1
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
2
|
Pandya Shesh B, Slagle-Webb B, Shenoy G, Khristov V, Zacharia BE, Connor JR. Uptake of H-ferritin by Glioblastoma stem cells and its impact on their invasion capacity. J Cancer Res Clin Oncol 2023; 149:9691-9703. [PMID: 37237166 PMCID: PMC11628165 DOI: 10.1007/s00432-023-04864-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
PURPOSE Iron acquisition is key to maintaining cell survival and function. Cancer cells in general are considered to have an insatiable iron need. Iron delivery via the transferrin/transferrin receptor pathway has been the canonical iron uptake mechanism. Recently, however, our laboratory and others have explored the ability of ferritin, particularly the H-subunit, to deliver iron to a variety of cell types. Here, we investigate whether Glioblastoma (GBM) initiating cells (GICs), a small population of stem-like cells, are known for their iron addiction and invasive nature acquire exogenous ferritin, as a source of iron. We further assess the functional impact of ferritin uptake on the invasion capacity of the GICs. METHODS To establish that H-ferritin can bind to human GBM, tissue-binding assays were performed on samples collected at the time of surgery. To interrogate the functional consequences of H-ferritin uptake, we utilized two patient-derived GIC lines. We further describe H-ferritin's impact on GIC invasion capacity using a 3D invasion assay. RESULTS H-ferritin bound to human GBM tissue at the amount of binding was influenced by sex. GIC lines showed uptake of H-ferritin protein via transferrin receptor. FTH1 uptake correlated with a significant decrease in the invasion capacity of the cells. H-ferritin uptake was associated with a significant decrease in the invasion-related protein Rap1A. CONCLUSION These findings indicate that extracellular H-ferritin participates in iron acquisition to GBMs and patient-derived GICs. The functional significance of the increased iron delivery by H-ferritin is a decreased invasion capacity of GICs potentially via reduction of Rap1A protein levels.
Collapse
Affiliation(s)
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Vladimir Khristov
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - Brad E Zacharia
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Marino A, Battaglini M, Carmignani A, Pignatelli F, De Pasquale D, Tricinci O, Ciofani G. Magnetic self-assembly of 3D multicellular microscaffolds: A biomimetic brain tumor-on-a-chip for drug delivery and selectivity testing. APL Bioeng 2023; 7:036103. [PMID: 37521177 PMCID: PMC10375466 DOI: 10.1063/5.0155037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
In recent years, the need for highly predictive brain cancer models to test new anticancer compounds and experimental therapeutic approaches has significantly increased. Realistic in vitro brain tumor-on-a-chip platforms would allow a more accurate selection of valid candidate drugs and nanomedicines, therefore alleviating the economic and ethical issues of unsuccessful studies in vivo. Here, we present a multi-functional self-assembled brain tumor-on-a-chip model characterized by 3D glioma cultures interfaced both to nonmalignant brain cells of the peritumoral niche and to a 3D-real-scale blood-brain barrier (BBB) microfluidic system. This platform allowed us to screen multiple features, such as BBB crossing capabilities, apoptotic efficacy against GBM cells, and side effects on nonmalignant brain cells of a promising anticancer drug, nutlin-3a, which is fundamental for the treatment of brain cancer.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Francesca Pignatelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Omar Tricinci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
4
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
5
|
Ermiş E, Althaus A, Blatti M, Uysal E, Leiser D, Norouzi S, Riggenbach E, Hemmatazad H, Ahmadli U, Wagner F. Therapy Resistance of Glioblastoma in Relation to the Subventricular Zone: What Is the Role of Radiotherapy? Cancers (Basel) 2023; 15:cancers15061677. [PMID: 36980563 PMCID: PMC10046464 DOI: 10.3390/cancers15061677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Glioblastoma is a highly heterogeneous primary malignant brain tumor with marked inter-/intratumoral diversity and a poor prognosis. It may contain a population of neural stem cells (NSC) and glioblastoma stem cells that have the capacity for migration, self-renewal and differentiation. While both may contribute to resistance to therapy, NSCs may also play a role in brain tissue repair. The subventricular zone (SVZ) is the main reservoir of NSCs. This study investigated the impact of bilateral SVZ radiation doses on patient outcomes. We included 147 patients. SVZs were delineated and the dose administered was extracted from dose–volume histograms. Tumors were classified based on their spatial relationship to the SVZ. The dose and outcome correlations were analyzed using the Kaplan–Meier and Cox proportional hazards regression methods. Median progression-free survival (PFS) was 7 months (range: 4–11 months) and median overall survival (OS) was 14 months (range: 9–23 months). Patients with an ipsilateral SVZ who received ≥50 Gy showed significantly better PFS (8 versus 6 months; p < 0.001) and OS (16 versus 11 months; p < 0.001). Furthermore, lower doses (<32 Gy) to the contralateral SVZ were associated with improved PFS (8 versus 6 months; p = 0.030) and OS (15 versus 11 months; p = 0.001). Targeting the potential tumorigenic cells in the ipsilateral SVZ while sparing contralateral NSCs correlated with an improved outcome. Further studies should address the optimization of dose distribution with modern radiotherapy techniques for the areas surrounding infiltrated and healthy SVZs.
