1
|
Zhang J, Meng S, Zhang X, Shao K, Lin C. Infiltration Patterns of Cervical Epithelial Microenvironment Cells During Carcinogenesis. Front Immunol 2022; 13:888176. [PMID: 35911729 PMCID: PMC9330475 DOI: 10.3389/fimmu.2022.888176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Local cellular microenvironment plays a crucial role in the HPV-induced cervical malignant transformation. Characterization of the dynamic infiltration changes of microenvironment cells during cervical carcinogenesis would contribute to a better understanding of involved mechanisms. Methods Three public gene expression datasets of cervical squamous epithelium samples were collected and combined. We applied seven up-to-date computational methods for infiltrating estimation and compared their results (CD4+ and CD8+ T cells) to the known fraction. After benchmarking the applied methods, the cell filtration patterns were determined and clustered through fuzzy c-means algorithm. Results Most methods displayed better performance in predicting the abundance of CD4+ T cell than that of CD8+ T cell. The infiltration patterns of 33 microenvironment cell types (including 31 immune cells and 2 non-immune cells) were determined, and five immune cell clusters with distinct features were then derived. Meanwhile, opposite changes in abundance were observed between the activated and resting state of some immune cells from the progression perspective. Conclusions Based on characteristics and evaluation performance of different methods, as well as previous findings, for the first time we provide a comprehensive overview of the infiltration patterns of microenvironment cells throughout cervical cancer progression.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
| | - Silu Meng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
| | - Kang Shao
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Cong Lin, ; Kang Shao,
| | - Cong Lin
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
- *Correspondence: Cong Lin, ; Kang Shao,
| |
Collapse
|
2
|
Ntuli L, Mtshali A, Mzobe G, Liebenberg LJP, Ngcapu S. Role of Immunity and Vaginal Microbiome in Clearance and Persistence of Human Papillomavirus Infection. Front Cell Infect Microbiol 2022; 12:927131. [PMID: 35873158 PMCID: PMC9301195 DOI: 10.3389/fcimb.2022.927131] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cervical cancer disproportionately affects women of reproductive age, with 80% of cases occurring in low- and middle-income countries. Persistent infection with high-risk human papillomavirus (HPV) genotypes has been described as the most common non-systemic biological risk factor for the development of cervical cancer. The mucosal immune system plays a significant role in controlling HPV infection by acting as the first line of host defense at the mucosal surface. However, the virus can evade host immunity using various mechanisms, including inhibition of the antiviral immune response necessary for HPV clearance. Pro-inflammatory cytokines and the vaginal microbiome coordinate cell-mediated immune responses and play a pivotal role in modulating immunity. Recently, diverse vaginal microbiome (associated with bacterial vaginosis) and genital inflammation have emerged as potential drivers of high-risk HPV positivity and disease severity in women. The potential role of these risk factors on HPV recurrence and persistence remains unclear. This article reviews the role of cellular or cytokine response and vaginal microbiome dysbiosis in the clearance, persistence, and recurrence of HPV infection.
Collapse
Affiliation(s)
- Lungelo Ntuli
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Andile Mtshali
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Gugulethu Mzobe
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Lenine JP Liebenberg
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Sinaye Ngcapu
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- *Correspondence: Sinaye Ngcapu,
| |
Collapse
|
3
|
Khairkhah N, Bolhassani A, Najafipour R. Current and future direction in treatment of HPV-related cervical disease. J Mol Med (Berl) 2022; 100:829-845. [PMID: 35478255 PMCID: PMC9045016 DOI: 10.1007/s00109-022-02199-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted virus in the world. About 70% of cervical cancers are caused by the most oncogenic HPV genotypes of 16 and 18. Since available prophylactic vaccines do not induce immunity in those with established HPV infections, the development of therapeutic HPV vaccines using E6 and E7 oncogenes, or both as the target antigens remains essential. Also, knocking out the E6 and E7 oncogenes in host genome by genome-editing CRISPR/Cas system can result in tumor growth suppression. These methods have shown promising results in both preclinical and clinical trials and can be used for controlling the progression of HPV-related cervical diseases. This comprehensive review will detail the current treatment of HPV-related cervical precancerous and cancerous diseases. We also reviewed the future direction of treatment including different kinds of therapeutic methods and vaccines, genome-editing CRISPR/Cas system being studied in clinical trials. Although the progress in the development of therapeutic HPV vaccine has been slow, encouraging results from recent trials showed vaccine-induced regression in high-grade CIN lesions. CRISPR/Cas genome-editing system is also a promising strategy for HPV cancer therapy. However, its safety and specificity need to be optimized before it is used in clinical setting.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
