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health.,Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province
| |
Collapse
|
48
|
Da Silva L, Fonseca-Alves CE, Thompson JJ, Foster RA, Wood GA, Amorim RL, Coomber BL. Pilot assessment of vascular endothelial growth factor receptors and trafficking pathways in recurrent and metastatic canine subcutaneous mast cell tumours. Vet Med Sci 2017; 3:146-155. [PMID: 29067211 PMCID: PMC5645839 DOI: 10.1002/vms3.66] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Canine subcutaneous mast cell tumour (scMCT) shows less aggressive biological behaviour than cutaneous MCT. Vascular endothelial growth factor receptor 2 (VEGFR2) is expressed by neoplastic cells in canine scMCT, but the relevance of this signalling pathway for disease pathobiology is not clear. The objective of this study was to quantify VEGF‐A, VEGFR2, pVEGFR2, the VEGF co‐receptor Neuropilin 1 (NRP‐1) and the E3 ubiquitin protein ligase c‐Cbl in canine scMCT, and to evaluate their association with disease outcome. Immunohistochemical staining for biomarkers was quantified from 14 cases of canine scMCT using manual and computer‐assisted methods. Kaplan–Meier curves were generated for disease‐free survival (DFS) and compared using Mantel–Cox log‐rank analysis. Cases with high levels of neoplastic cell VEGFR2, pVEGFR2 or c‐CBL immunoreactivity had significantly reduced DFS. All cases displayed neoplastic cells positive for VEGF‐A, which was significantly associated with pVEGFR2 immunoreactivity. There were also significant positive correlations between VEGFR2 and pVEGFR2, and between c‐CBL and pVEGFR2 levels. This pilot study demonstrates the potential utility of these markers in a subset of scMCT in dogs.
Collapse
Affiliation(s)
- Lucas Da Silva
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| | - Carlos E Fonseca-Alves
- Department of Veterinary ClinicUniversity of São Paulo State -UNESPBotucatuSão PauloBrazil
| | - Jennifer J Thompson
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Robert A Foster
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A Wood
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Renee L Amorim
- Department of Veterinary ClinicUniversity of São Paulo State -UNESPBotucatuSão PauloBrazil
| | - Brenda L Coomber
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
49
|
Ong HS, Gokavarapu S, Xu Q, Tian Z, Li J, Ji T, Zhang CP. Cytoplasmic neuropilin 2 is associated with metastasis and a poor prognosis in early tongue cancer patients. Int J Oral Maxillofac Surg 2017; 46:1205-1219. [PMID: 28602571 DOI: 10.1016/j.ijom.2017.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 11/27/2022]
Abstract
Neuropilin 2 (Nrp2) plays an important role in regulating lymphangiogenesis. Nrp2 expression in early tongue cancer was investigated to predict lymph node metastasis and the long-term prognosis. The relationships between clinicopathological variables of cT1-T2N0 tongue squamous cell carcinoma (SCC) and overexpression of Nrp2, vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 3 (VEGFR3), and semaphorin 3F (Sema3F) were analyzed. Expression levels were compared using oral SCC cell lines. The Nrp2 gene was silenced to determine the impact of Nrp2. Cytoplasmic Nrp2 overexpression predicted regional metastasis with sensitivity and specificity of 90.3% and 42.1%, respectively. Cytoplasmic Nrp2 overexpression (P<0.001) and VEGFC overexpression (P=0.006) were significantly related to regional metastasis (Student t-test). However, only cytoplasmic Nrp2 overexpression was an independent prognostic factor for both disease-free survival (DFS; P=0.008) and overall survival (OS; P=0.016) (Cox regression); the risk of recurrence was 12-times higher (P=0.015) and risk of mortality was 8-times higher (P=0.016). Co-localization of Nrp2 and VEGFC was greater within the cytoplasm of aggressive cell lines (HN12 and RCa-T). Nrp2 plays a role in tumourigenesis; VEGFC supplementation cannot rescue the biological function of Nrp2 in Nrp2-depleted cell lines. Cytoplasmic Nrp2 overexpression is associated with decreased OS and DFS. Cytoplasmic Nrp2 overexpression may be a reliable diagnostic and prognostic marker for early tongue SCC.
Collapse
Affiliation(s)
- H S Ong
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Gokavarapu
- Head and Neck Oncology Reconstructive Surgery, Department of Surgical Oncology, Krishna Institute of Medical Science, Hyderabad, Telangana, India
| | - Q Xu
- Shanghai Key Laboratory of Oral and Maxillofacial-Head and Neck Oncology and Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - T Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - C P Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 2017; 126:97-108. [PMID: 28501517 DOI: 10.1016/j.phrs.2017.05.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/01/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022]
Abstract
Tumor microenvironment (TME) plays a critical role in tumorigenesis, tumor invasion and metastasis. TME is composed of stroma, endothelial cells, pericytes, fibroblasts, smooth muscle cells, and immune cells, which is characterized by hypoxia, acidosis, and high interstitial fluid pressure. Due to the important role of TME, we firstly reviewed the composition of TME and discussed the impact of TME on tumor progression, drug and nanoparticle delivery. Next, we reviewed current strategies developed to modulate TME, including modulating tumor vasculature permeability, tumor associated macrophage phenotypes, tumor associated fibroblasts, tumor stroma components, tumor hypoxia, and multiple interventions simultaneously. Also, potential problems and future directions of TME modulation strategy have been discussed.
Collapse
|