Collapse
Affiliation(s)
- Ekin Ermiş
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Correspondence:
| | - Alexander Althaus
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Marcela Blatti
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Emre Uysal
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Shokoufe Norouzi
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Elena Riggenbach
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Uzeyir Ahmadli
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
6
|
Qi X, Jha SK, Jha NK, Dewanjee S, Dey A, Deka R, Pritam P, Ramgopal K, Liu W, Hou K. Antioxidants in brain tumors: current therapeutic significance and future prospects. Mol Cancer 2022; 21:204. [PMID: 36307808 PMCID: PMC9615186 DOI: 10.1186/s12943-022-01668-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Brain cancer is regarded among the deadliest forms of cancer worldwide. The distinct tumor microenvironment and inherent characteristics of brain tumor cells virtually render them resistant to the majority of conventional and advanced therapies. Oxidative stress (OS) is a key disruptor of normal brain homeostasis and is involved in carcinogenesis of different forms of brain cancers. Thus, antioxidants may inhibit tumorigenesis by preventing OS induced by various oncogenic factors. Antioxidants are hypothesized to inhibit cancer initiation by endorsing DNA repair and suppressing cancer progression by creating an energy crisis for preneoplastic cells, resulting in antiproliferative effects. These effects are referred to as chemopreventive effects mediated by an antioxidant mechanism. In addition, antioxidants minimize chemotherapy-induced nonspecific organ toxicity and prolong survival. Antioxidants also support the prooxidant chemistry that demonstrate chemotherapeutic potential, particularly at high or pharmacological doses and trigger OS by promoting free radical production, which is essential for activating cell death pathways. A growing body of evidence also revealed the roles of exogenous antioxidants as adjuvants and their ability to reverse chemoresistance. In this review, we explain the influences of different exogenous and endogenous antioxidants on brain cancers with reference to their chemopreventive and chemotherapeutic roles. The role of antioxidants on metabolic reprogramming and their influence on downstream signaling events induced by tumor suppressor gene mutations are critically discussed. Finally, the review hypothesized that both pro- and antioxidant roles are involved in the anticancer mechanisms of the antioxidant molecules by killing neoplastic cells and inhibiting tumor recurrence followed by conventional cancer treatments. The requirements of pro- and antioxidant effects of exogenous antioxidants in brain tumor treatment under different conditions are critically discussed along with the reasons behind the conflicting outcomes in different reports. Finally, we also mention the influencing factors that regulate the pharmacology of the exogenous antioxidants in brain cancer treatment. In conclusion, to achieve consistent clinical outcomes with antioxidant treatments in brain cancers, rigorous mechanistic studies are required with respect to the types, forms, and stages of brain tumors. The concomitant treatment regimens also need adequate consideration.
Collapse
Affiliation(s)
- Xuchen Qi
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China.,Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India. .,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India. .,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700032, India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Kritika Ramgopal
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Weiting Liu
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China.
| | - Kaijian Hou
- School of Nursing, Anhui University of Chinese Medicine, Hefei, 230001, Anhui, China. .,School of Public Health, Shantou University, Shantou, 515000, Guangdong, China.
| |
Collapse
|
7
|
Hosseindoost S, Mousavi SM, Dehpour AR, Javadi SA, Arjmand B, Fallah A, Hadjighassem M. β2-Adrenergic receptor agonist enhances the bystander effect of HSV-TK/GCV gene therapy in glioblastoma multiforme via upregulation of connexin 43 expression. Mol Ther Oncolytics 2022; 26:76-87. [PMID: 35795095 PMCID: PMC9233183 DOI: 10.1016/j.omto.2022.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma. Gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) is a new strategy for GBM treatment. As the connexin 43 (Cx43) levels are downregulated in GBM cells, it seems that the upregulation of Cx43 could improve the efficacy of the gene therapy. This study aims to evaluate the effect of clenbuterol hydrochloride (Cln) as a β2-adrenergic receptor agonist on HSV-TK/GCV gene therapy efficacy in human GBM cells using olfactory ensheathing cells (OECs) as vectors. The lentivirus containing the thymidine kinase gene was transduced to OECs and the effective dose of GCV on cells was measured by MTT assay. We found that Cln upregulated Cx43 expression in human GBM cells and OECs and promoted the cytotoxic effect of GCV on the co-culture cells. Western blot results showed that Cln increased the cleaved caspase-3 expression and the Bax/Bcl2 ratio in the co-culture of GBM cells and OEC-TK. Also, the flow cytometry results revealed that Cln increased apoptosis in the co-culture of GBM cells and OEC-TK cells. This study showed that Cln via upregulation of Cx43 expression could enhance the bystander effect of HSVTK-GCV gene therapy in human GBM cells.
Collapse
|
8
|
Deforzh E, Uhlmann EJ, Das E, Galitsyna A, Arora R, Saravanan H, Rabinovsky R, Wirawan AD, Teplyuk NM, El Fatimy R, Perumalla S, Jairam A, Wei Z, Mirny L, Krichevsky AM. Promoter and enhancer RNAs regulate chromatin reorganization and activation of miR-10b/HOXD locus, and neoplastic transformation in glioma. Mol Cell 2022; 82:1894-1908.e5. [PMID: 35390275 PMCID: PMC9271318 DOI: 10.1016/j.molcel.2022.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 01/06/2023]
Abstract
miR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer. Knockdown of either lncRNA in glioma cells alters CTCF and cohesin binding, abolishes chromatin looping, inhibits the expression of all genes within HOXD locus, and leads to glioma cell death. Conversely, in cortical astrocytes, enhancer activation is sufficient for HOXD/miR-10b locus reorganization, gene derepression, and neoplastic cell transformation. LINC01116 RNA is essential for this process. Our results demonstrate the interplay of two lncRNAs in the chromatin folding and concordant regulation of miR-10b and multiple HOXD genes normally silenced in astrocytes and triggering the neoplastic glial transformation.