4
|
Combination immunotherapy with two attenuated Listeria strains carrying shuffled HPV-16 E6E7 protein causes tumor regression in a mouse tumor model. Sci Rep 2021; 11:13404. [PMID: 34183739 PMCID: PMC8238941 DOI: 10.1038/s41598-021-92875-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer continues to impose a heavy burden worldwide, and human papilloma virus (HPV) infection, especially persistent infection with type 16 (HPV-16), is known to be the primary etiological factor. Therapeutic vaccines are urgently needed because prophylactic vaccines are ineffective at clearing pre-existing HPV infection. Here, two recombinant Listeria strains (LMΔ-E6E7 & LIΔ-E6E7) with deletions of the actA and plcB genes, expressing the shuffled HPV-16 E6E7 protein were constructed. The strains were delivered into the spleen and liver by intravenous inoculation, induced antigen-specific cellular immunity and were eliminated completely from the internal organs several days later. Intravenously treating with single strain for three times, or with both strains alternately for three times significantly reduced the tumor size and prolonged the survival time of model mice. Combination immunotherapy with two strains seemed more effective than immunotherapy with single strain in that it enhanced the survival of the mice, and the LMΔ-E6E7-prime-LIΔ-E6E7-boost strategy showed significant stronger efficacy than single treatment with the LIΔ-E6E7 strain. The antitumor effect of this treatment might due to its ability to increase the proportion of CD8+ T cells and reduce the proportion of T regulatory cells (Tregs) in the intratumoral milieu. This is the first report regarding Listeria ivanovii-based therapeutic vaccine candidate against cervical cancer. Most importantly we are the first to confirm that combination therapy with two different recombinant Listeria strains has a more satisfactory antitumor effect than administration of a single strain. Thus, we propose a novel prime-boost treatment strategy.
Collapse
|
5
|
Pellom ST, Smalley Rumfield C, Morillon YM, Roller N, Poppe LK, Brough DE, Sabzevari H, Schlom J, Jochems C. Characterization of recombinant gorilla adenovirus HPV therapeutic vaccine PRGN-2009. JCI Insight 2021; 6:141912. [PMID: 33651712 PMCID: PMC8119209 DOI: 10.1172/jci.insight.141912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
There are approximately 44,000 cases of human papillomavirus-associated (HPV-associated) cancer each year in the United States, most commonly caused by HPV types 16 and 18. Prophylactic vaccines successfully prevent healthy people from acquiring HPV infections via HPV-specific antibodies. In order to treat established HPV-associated malignancies, however, new therapies are necessary. Multiple recombinant gorilla adenovirus HPV vaccine constructs were evaluated in NSG-β2m-/- peripheral blood mononuclear cell-humanized mice bearing SiHa, a human HPV16+ cervical tumor, and/or in the syngeneic HPV16+ TC-1 model. PRGN-2009 is a therapeutic gorilla adenovirus HPV vaccine containing multiple cytotoxic T cell epitopes of the viral oncoproteins HPV 16/18 E6 and E7, including T cell enhancer agonist epitopes. PRGN-2009 treatment reduced tumor volume and increased CD8+ and CD4+ T cells in the tumor microenvironment of humanized mice bearing the human cervical tumor SiHa. PRGN-2009 monotherapy in the syngeneic TC-1 model also reduced tumor volumes and weights, generated high levels of HPV16 E6-specific T cells, and increased multifunctional CD8+ and CD4+ T cells in the tumor microenvironment. These studies provide the first evaluation to our knowledge of a therapeutic gorilla adenovirus HPV vaccine, PRGN-2009, showing promising preclinical antitumor efficacy and induction of HPV-specific T cells, along with the rationale for its evaluation in clinical trials.
Collapse
Affiliation(s)
- Samuel T. Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Y. Maurice Morillon
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Lisa K. Poppe
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Lechien JR, Descamps G, Seminerio I, Furgiuele S, Dequanter D, Mouawad F, Badoual C, Journe F, Saussez S. HPV Involvement in the Tumor Microenvironment and Immune Treatment in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2020; 12:cancers12051060. [PMID: 32344813 PMCID: PMC7281394 DOI: 10.3390/cancers12051060] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are one of the most prevalent cancers worldwide. Active human papillomavirus (HPV) infection has been identified as an important additional risk factor and seems to be associated with a better prognosis in non-drinker and non-smoker young patients with oropharyngeal SCC. The better response of the immune system against the HPV-induced HNSCC is suspected as a potential explanation for the better prognosis of young patients. To further assess this hypothesis, our review aims to shed light the current knowledge about the impact of HPV infection on the immune response in the context of HNSCC, focusing on the innate immune system, particularly highlighting the role of macrophages, Langerhans and myeloid cells, and on the adaptative immune system, pointing out the involvement of T regulatory, T CD8 and T CD4 lymphocytes. In addition, we also review the preventive (HPV vaccines) and therapeutic (checkpoint inhibitors) strategies against HPV-related HNSCC, stressing the use of anti-CTLA4, PD-L1, PD-L2 antibodies alone and in combination with other agents able to modulate immune responses.