Collapse
Affiliation(s)
- Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eashita Das
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aleksandra Galitsyna
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ramil Arora
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harini Saravanan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya D Wirawan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sucika Perumalla
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anirudh Jairam
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Chen JWE, Leary S, Barnhouse V, Sarkaria JN, Harley BA. Matrix Hyaluronic Acid and Hypoxia Influence a CD133 + Subset of Patient-Derived Glioblastoma Cells. Tissue Eng Part A 2022; 28:330-340. [PMID: 34435883 PMCID: PMC9057908 DOI: 10.1089/ten.tea.2021.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022] Open
Abstract
Glioblastoma (GBM) displays diffusive invasion throughout the brain microenvironment, which is partially responsible for its short median survival rate (<15 months). Stem-like subpopulations (GBM stem-like cells, GSCs) are believed to play a central role in therapeutic resistance and poor patient prognosis. Given the extensive tissue remodeling and processes such as vessel co-option and regression that occur in the tumor microenvironment, it is essential to understand the role of metabolic constraint such as hypoxia on GBM cell populations. This work describes the use of a multidimensional gelatin hydrogel to culture patient-derived GBM cells, to evaluate the influence of hypoxia and the inclusion brain-mimetic hyaluronic acid on the relative activity of GSCs versus overall GBM cells. Notably, CD133+ GBM cell fraction is crucial for robust formation of tumor spheroids in multidimensional cultures. In addition, while the relative size of the CD133+ GBM subpopulation increased in response to both hypoxia and matrix-bound hyaluronan, we did not observe cell subtype-specific changes in invasion signaling pathway activation. Taken together, this study highlights the potential of biomimetic culture systems for resolving changes in the population dynamics and behavior of subsets of GBM specimens for the future development of precision medicine applications. Impact Statement This study describes a gelatin hydrogel platform to investigate the role of extracellular hyaluronic acid and hypoxia on the behavior of a CD133+ subset of cells within patient-derived glioblastoma (GBM) specimens. We report that the relative expansion of the CD133+ GBM stem cell-like population is strongly responsive to extracellular cues, highlighting the significance of biomimetic hydrogel models of the tumor microenvironment to investigate invasion and therapeutic response.
Collapse
Affiliation(s)
- Jee-Wei Emily Chen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sarah Leary
- Department of Chemistry, and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Victoria Barnhouse
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci 2022; 23:3360. [PMID: 35328780 PMCID: PMC8955269 DOI: 10.3390/ijms23063360] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy-which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide-is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood-brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
12
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
13
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
14
|
He L, Bhat K, Ioannidis A, Zhang L, Nguyen NT, Allen JE, Nghiemphu PL, Cloughesy TF, Liau LM, Kornblum HI, Pajonk F. Effects of the DRD2/3 antagonist ONC201 and radiation in glioblastoma. Radiother Oncol 2021; 161:140-147. [PMID: 34097975 PMCID: PMC8480533 DOI: 10.1016/j.radonc.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the deadliest of all brain cancers in adults. The current standard-of-care is surgery followed by radiotherapy and temozolomide, leading to a median survival time of only 15 months. GBM are organized hierarchically with a small number of glioma-initiating cells (GICs), responsible for therapy resistance and tumor recurrence, suggesting that targeting GICs could improve treatment response. ONC201 is a first-in-class anti-tumor agent with clinical efficacy in some forms of high-grade gliomas. Here we test its efficacy against GBM in combination with radiation. METHODS Using patient-derived GBM lines and mouse models of GBM we test the effects of radiation and ONC201 on GBM self-renewalin vitro and survivalin vivo.A possible resistance mechanism is investigated using RNA-Sequencing. RESULTS Treatment of GBM cells with ONC201 reduced self-renewal, clonogenicity and cell viabilityin vitro. ONC201 exhibited anti-tumor effects on radioresistant GBM cells indicated by reduced self-renewal in secondary and tertiary glioma spheres. Combined treatment of ONC201 and radiation prolonged survival in syngeneic and patient-derived orthotopic xenograft mouse models of GBM. Subsequent transcriptome analyses after combined treatment revealed shifts in gene expression signatures related to quiescent GBM populations, GBM plasticity, and GBM stem cells. CONCLUSIONS Our findings suggest that combined treatment with the DRD2/3 antagonist ONC201 and radiation improves the efficacy of radiation against GBMin vitroandin vivothrough suppression of GICs without increasing toxicity in mouse models of GBM. A clinical assessment of this novel combination therapy against GBM is further warranted.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Le Zhang
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Nhan T Nguyen
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | | | - Phioanh Leia Nghiemphu
- Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurology at UCLA, United States
| | - Timothy F Cloughesy
- Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurology at UCLA, United States
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurosurgery at UCLA, United States
| | - Harley I Kornblum
- Jonsson Comprehensive Cancer Center at UCLA, United States; NPI-Semel Institute for Neuroscience & Human Behavior at UCLA, United States
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States; Jonsson Comprehensive Cancer Center at UCLA, United States.
| |
Collapse
|
15
|
Carballo GB, Ribeiro JH, Lopes GPDF, Ferrer VP, Dezonne RS, Pereira CM, Spohr TCLDSE. GANT-61 Induces Autophagy and Apoptosis in Glioblastoma Cells despite their heterogeneity. Cell Mol Neurobiol 2021; 41:1227-1244. [PMID: 32504326 DOI: 10.1007/s10571-020-00891-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
Glioblastoma (GBM) is the most common adult primary tumor of the CNS characterized by rapid growth and diffuse invasiveness into the brain parenchyma. The GBM resistance to chemotherapeutic drugs may be due to the presence of cancer stem cells (CSCs). The CSCs activate the same molecular pathways as healthy stem cells such as WNT, Sonic hedgehog (SHH), and Notch. Mutations or deregulations of those pathways play a key role in the proliferation and differentiation of their surrounding environment, leading to tumorigenesis. Here we investigated the effect of SHH signaling pathway inhibition in human GBM cells by using GANT-61, considering stem cell phenotype, cell proliferation, and cell death. Our results demonstrated that GANT-61 induces apoptosis and autophagy in GBM cells, by increasing the expression of LC3 II and cleaved caspase 3 and 9. Moreover, we observed that SHH signaling plays a crucial role in CSC phenotype maintenance, being also involved in the epithelial-mesenchymal transition (EMT) phenotype. We also noted that SHH pathway modulation can regulate cell proliferation as revealed through the analysis of Ki-67 and c-MYC expressions. We concluded that SHH signaling pathway inhibition may be a promising therapeutic approach to treat patients suffering from GBM refractory to traditional treatments.
Collapse
Affiliation(s)
- Gabriela Basile Carballo
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Jessica Honorato Ribeiro
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, Mol, Belgium
| | - Giselle Pinto de Faria Lopes
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Valéria Pereira Ferrer
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil
| | - Romulo Sperduto Dezonne
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade Do Grande Rio, Duque de Caxias, Brazil
| | - Cláudia Maria Pereira
- Programa de Pós-Graduação em Biomedicina Translacional, Universidade Do Grande Rio, Duque de Caxias, Brazil
| | - Tania Cristina Leite de Sampaio E Spohr
- Instituto Estadual Do Cérebro Paulo Niemeyer, Rua do Rezende 156, Rio de Janeiro, RJ, 20231-092, Brazil.
- Programa de Pós-Graduação em Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Freire-Benéitez V, Pomella N, Millner TO, Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V, Cutillas P, Marino S. Elucidation of the BMI1 interactome identifies novel regulatory roles in glioblastoma. NAR Cancer 2021; 3:zcab009. [PMID: 34316702 PMCID: PMC8210184 DOI: 10.1093/narcan/zcab009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intrinsic brain tumour in adults. Epigenetic mechanisms controlling normal brain development are often dysregulated in GBM. Among these, BMI1, a structural component of the Polycomb Repressive Complex 1 (PRC1), which promotes the H2AK119ub catalytic activity of Ring1B, is upregulated in GBM and its tumorigenic role has been shown in vitro and in vivo. Here, we have used protein and chromatin immunoprecipitation followed by mass spectrometry (MS) analysis to elucidate the protein composition of PRC1 in GBM and transcriptional silencing of defining interactors in primary patient-derived GIC lines to assess their functional impact on GBM biology. We identify novel regulatory functions in mRNA splicing and cholesterol transport which could represent novel targetable mechanisms in GBM.
Collapse
Affiliation(s)
- Verónica Freire-Benéitez
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Thomas O Millner
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Anaëlle A Dumas
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Vinothini Rajeeve
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Pedro Cutillas
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS UK
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, London, UK
| |
Collapse
|
17
|
Xia L, Yang F, Wu X, Li S, Kan C, Zheng H, Wang S. SHP2 inhibition enhances the anticancer effect of Osimertinib in EGFR T790M mutant lung adenocarcinoma by blocking CXCL8 loop mediated stemness. Cancer Cell Int 2021; 21:337. [PMID: 34217295 PMCID: PMC8254369 DOI: 10.1186/s12935-021-02056-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Additional epidermal growth factor receptor (EGFR) mutations confer the drug resistance to generations of EGFR targeted tyrosine kinase inhibitor (EGFR-TKI), posing a major challenge to developing effective treatment of lung adenocarcinoma (LUAD). The strategy of combining EGFR-TKI with other synergistic or sensitizing therapeutic agents are considered a promising approach in the era of precision medicine. Moreover, the role and mechanism of SHP2, which is involved in cell proliferation, cytokine production, stemness maintenance and drug resistance, has not been carefully explored in lung adenocarcinoma (LUAD). METHODS To evaluate the impact of SHP2 on the efficacy of EGFR T790M mutant LUAD cells to Osimertinib, SHP2 inhibition was tested in Osimertinib treated LUAD cells. Cell proliferation and stemness were tested in SHP2 modified LUAD cells. RNA sequencing was performed to explore the mechanism of SHP2 promoted stemness. RESULTS This study demonstrated that high SHP2 expression level correlates with poor outcome of LUAD patients, and SHP2 expression is enriched in Osimertinib resistant LUAD cells. SHP2 inhibition suppressed the cell proliferation and damaged the stemness of EGFR T790M mutant LUAD. SHP2 facilitates the secretion of CXCL8 cytokine from the EGFR T790M mutant LUAD cells, through a CXCL8-CXCR1/2 positive feedback loop that promotes stemness and tumorigenesis. Our results further show that SHP2 mediates CXCL8-CXCR1/2 feedback loop through ERK-AKT-NFκB and GSK3β-β-Catenin signaling in EGFR T790M mutant LUAD cells. CONCLUSIONS Our data revealed that SHP2 inhibition enhances the anti-cancer effect of Osimertinib in EGFR T790M mutant LUAD by blocking CXCL8-CXCR1/2 loop mediated stemness, which may help provide an alternative therapeutic option to enhance the clinical efficacy of osimertinib in EGFR T790M mutant LUAD patients.
Collapse
Affiliation(s)
- Leiming Xia
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
- Department of Hematology, The Third affiliated hospital of Anhui Medical University, Hefei, China
- Department of Hematology, The fourth affiliated hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Xiao Wu
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Suzhi Li
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Chen Kan
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Hong Zheng
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China
| | - Siying Wang
- Basic College of Medicine, Anhui Medical University, 81 Meishan road, Hefei, Anhui, China.
- Laboratory Center for Medical Science Education, Anhui Medical University, Hefei, China.