Collapse
Affiliation(s)
- Jérôme R. Lechien
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
- Department of Otolaryngology and Head and Neck Surgery, CHU of Lille, University Lille 2, 59000 Lille, France;
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Imelda Seminerio
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Sonia Furgiuele
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
| | - Didier Dequanter
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
| | - Francois Mouawad
- Department of Otolaryngology and Head and Neck Surgery, CHU of Lille, University Lille 2, 59000 Lille, France;
| | - Cécile Badoual
- Department of anatomo-pathology, G Pompidou European Hospital, AP-HP, University of Paris, 75015 Paris, France;
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
- Laboratory of Oncology and Experimental Surgery, Institute Jules Bordet, Free University of Brussels, Rue Heger-Bordet, 1, B1000 Brussels, Belgium
| | - Sven Saussez
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000 Brussels, Belgium; (J.R.L.); (D.D.)
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (G.D.); (I.S.); (S.F.); (F.J.)
- Correspondence: ; Tel.: +32-65-37-35-84
| |
Collapse
|
7
|
Fathy G, Sharara MA, Khafagy AH. Intralesional vitamin D3 versus
Candida
antigen immunotherapy in the treatment of multiple recalcitrant plantar warts: A comparative case–control study. Dermatol Ther 2019; 32:e12997. [DOI: 10.1111/dth.12997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Ghada Fathy
- Department of Dermatology, Venereology and AndrologyAin Shams University Cairo Egypt
| | - Manal A. Sharara
- Department of Dermatology, Venereology and AndrologyAin Shams University Cairo Egypt
| | - Ayman H. Khafagy
- Department of Dermatology, Venereology and AndrologyAin Shams University Cairo Egypt
| |
Collapse
|
8
|
Parker KH, Kemp TJ, Isaacs-Soriano K, Abrahamsen M, Pan Y, Lazcano-Ponce E, Salmeron J, Pinto LA, Giuliano AR. HPV-specific antibodies at the oral cavity up to 30 months after the start of vaccination with the quadrivalent HPV vaccine among mid-adult aged men. Vaccine 2019; 37:2864-2869. [PMID: 31005426 PMCID: PMC9732814 DOI: 10.1016/j.vaccine.2019.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND HPV-16 and HPV-18 cause most oropharyngeal cancers, which are increasing in incidence among males. Although HPV vaccines are highly effective against a number of HPV-associated cancers, efficacy for oropharyngeal cancers has not yet been demonstrated. In addition, the level of antibodies required for protection against oral HPV infection is unknown. METHODS 150 men ages 27-45 years from Tampa, FL, USA, and Cuernavaca, Mexico, received Gardasil at Day 1, Months 2, and 6. Then, sera and oral gargles were collected one month, 12 months, and 24 months after completion of the three doses (Month 7, 18 and 30 of the study) and tested for anti-HPV-16 and HPV-18 IgG antibody levels by a L1 VLP ELISA. RESULTS All participants developed detectable serum anti-HPV-16 and anti-HPV-18 antibodies and most had detectable antibodies in oral gargles at Month 7 (HPV-16: 93.2%; HPV-18: 72.1%). By months 18 and 30, oral antibodies were detectable in a lower number of participants (HPV-16, 39.8% and 29.6%; HPV-18, 10.7% and 4.6% of individuals, respectively). Overall, oral HPV-16- and 18-specific antibody levels, normalized to total IgG at months 7, 18, and 30, correlated with serum levels (HPV-16, R2 = 0.93; HPV-18, R2 = 0.91). CONCLUSIONS Reduced detectability of oral and serum HPV-16 and HPV-18 antibodies was observed at months 18 and 30 after initiation of the quadrivalent vaccination. However, when detectable, serum and oral HPV-16 and HPV-18 antibody levels were strongly correlated.