| |
Collapse
|
18
|
Guo X, Wang T, Huang G, Li R, Da Costa C, Li H, Lv S, Li N. Rediscovering potential molecular targets for glioma therapy through the analysis of the cell of origin, microenvironment, and metabolism. Curr Cancer Drug Targets 2021; 21:558-574. [PMID: 33949933 DOI: 10.2174/1568009621666210504091722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
Gliomas are the most common type of malignant brain tumors. Despite significant medical advances, gliomas remain incurable and are associated with high mortality. Although numerous biomarkers of diagnostic value have been identified and significant progress in the prognosis of the outcome has been made, the treatment has not been parallelly improved during the last three decades. This review summarizes and discusses three aspects of recent discoveries related to glioma, with the objective to highlight the advantages of glioma-specific drugs targeting the cell of origin, microenvironment, and metabolism. Given the heterogeneous nature of gliomas, various cell populations have been implicated as likely sources of the tumor. Depending on the mutation(s) acquired by the cells, it is believed that neuronal stem/progenitor cells, oligodendrocyte progenitor cells, mature neurons, and glial cells can initiate cell transformation into a malignant phenotype. The level of tumorigenicity appears to be inversely correlated with the maturation of a given cell population. The microenvironment of gliomas includes non-cancer cells such as immune cells, fibroblasts, and cells of blood vessels, as well as secreted molecules and the extracellular matrix, and all these components play a vital role during tumor initiation and progression. We will discuss in detail how the tumor microenvironment can stimulate and drive the transformation of non-tumor cell populations into tumor-supporting cells or glioma cells. Metabolic reprogramming is a key feature of gliomas and is thought to reflect the adaptation to the increased nutritional requirements of tumor cell proliferation, growth, and survival. Mutations in the IDH gene can shape metabolic reprogramming and may generate some vulnerabilities in glioma cells, such as abnormal lipid metabolism and sensitivity to endoplasmic reticulum stress (ERS). We will analyze the prominent metabolic features of malignant gliomas and the key pathways regulating glioma metabolism. This review is intended to provide a conceptual background for the development of glioma therapies based on the properties of tumor cell populations, microenvironment, and metabolism.
Collapse
Affiliation(s)
- Xiaoran Guo
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Tao Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Guohao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, No. 183 Xinqiao Street, Shapingba District, Chongqing City 400037. China
| | - Ruohan Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Clive Da Costa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT. United Kingdom
| | - Huafu Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| | - Shengqing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, No. 183 Xinqiao Street, Shapingba District, Chongqing City 400037. China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University (SYSU), No.628, Zhenyuan Rd, Guangming Dist., Shenzhen 518107. China
| |
Collapse
|
19
|
Lombard A, Digregorio M, Delcamp C, Rogister B, Piette C, Coppieters N. The Subventricular Zone, a Hideout for Adult and Pediatric High-Grade Glioma Stem Cells. Front Oncol 2021; 10:614930. [PMID: 33575218 PMCID: PMC7870981 DOI: 10.3389/fonc.2020.614930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Both in adult and children, high-grade gliomas (WHO grades III and IV) account for a high proportion of death due to cancer. This poor prognosis is a direct consequence of tumor recurrences occurring within few months despite a multimodal therapy consisting of a surgical resection followed by chemotherapy and radiotherapy. There is increasing evidence that glioma stem cells (GSCs) contribute to tumor recurrences. In fact, GSCs can migrate out of the tumor mass and reach the subventricular zone (SVZ), a neurogenic niche persisting after birth. Once nested in the SVZ, GSCs can escape a surgical intervention and resist to treatments. The present review will define GSCs and describe their similarities with neural stem cells, residents of the SVZ. The architectural organization of the SVZ will be described both for humans and rodents. The migratory routes taken by GSCs to reach the SVZ and the signaling pathways involved in their migration will also be described hereafter. In addition, we will debate the advantages of the microenvironment provided by the SVZ for GSCs and how this could contribute to tumor recurrences. Finally, we will discuss the clinical relevance of the SVZ in adult GBM and pediatric HGG and the therapeutic advantages of targeting that neurogenic region in both clinical situations.
Collapse
Affiliation(s)
- Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Clément Delcamp
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Pediatrics, Division of Hematology-Oncology, CHU of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
HGF/MET Signaling in Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207546. [PMID: 33066121 PMCID: PMC7590206 DOI: 10.3390/ijms21207546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) ligand and its receptor tyrosine kinase (RTK) mesenchymal-epithelial transition factor (MET) are important regulators of cellular processes such as proliferation, motility, angiogenesis, and tissue regeneration. In healthy adult somatic cells, this ligand and receptor pair is expressed at low levels and has little activity except when tissue injuries arise. In cancer cells, HGF/MET are often overexpressed, and this overexpression is found to correlate with tumorigenesis, metastasis, and poorer overall prognosis. This review focuses on the signaling of these molecules in the context of malignant brain tumors. RTK signaling pathways are among the most common and universally dysregulated pathways in gliomas. We focus on the role of HGF/MET in the following primary malignant brain tumors: astrocytomas, glioblastomas, oligodendrogliomas, ependymomas, and embryonal central nervous system tumors (including medulloblastomas and others). Brain metastasis, as well as current advances in targeted therapies, are also discussed.
Collapse
|
21
|
Reichel D, Sagong B, Teh J, Zhang Y, Wagner S, Wang H, Chung LWK, Butte P, Black KL, Yu JS, Perez JM. Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma. ACS NANO 2020; 14:8392-8408. [PMID: 32551496 PMCID: PMC7438253 DOI: 10.1021/acsnano.0c02509] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Bien Sagong
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
| | - Hongqiang Wang
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Leland W. K. Chung
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai
Medical Center, Los Angeles, CA 90048
| | - Pramod Butte
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - John S. Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center,
Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai
Medical Center, Los Angeles, CA 90048
| |
Collapse
|
22
|
Navarro Negredo P, Yeo RW, Brunet A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020; 27:202-223. [PMID: 32726579 DOI: 10.1016/j.stem.2020.07.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Lowry WE. Its written all over your face: The molecular and physiological consequences of aging skin. Mech Ageing Dev 2020; 190:111315. [PMID: 32681843 DOI: 10.1016/j.mad.2020.111315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 10/25/2022]
Abstract
Perhaps the most recognizable consequences of tissue aging are manifested in the skin. Hair graying and loss, telltale wrinkles, and age spots are indicative of physiological aging symptoms, many of which are analogous to processes in other tissues as well with less visible outcomes. While the study of skin aging has been conducted for decades, more recent work has illuminated many of the fundamental molecular and physiological causes of aging in the skin. Recent technological advances have allowed for the detection and quantification of a variety of physiological triggers that lead to aging in the skin and molecular methods have begun to determine the etiology of these phenotypic features. This review will attempt to summarize recent work in this area and provide some speculation about the next wave of studies.
Collapse
Affiliation(s)
- W E Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Division of Dermatology, David Geffen School of Medicine, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Molecular Biology Institute, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Broad Center for Regenerative Medicine, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States; Jonsson Comprehensive Cancer Center, UCLA, 621 Charles Young Drive South, Los Angeles, CA, 90095, United States.
| |
Collapse
|
24
|
Giorgi Silveira R, Perelló Ferrúa C, do Amaral CC, Fernandez Garcia T, de Souza KB, Nedel F. MicroRNAs expressed in neuronal differentiation and their associated pathways: Systematic review and bioinformatics analysis. Brain Res Bull 2020; 157:140-148. [PMID: 31945407 DOI: 10.1016/j.brainresbull.2020.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) plays an important role in the human brain from the embryonic period to adulthood. In this sense, they influence the development of neural stem cells (NSCs), regulating cellular differentiation and survival. Therefore, due to the importance of better comprehending the regulation of miRNAs in NSCs differentiation and the lack of studies that show the panorama of miRNAs and their signaling pathways studied until now we aimed to systematically review the literature to identify which miRNAs are currently being associated with neuronal differentiation and using bioinformatics analysis to identify their related pathways. A search was carried out in the following databases: Scientific Electronic Library Online (Scielo), National Library of Medicine National Institutes of Health (PubMed), Scopus, Web of Science and Science Direct, using the descriptors "(microRNA [MeSH])" and "(neurogenesis [MeSH])". From the articles found, two independent and previously calibrated reviewers, using the EndNote X7 (Thomson Reuters, New York, NY, US), selected those that concern miRNA in the development of NSCs, based on in vitro studies. After, bioinformatic analysis was performed using the software DIANA Tools, mirPath v.3. Subsequently, data was tabulated, analyzed and interpreted. Among the 106 miRNAs cited by included studies, 55 were up-regulated and 47 were down-regulated. The bioinformatics analysis revealed that among the up-regulated miRNAs there were 24 total and 6 union pathways, and 3 presented a statistically significant difference (p ≤ 0.05). Among the down-regulated miRNAs, 46 total and 13 union pathways were found, with 7 presenting a significant difference (p ≤ 0.05). The miR-125a-5p, miR-423-5p, miR-320 were the most frequently found miRNAs in the pathways determined by bioinformatics. In this study a panel of altered miRNAs in neuronal differentiation was created with their related pathways, which could be a step towards understanding the complex network of miRNAs in neuronal differentiation.
Collapse
Affiliation(s)
- Roberta Giorgi Silveira
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Camila Perelló Ferrúa
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Cainá Corrêa do Amaral
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Tiago Fernandez Garcia
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Karoline Brizola de Souza
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil
| | - Fernanda Nedel
- Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, 96010-901, Brazil.
| |
Collapse
|
25
|
Kernel Differential Subgraph Analysis to Reveal the Key Period Affecting Glioblastoma. Biomolecules 2020; 10:biom10020318. [PMID: 32079293 PMCID: PMC7072688 DOI: 10.3390/biom10020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is a fast-growing type of malignant primary brain tumor. To explore the mechanisms in GBM, complex biological networks are used to reveal crucial changes among different biological states, which reflect on the development of living organisms. It is critical to discover the kernel differential subgraph (KDS) that leads to drastic changes. However, identifying the KDS is similar to the Steiner Tree problem that is an NP-hard problem. In this paper, we developed a criterion to explore the KDS (CKDS), which considered the connectivity and scale of KDS, the topological difference of nodes and function relevance between genes in the KDS. The CKDS algorithm was applied to simulated datasets and three single-cell RNA sequencing (scRNA-seq) datasets including GBM, fetal human cortical neurons (FHCN) and neural differentiation. Then we performed the network topology and functional enrichment analyses on the extracted KDSs. Compared with the state-of-art methods, the CKDS algorithm outperformed on simulated datasets to discover the KDSs. In the GBM and FHCN, seventeen genes (one biomarker, nine regulatory genes, one driver genes, six therapeutic targets) and KEGG pathways in KDSs were strongly supported by literature mining that they were highly interrelated with GBM. Moreover, focused on GBM, there were fifteen genes (including ten regulatory genes, three driver genes, one biomarkers, one therapeutic target) and KEGG pathways found in the KDS of neural differentiation process from activated neural stem cells (aNSC) to neural progenitor cells (NPC), while few genes and no pathway were found in the period from NPC to astrocytes (Ast). These experiments indicated that the process from aNSC to NPC is a key differentiation period affecting the development of GBM. Therefore, the CKDS algorithm provides a unique perspective in identifying cell-type-specific genes and KDSs.
Collapse
|
26
|
The Plant-Derived Compound Resveratrol in Brain Cancer: A Review. Biomolecules 2020; 10:biom10010161. [PMID: 31963897 PMCID: PMC7023272 DOI: 10.3390/biom10010161] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Despite intensive research, malignant brain tumors are among the most difficult to treat due to high resistance to conventional therapeutic approaches. High-grade malignant gliomas, including glioblastoma and anaplastic astrocytoma, are among the most devastating and rapidly growing cancers. Despite the ability of standard treatment agents to achieve therapeutic concentrations in the brain, malignant gliomas are often resistant to alkylating agents. Resveratrol is a plant polyphenol occurring in nuts, berries, grapes, and red wine. Resveratrol crosses the blood‒brain barrier and may influence the central nervous system. Moreover, it influences the enzyme isocitrate dehydrogenase and, more importantly, the resistance to standard treatment via various mechanisms, such as O6-methylguanine methyltransferase. This review summarizes the anticancer effects of resveratrol in various types of brain cancer. Several in vitro and in vivo studies have presented promising results; however, further clinical research is necessary to prove the therapeutic efficacy of resveratrol in brain cancer treatment.