Collapse
Affiliation(s)
- Katherine H Parker
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Troy J Kemp
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kimberly Isaacs-Soriano
- Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Martha Abrahamsen
- Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yuanji Pan
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Jorge Salmeron
- National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Ligia A Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
9
|
Barros MR, de Melo CML, Barros MLCMGR, de Cássia Pereira de Lima R, de Freitas AC, Venuti A. Activities of stromal and immune cells in HPV-related cancers. J Exp Clin Cancer Res 2018; 37:137. [PMID: 29976244 PMCID: PMC6034319 DOI: 10.1186/s13046-018-0802-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system is composed of immune as well as non-immune cells. As this system is a well-established component of human papillomavirus- (HPV)-related carcinogenesis, high risk human papillomavirus (hrHPV) prevents its routes and mechanisms in order to cause the persistence of infection. Among these mechanisms are those originated from stromal cells, which include the cancer-associated fibroblasts (CAFs), the myeloid-derived suppressor cells (MDSCs) and the host infected cells themselves, i.e. the keratinocytes. These types of cells play central role since they modulate immune cells activities to create a prosperous milieu for cancer development, and the knowledge how such interactions occur are essential for prognostic assessment and development of preventive and therapeutic approaches. Nevertheless, the precise mechanisms are not completely understood, and this lack of knowledge precluded the development of entirely efficient immunotherapeutic strategies for HPV-associated tumors. As a result, an intense work for attaining how host immune response works, and developing of effective therapies has been applied in the last decade. Based on this, this review aims to discuss the major mechanisms of immune and non-immune cells modulated by hrHPV and the potential and existing immunotherapies involving such mechanisms in HPV-related cancers. It is noticed that the combination of immunotherapies has been demonstrated to be essential for obtaining better results, especially because the possibility of increasing the modulating capacity of the HPV-tumor microenvironment has been shown to be central in strengthening the host immune system.
Collapse
Affiliation(s)
- Marconi Rego Barros
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis (LAIA), Department of Antibiotics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Artur de Sá, s/n, Recife, PE CEP-50740-525 Brazil
| | | | - Rita de Cássia Pereira de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Center of Biological Sciences, Federal University of Pernambuco, Cidade Universitária, Av. Prof Moraes Rego, 1235, Recife, PE CEP-50670-901 Brazil
| | - Aldo Venuti
- HPV-Unit, Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
10
|
de Freitas AC, de Oliveira THA, Barros MR, Venuti A. hrHPV E5 oncoprotein: immune evasion and related immunotherapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:71. [PMID: 28545552 PMCID: PMC5445378 DOI: 10.1186/s13046-017-0541-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022]
Abstract
The immune response is a key factor in the fight against HPV infection and related cancers, and thus, HPV is able to promote immune evasion through the expression of oncogenes. In particular, the E5 oncogene is responsible for modulation of several immune mechanisms, including antigen presentation and inflammatory pathways. Moreover, E5 was suggested as a promising therapeutic target, since there is still no effective medical therapy for the treatment of HPV-related pre-neoplasia and cancer. Indeed, several studies have shown good prospective for E5 immunotherapy, suggesting that it could be applied for the treatment of pre-cancerous lesions. Thus, insofar as the majority of cervical, oropharyngeal and anal cancers are caused by high-risk HPV (hrHPV), mainly by HPV16, the aim of this review is to discuss the immune pathways interfered by E5 oncoprotein of hrHPV highlighting the various aspects of the potential immunotherapeutic approaches.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil.
| | - Talita Helena Araújo de Oliveira
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Marconi Rego Barros
- Department of Genetics, Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Center of Biological Sciences, Federal University of Pernambuco, Av. Prof Moraes Rego, 1235, Cidade Universitária, Recife, CEP 50670-901, Brazil
| | - Aldo Venuti
- Department of Research, HPV-Unit, UOSD Tumor Immunology and Immunotherapy Unit, Advanced Diagnostic and Technological Innovation, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
11
|
Gupta S, Chaudhary K, Dhanda SK, Kumar R, Kumar S, Sehgal M, Nagpal G, Raghava GPS. A Platform for Designing Genome-Based Personalized Immunotherapy or Vaccine against Cancer. PLoS One 2016; 11:e0166372. [PMID: 27832200 PMCID: PMC5104390 DOI: 10.1371/journal.pone.0166372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/27/2016] [Indexed: 02/01/2023] Open
Abstract
Due to advancement in sequencing technology, genomes of thousands of cancer tissues or cell-lines have been sequenced. Identification of cancer-specific epitopes or neoepitopes from cancer genomes is one of the major challenges in the field of immunotherapy or vaccine development. This paper describes a platform Cancertope, developed for designing genome-based immunotherapy or vaccine against a cancer cell. Broadly, the integrated resources on this platform are apportioned into three precise sections. First section explains a cancer-specific database of neoepitopes generated from genome of 905 cancer cell lines. This database harbors wide range of epitopes (e.g., B-cell, CD8+ T-cell, HLA class I, HLA class II) against 60 cancer-specific vaccine antigens. Second section describes a partially personalized module developed for predicting potential neoepitopes against a user-specific cancer genome. Finally, we describe a fully personalized module developed for identification of neoepitopes from genomes of cancerous and healthy cells of a cancer-patient. In order to assist the scientific community, wide range of tools are incorporated in this platform that includes screening of epitopes against human reference proteome (http://www.imtech.res.in/raghava/cancertope/).