Collapse
|
27
|
Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, Li W, Furnari F, Rana TM. Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Rep 2020; 30:969-983.e4. [PMID: 31956073 PMCID: PMC7293422 DOI: 10.1016/j.celrep.2019.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
We perform a CRISPR-Cas9 genome-wide screen in glioblastoma stem cells and identify integrin αvβ5 as an internalization factor for Zika virus (ZIKV). Expression of αvβ5 is correlated with ZIKV susceptibility in various cells and tropism in developing human cerebral cortex. A blocking antibody against integrin αvβ5, but not αvβ3, efficiently inhibits ZIKV infection. ZIKV binds to cells but fails to internalize when treated with integrin αvβ5-blocking antibody. αvβ5 directly binds to ZIKV virions and activates focal adhesion kinase, which is required for ZIKV infection. Finally, αvβ5 blocking antibody or two inhibitors, SB273005 and cilengitide, reduces ZIKV infection and alleviates ZIKV-induced pathology in human neural stem cells and in mouse brain. Altogether, our findings identify integrin αvβ5 as an internalization factor for ZIKV, providing a promising therapeutic target, as well as two drug candidates for prophylactic use or treatments for ZIKV infections. Wang et al. show that Zika virus (ZIKV) uses integrin αvβ5 to infect neural stem cells. ZIKV infection can be inhibited by αvβ5 blocking antibody or inhibitors, SB273005 and cilengitide, in human neural stem cells and in mouse brain, providing drug candidates for prophylactic use or treatments for ZIKV infections.
Collapse
Affiliation(s)
- Shaobo Wang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Gianluigi Lichinchi
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Edwin H Yau
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Division of Hematology-Oncology, Department of Internal Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hui Hui
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wanyu Li
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Frank Furnari
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Yoon SJ, Park J, Jang DS, Kim HJ, Lee JH, Jo E, Choi RJ, Shim JK, Moon JH, Kim EH, Chang JH, Lee JH, Kang SG. Glioblastoma Cellular Origin and the Firework Pattern of Cancer Genesis from the Subventricular Zone. J Korean Neurosurg Soc 2019; 63:26-33. [PMID: 31592000 PMCID: PMC6952738 DOI: 10.3340/jkns.2019.0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a disease without any definite cure. Numerous approaches have been tested in efforts to conquer this brain disease, but patients invariably experience recurrence or develop resistance to treatment. New surgical tools, carefully chosen samples, and experimental methods are enabling discoveries at single-cell resolution. The present article reviews the cell-of-origin of isocitrate dehydrogenase (IDH)-wildtype GBM, beginning with the historical background for focusing on cellular origin and introducing the cancer genesis patterned on firework. The authors also review mutations associated with the senescence process in cells of the subventricular zone (SVZ), and biological validation of somatic mutations in a mouse SVZ model. Understanding GBM would facilitate research on the origin of other cancers and may catalyze the development of new management approaches or treatments against IDH-wildtype GBM.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Su Jang
- Medical Research Support Services, Yonsei University College of Medicine, Seoul, Korea.,Department of Sculpture, Hongik University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Euna Jo
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Kyung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Thompson EG, Sontheimer H. Acetylcholine Receptor Activation as a Modulator of Glioblastoma Invasion. Cells 2019; 8:cells8101203. [PMID: 31590360 PMCID: PMC6829263 DOI: 10.3390/cells8101203] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Grade IV astrocytomas, or glioblastomas (GBMs), are the most common malignant primary brain tumor in adults. The median GBM patient survival of 12–15 months has remained stagnant, in spite of treatment strategies, making GBMs a tremendous challenge clinically. This is at least in part due to the complex interaction of GBM cells with the brain microenvironment and their tendency to aggressively infiltrate normal brain tissue. GBMs frequently invade supratentorial brain regions that are richly innervated by neurotransmitter projections, most notably acetylcholine (ACh). Here, we asked whether ACh signaling influences the biology of GBMs. We examined the expression and function of known ACh receptors (AChRs) in large GBM datasets, as well as, human GBM cell lines and patient-derived xenograft lines. Using RNA-Seq data from the “The Cancer Genome Atlas” (TCGA), we confirmed the expression of AChRs and demonstrated the functionality of these receptors in GBM cells with time-lapse calcium imaging. AChR activation did not alter cell proliferation or migration, however, it significantly increased cell invasion through complex extracellular matrices. This was due to the enhanced activity of matrix metalloproteinase-9 (MMP-9) from GBM cells, which we found to be dependent on an intracellular calcium-dependent mechanism. Consistent with these findings, AChRs were significantly upregulated in regions of GBM infiltration in situ (Ivy Glioblastoma Atlas Project) and elevated expression of muscarinic AChR M3 correlated with reduced patient survival (TCGA). Data from the Repository for Molecular Brain Neoplasia Data (REMBRANDT) dataset also showed the co-expression of choline transporters, choline acetyltransferase, and vesicular acetylcholine transporters, suggesting that GBMs express all the proteins required for ACh synthesis and release. These findings identify ACh as a modulator of GBM behavior and posit that GBMs may utilize ACh as an autocrine signaling molecule.
Collapse
Affiliation(s)
- Emily G Thompson
- Glial Biology in Health, Disease and Cancer Center, Fralin Biomedical Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Harald Sontheimer
- Glial Biology in Health, Disease and Cancer Center, Fralin Biomedical Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
30
|
Wang Y, Hoinka J, Przytycka TM. Subpopulation Detection and Their Comparative Analysis across Single-Cell Experiments with scPopCorn. Cell Syst 2019; 8:506-513.e5. [PMID: 31229559 DOI: 10.1016/j.cels.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 12/28/2022]
Abstract
The identification of subpopulations of cells in single-cell experiments, and the comparison of such subpopulations across experiments are among the most frequently performed analysis of single-cell data. This important task still awaits a fully satisfying computational solution. To address this need, we introduce a computational method, single-cell subpopulations comparison (scPopCorn). Leveraging the information from all input datasets, scPopCorn performs these two tasks simultaneously by optimizing a joint objective function. The optimization involves a measure of cohesiveness of a cell population, which combined with Google's personalized PageRank approach, guides subpopulation detection, while a measure of cell-to-cell similarity is used to guide the mapping. scPopCorn not only outperforms currently used approaches but also introduces mathematical concepts that can serve as stepping stones to improve other tools.