Collapse
Affiliation(s)
- Sudheer Gupta
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Kumardeep Chaudhary
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Sandeep Kumar Dhanda
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Rahul Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Shailesh Kumar
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Manika Sehgal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | - Gandharva Nagpal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh-160036, India
| | | |
Collapse
|
12
|
Yang A, Farmer E, Wu TC, Hung CF. Perspectives for therapeutic HPV vaccine development. J Biomed Sci 2016; 23:75. [PMID: 27809842 PMCID: PMC5096309 DOI: 10.1186/s12929-016-0293-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background Human papillomavirus (HPV) infections and associated diseases remain a serious burden worldwide. It is now clear that HPV serves as the etiological factor and biologic carcinogen for HPV-associated lesions and cancers. Although preventative HPV vaccines are available, these vaccines do not induce strong therapeutic effects against established HPV infections and lesions. These concerns create a critical need for the development of therapeutic strategies, such as vaccines, to treat these existing infections and diseases. Main Body Unlike preventative vaccines, therapeutic vaccines aim to generate cell-mediated immunity. HPV oncoproteins E6 and E7 are responsible for the malignant progression of HPV-associated diseases and are consistently expressed in HPV-associated diseases and cancer lesions; therefore, they serve as ideal targets for the development of therapeutic HPV vaccines. In this review we revisit therapeutic HPV vaccines that utilize this knowledge to treat HPV-associated lesions and cancers, with a focus on the findings of recent therapeutic HPV vaccine clinical trials. Conclusion Great progress has been made to develop and improve novel therapeutic HPV vaccines to treat existing HPV infections and diseases; however, there is still much work to be done. We believe that therapeutic HPV vaccines have the potential to become a widely available and successful therapy to treat HPV and HPV-associated diseases in the near future.
Collapse
Affiliation(s)
- Andrew Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Emily Farmer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA. .,The Johns Hopkins University School of Medicine, CRB II Room 307, 1550 Orleans Street, Baltimore, MD, 21231, USA.
| |
Collapse
|
13
|
Hu J, Budgeon LR, Cladel NM, Balogh K, Myers R, Cooper TK, Christensen ND. Tracking vaginal, anal and oral infection in a mouse papillomavirus infection model. J Gen Virol 2016; 96:3554-3565. [PMID: 26399579 DOI: 10.1099/jgv.0.000295] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Noninvasive and practical techniques to longitudinally track viral infection are sought after in clinical practice. We report a proof-of-principle study to monitor the viral DNA copy number using a newly established mouse papillomavirus (MmuPV1) mucosal infection model. We hypothesized that viral presence could be identified and quantified by collecting lavage samples from cervicovaginal, anal and oral sites. Nude mice infected at these sites with infectious MmuPV1 were tracked for up to 23 weeks starting at 6 weeks post-infection. Viral DNA copy number was determined by SYBR Green Q-PCR analysis. In addition, we tracked viral DNA load through three complete oestrous cycles to pinpoint whether there was a correlation between the DNA load and the four stages of the oestrous cycle. Our results showed that high viral DNA copy number was reproducibly detected from both anal and cervicovaginal lavage samples. The infection and disease progression were further confirmed by histology, cytology, in situ hybridization, immunohistochemistry and transmission electron microscopy. Interestingly, the viral copy number fluctuated over the oestrous cycle, with the highest level at the oestrus stage, implying that multiple sampling might be necessary to provide a reliable diagnosis. Virus DNA was detected in oral lavage samples at a later time after infection. Lower viral DNA load was found in oral samples when compared with those in anal and vaginal tracts. To our knowledge, our study is the first in vivo study to sequentially monitor papillomavirus infection from mucosal anal, oral and vaginal tracts in a preclinical model.
Collapse
Affiliation(s)
- Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lynn R Budgeon
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nancy M Cladel
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Karla Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Roland Myers
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Neil D Christensen
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Yang A, Jeang J, Cheng K, Cheng T, Yang B, Wu TC, Hung CF. Current state in the development of candidate therapeutic HPV vaccines. Expert Rev Vaccines 2016; 15:989-1007. [PMID: 26901118 DOI: 10.1586/14760584.2016.1157477] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of human papillomavirus (HPV) as an etiological factor for HPV-associated malignancies creates the opportunity to control these cancers through vaccination. Currently, available preventive HPV vaccines have not yet demonstrated strong evidences for therapeutic effects against established HPV infections and lesions. Furthermore, HPV infections remain extremely common. Thus, there is urgent need for therapeutic vaccines to treat existing HPV infections and HPV-associated diseases. Therapeutic vaccines differ from preventive vaccines in that they are aimed at generating cell-mediated immunity rather than neutralizing antibodies. The HPV-encoded early proteins, especially oncoproteins E6 and E7, form ideal targets for therapeutic HPV vaccines since they are consistently expressed in HPV-associated malignancies and precancerous lesions, playing crucial roles in the generation and maintenance of HPV-associated disease. Our review will cover various therapeutic vaccines in development for the treatment of HPV-associated lesions and cancers. Furthermore, we review strategies to enhance vaccine efficacy and the latest clinical trials on therapeutic HPV vaccines.
Collapse
Affiliation(s)
- Andrew Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Jessica Jeang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Kevin Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Ting Cheng
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - Benjamin Yang
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA
| | - T-C Wu
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,b Department of Obstetrics and Gynecology , Johns Hopkins University , Baltimore , MD , USA.,c Department of Molecular Microbiology and Immunology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| | - Chien-Fu Hung
- a Department of Pathology , Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
15
|
Menderes G, Black J, Schwab CL, Santin AD. Immunotherapy and targeted therapy for cervical cancer: an update. Expert Rev Anticancer Ther 2015; 16:83-98. [PMID: 26568261 DOI: 10.1586/14737140.2016.1121108] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The prognosis of patients with metastatic cervical cancer is poor with a median survival of 8-13 months. Despite the potency of chemotherapeutic drugs, this treatment is rarely curative and should be considered palliative only. In the last few years, a better understanding of Human papillomavirus tumor-host immune system interactions and the development of new therapeutics targeting immune check points have renewed interest in the use of immunotherapy in cervical cancer patients. Moreover, next generation sequencing has emerged as an attractive option for the identification of actionable driver mutations and other markers. In this review, we provide background information on the molecular biology of cervical cancer and summarize immunotherapy studies, targeted therapies, including those with angiogenesis inhibitors and tyrosine kinase inhibitors recently completed or currently on-going in cervical cancer patients.
Collapse
Affiliation(s)
- Gulden Menderes
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Carlton L Schwab
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
16
|
Shen KY, Song YC, Chen IH, Chong P, Liu SJ. Depletion of tumor-associated macrophages enhances the anti-tumor immunity induced by a Toll-like receptor agonist-conjugated peptide. Hum Vaccin Immunother 2015; 10:3241-50. [PMID: 25483652 PMCID: PMC4514138 DOI: 10.4161/hv.29275] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been reported that lipopeptides can be used to elicit cytotoxic T lymphocyte (CTL) responses against viral diseases and cancer. In our previous study, we determined that mono-palmitoylated peptides can enhance anti-tumor responses in the absence of adjuvant activity. To investigate whether di-palmitoylated peptides with TLR2 agonist activity are able to induce anti-tumor immunity, we synthesized a di-palmitic acid-conjugated long peptide that contains a murine CTL epitope of HPV E749–57 (Pam2IDG). Pam2IDG stimulated the maturation of bone marrow-derived dendritic cells (BMDCs) through TLR2/6. After immunization, Pam2IDG induced higher levels of T cell responses than those obtained with its non-lipidated counterpart (IDG). In the prophylactic model, Pam2IDG immunization completely inhibited tumor growth, whereas IDG immunization was unable to inhibit tumor growth. However, Pam2IDG immunization could not effectively inhibit the growth of established tumors. Therefore, we further investigated whether the depletion of immunosuppressive factors could improve the therapeutic effects of Pam2IDG. Our data indicate that treatment with Pam2IDG combined with clodronate/liposome delays tumor growth and increases the survival rate. We also observed that the therapeutic effects of Pam2IDG are improved by diminishing the function of tumor-associate macrophages (TAMs) and through the use of an IL10 receptor blocking antibody or a Cyclooxygenase 2 (Cox-2) inhibitor. In conclusion, the depletion of TAMs may enhance the anti-tumor immunity of a TLR2 agonist-conjugated peptide.
Collapse
Affiliation(s)
- Kuan-Yin Shen
- a Graduate Institute of Life Sciences; National Defense Medical Center ; Taipei , Taiwan
| | | | | | | | | |
Collapse
|
17
|
McKee SJ, Bergot AS, Leggatt GR. Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol 2015; 25 Suppl 1:54-71. [PMID: 25752816 DOI: 10.1002/rmv.1824] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been more than 7 years since the commercial introduction of highly successful vaccines protecting against high-risk human papillomavirus (HPV) subtypes and the development of cervical cancer. From an immune standpoint, the dependence of cervical cancer on viral infection has meant that HPV proteins can be targeted as strong tumour antigens leading to clearance of the infection and the subsequent protection from cancer. Commercially available vaccines consisting of the L1 capsid protein assembled as virus-like particles (VLPs) induce neutralising antibodies that deny access of the virus to cervical epithelial cells. While greater than 90% efficacy has been demonstrated at the completion of large phase III trials in young women, vaccine developers are now addressing broader issues such as efficacy in boys, longevity of the protection and inducing cross-reactive antibody for oncogenic, non-vaccine HPV strains. For women with existing HPV infection, the prophylactic vaccines provide little protection, and consequently, the need for therapeutic vaccines will continue into the future. Therapeutic vaccines targeting HPVE6 and E7 proteins are actively being pursued with new adjuvants and delivery vectors, combined with an improved knowledge of the tumour microenvironment, showing great promise. This review will focus on recent progress in prophylactic and therapeutic vaccine development and implementation since the publication of end of study data from phase III clinical trials between 2010 and 2012.
Collapse
Affiliation(s)
- Sara J McKee
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | | | | |
Collapse
|
18
|
Jindra C, Huber B, Shafti-Keramat S, Wolschek M, Ferko B, Muster T, Brandt S, Kirnbauer R. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One 2015; 10:e0138722. [PMID: 26381401 PMCID: PMC4575162 DOI: 10.1371/journal.pone.0138722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.
Collapse
Affiliation(s)
- Christoph Jindra
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bettina Huber
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Saeed Shafti-Keramat
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Wolschek
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
- Bluesky Vaccines, Vienna, Austria
| | | | | | - Sabine Brandt
- Research Group Oncology (RGO), Equine Clinic, Veterinary University of Vienna, Vienna, Austria
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
19
|
Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine. Proc Natl Acad Sci U S A 2015; 112:E5290-9. [PMID: 26351680 DOI: 10.1073/pnas.1514418112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibody modulation of T-cell coinhibitory (e.g., CTLA-4) or costimulatory (e.g., 4-1BB) receptors promotes clinical responses to a variety of cancers. Therapeutic cancer vaccination, in contrast, has produced limited clinical benefit and no curative therapies. The E6 and E7 oncoproteins of human papilloma virus (HPV) drive the majority of genital cancers, and many oropharyngeal tumors. We discovered 15-19 amino acid peptides from HPV-16 E6/E7 for which induction of T-cell immunity correlates with disease-free survival in patients treated for high-grade cervical neoplasia. We report here that intranasal vaccination with these peptides and the adjuvant alpha-galactosylceramide elicits systemic and mucosal T-cell responses leading to reduced HPV(+) TC-1 tumor growth and prolonged survival in mice. We hypothesized that the inability of these T cells to fully reject established tumors resulted from suppression in the tumor microenvironment which could be ameliorated through checkpoint modulation. Combining this E6/E7 peptide vaccine with checkpoint blockade produced only modest benefit; however, coadministration with a 4-1BB agonist antibody promoted durable regression of established genital TC-1 tumors. Relative to other therapies tested, this combination of vaccine and α4-1BB promoted the highest CD8(+) versus regulatory FoxP3(+) T-cell ratios, elicited 2- to 5-fold higher infiltration by E7-specific CTL, and evoked higher densities of highly cytotoxic TcEO (T cytotoxic Eomesodermin) CD8 (>70-fold) and ThEO (T helper Eomesodermin) CD4 (>17-fold) T cells. These findings have immediate clinical relevance both in terms of the direct clinical utility of the vaccine studied and in illustrating the potential of 4-1BB antibody to convert therapeutic E6/E7 vaccines already in clinical trials into curative therapies.
Collapse
|
20
|
Gunasekera SK, Perera KA, Fernando C, Udagama PV. A shifting paradigm in the aetiology of oral and pharyngeal cancer in Sri Lanka: a case-control study providing serologic evidence for the role of oncogenic HPV types 16 and 18. Infect Agent Cancer 2015; 10:12. [PMID: 25908938 PMCID: PMC4407420 DOI: 10.1186/s13027-015-0007-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/31/2015] [Indexed: 02/08/2023] Open
Abstract
Background Oral and pharyngeal cancer (OPC) of multifactorial aetiology is a major health problem globally. Ranking first in all cancers, OPC poses a significant impact on the Sri Lankan male population. As Human Papillomavirus (HPV) high risk (HR) types are found to be significant risk factors for OPC globally, the current study was undertaken to examine the association between HR-HPV16 and 18 types with OPC in Sri Lanka. Materials and methods Serum samples of 78 OPC patients and 51 non-cancer controls were assayed for the presence of anti-HPV16 and anti-HPV18 IgG antibodies using in-house established Enzyme Linked Immunosorbent Assays (ELISAs). The association between OPC and its risk factors i.e. HPV, smoking, alcohol, betel quid, poor dentition, was established using Chi-square test. Logistic regression was used to calculate odds ratios (OR), adjusted for the influence of other risk factors. Results This prototype study in Sri Lanka showed a significant risk of 15 fold in developing OPC due to HPV16/18 seropositivity after removing variability due to other factors. Oncogenic HPV18 showed a higher rate of seropositivity being detected in 32% of OPC patients, and also in 2% of non-cancer control subjects. HR-HPV16 was detected in 23% of OPC patients and in 5.88% of controls. Moreover, seven OPC patients were detected with both anti-HPV16 and anti-HPV18 antibodies. According to the logistic regression models HPV18 seropositivity was associated with a 28 fold risk in developing OPC while that of HPV16 was associated with a 6 fold increase in risk for the development of OPC. A 5 fold risk of developing OPC was also pronounced among smokers while alcohol, betel and poor dentition was not significantly associated with OPC. Statistically significant differences with regard to age, gender, smoking, alcohol, betel use, poor dentition and site specificity of the tumour was not observed between HPV seropositive and seronegative OPC patients. Conclusions Both in-house developed ELISAs detected significant proportions of HPV seropositives within the OPC study population suggestive of HPV as a strong risk factor for oral and pharyngeal carcinogenesis in Sri Lanka.
Collapse
Affiliation(s)
| | | | | | - Preethi Vidya Udagama
- Department of Zoology, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| |
Collapse
|
21
|
Bergot AS, Ford N, Leggatt GR, Wells JW, Frazer IH, Grimbaldeston MA. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells. PLoS Pathog 2014; 10:e1004466. [PMID: 25340820 PMCID: PMC4207828 DOI: 10.1371/journal.ppat.1004466] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/11/2014] [Indexed: 01/08/2023] Open
Abstract
Human Papillomavirus (HPV) 16 E7 protein promotes the transformation of HPV infected epithelium to malignancy. Here, we use a murine model in which the E7 protein of HPV16 is expressed as a transgene in epithelium to show that mast cells are recruited to the basal layer of E7-expressing epithelium, and that this recruitment is dependent on the epithelial hyperproliferation induced by E7 by inactivating Rb dependent cell cycle regulation. E7 induced epithelial hyperplasia is associated with increased epidermal secretion of CCL2 and CCL5 chemokines, which attract mast cells to the skin. Mast cells in E7 transgenic skin, in contrast to those in non-transgenic skin, exhibit degranulation. Notably, we found that resident mast cells in E7 transgenic skin cause local immune suppression as evidenced by tolerance of E7 transgenic skin grafts when mast cells are present compared to the rejection of mast cell-deficient E7 grafts in otherwise competent hosts. Thus, our findings suggest that mast cells, recruited towards CCL2 and CCL5 expressed by epithelium induced to proliferate by E7, may contribute to an immunosuppressive environment that enables the persistence of HPV E7 protein induced pre-cancerous lesions.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Neill Ford
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- * E-mail:
| | - Michele A. Grimbaldeston
- Division of Human Immunology, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Frazer IH. Development and Implementation of Papillomavirus Prophylactic Vaccines. THE JOURNAL OF IMMUNOLOGY 2014; 192:4007-11. [DOI: 10.4049/jimmunol.1490012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Conesa-Zamora P. Immune responses against virus and tumor in cervical carcinogenesis: Treatment strategies for avoiding the HPV-induced immune escape. Gynecol Oncol 2013; 131:480-8. [DOI: 10.1016/j.ygyno.2013.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 12/23/2022]
|
24
|
Peralta-Zaragoza O, Bermúdez-Morales VH, Pérez-Plasencia C, Salazar-León J, Gómez-Cerón C, Madrid-Marina V. Targeted treatments for cervical cancer: a review. Onco Targets Ther 2012; 5:315-28. [PMID: 23144564 PMCID: PMC3493318 DOI: 10.2147/ott.s25123] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cervical cancer is the second most common cause of cancer death in women worldwide and the development of new diagnosis, prognostic, and treatment strategies merits special attention. Although surgery and chemoradiotherapy can cure 80%–95% of women with early stage cancer, the recurrent and metastatic disease remains a major cause of cancer death. Many efforts have been made to design new drugs and develop gene therapies to treat cervical cancer. In recent decades, research on treatment strategies has proposed several options, including the role of HPV E6 and E7 oncogenes, which are retained and expressed in most cervical cancers and whose respective oncoproteins are critical to the induction and maintenance of the malignant phenotype. Other efforts have been focused on antitumor immunotherapy strategies. It is known that during the development of cervical cancer, a cascade of abnormal events is induced, including disruption of cellular cycle control, perturbation of antitumor immune response, alteration of gene expression, and deregulation of microRNA expression. Thus, in this review article we discuss potential targets for the treatment of cervical cancer associated with HPV infection, with special attention to immunotherapy approaches, clinical trials, siRNA molecules, and their implications as gene therapy strategies against cervical cancer development.
Collapse
Affiliation(s)
- Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|