Collapse
Affiliation(s)
- Yijie Wang
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Jan Hoinka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA.
| |
Collapse
|
31
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
32
|
Tavares‐Valente D, Granja S, Baltazar F, Queirós O. Bioenergetic modulators hamper cancer cell viability and enhance response to chemotherapy. J Cell Mol Med 2018; 22:3782-3794. [PMID: 29845734 PMCID: PMC6050502 DOI: 10.1111/jcmm.13642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
Gliomas are characterized by a marked glycolytic metabolism with a consequent production of massive amounts of lactate, even in the presence of normal levels of oxygen, associated to increased invasion capacity and to higher resistance to conventional treatment. This work aimed to understand how the metabolic modulation can influence tumour aggressive features and its potential to be used as complementary therapy. We assessed the effect of bioenergetic modulators (BMs) targeting different metabolic pathways in glioma cell characteristics. The in vivo effect of BMs was evaluated using the chicken chorioallantoic membrane model. Additionally, the effect of pre-treatment with BMs in the response to the antitumour drug temozolomide (TMZ) was analysed in vitro. Cell treatment with the BMs induced a decrease in cell viability and in migratory/invasion abilities, as well as modifications in metabolic parameters (glucose, lactate and ATP) and increased the cytotoxicity of the conventional drug TMZ. Furthermore, all BMs decreased the tumour growth and the number of blood vessels in an in vivo model. Our results demonstrate that metabolic modulation has the potential to be used as therapy to decrease the aggressiveness of the tumours or to be combined with conventional drugs used in glioma treatment.
Collapse
Affiliation(s)
- Diana Tavares‐Valente
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
- Department of SciencesIINFACTS ‐ Institute of Research and Advanced Training in Health Sciences and TechnologiesCESPU, CRLUniversity Institute of Health Sciences (IUCS)GandraPortugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoCampus de Gualtar4710‐057BragaPortugal
| | - Odília Queirós
- Department of SciencesIINFACTS ‐ Institute of Research and Advanced Training in Health Sciences and TechnologiesCESPU, CRLUniversity Institute of Health Sciences (IUCS)GandraPortugal
| |
Collapse
|
33
|
Tse MK, Hung TS, Chan CM, Wong T, Dorothea M, Leclerc C, Moreau M, Miller AL, Webb SE. Identification of Ca 2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1352-1368. [PMID: 29931586 DOI: 10.1007/s11427-018-9315-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/03/2018] [Indexed: 01/30/2023]
Abstract
The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.
Collapse
Affiliation(s)
- Man Kit Tse
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ting Shing Hung
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Tiffany Wong
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Mike Dorothea
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, F-31062, France
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
34
|
Henry A, Nokin MJ, Leroi N, Lallemand F, Lambert J, Goffart N, Roncarati P, Bianchi E, Peixoto P, Blomme A, Turtoi A, Peulen O, Habraken Y, Scholtes F, Martinive P, Delvenne P, Rogister B, Castronovo V, Bellahcène A. New role of osteopontin in DNA repair and impact on human glioblastoma radiosensitivity. Oncotarget 2018; 7:63708-63721. [PMID: 27563812 PMCID: PMC5325397 DOI: 10.18632/oncotarget.11483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/05/2016] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma (GBM) represents the most aggressive and common solid human brain tumor. We have recently demonstrated the importance of osteopontin (OPN) in the acquisition/maintenance of stemness characters and tumorigenicity of glioma initiating cells. Consultation of publicly available TCGA database indicated that high OPN expression correlated with poor survival in GBM patients. In this study, we explored the role of OPN in GBM radioresistance using an OPN-depletion strategy in U87-MG, U87-MG vIII and U251-MG human GBM cell lines. Clonogenic experiments showed that OPN-depleted GBM cells were sensitized to irradiation. In comet assays, these cells displayed higher amounts of unrepaired DNA fragments post-irradiation when compared to control. We next evaluated the phosphorylation of key markers of DNA double-strand break repair pathway. Activating phosphorylation of H2AX, ATM and 53BP1 was significantly decreased in OPN-deficient cells. The addition of recombinant OPN prior to irradiation rescued phospho-H2AX foci formation thus establishing a new link between DNA repair and OPN expression in GBM cells. Finally, OPN knockdown improved mice survival and induced a significant reduction of heterotopic human GBM xenograft when combined with radiotherapy. This study reveals a new function of OPN in DNA damage repair process post-irradiation thus further confirming its major role in GBM aggressive disease.
Collapse
Affiliation(s)
- Aurélie Henry
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Natacha Leroi
- Biology and Tumor Development Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - François Lallemand
- Biology and Tumor Development Laboratory, GIGA Cancer, University of Liège, Liège, Belgium.,Department of Radiology, University Hospital Liège, Liège, Belgium.,Cyclotron Research Center, University Hospital Liège, Liège, Belgium
| | | | - Nicolas Goffart
- GIGA Neurosciences, University of Liège, Liège, Belgium.,Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands
| | | | - Elettra Bianchi
- Department of Pathology, University Hospital Liège, Liège, Belgium
| | - Paul Peixoto
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Arnaud Blomme
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Yvette Habraken
- Virology and Immunology Laboratory, University of Liège, Liège, Belgium
| | - Félix Scholtes
- Department of Neurosurgery, University Hospital Liège, Liège, Belgium
| | | | | | | | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability. Oncotarget 2018; 7:66865-66879. [PMID: 27589691 PMCID: PMC5341843 DOI: 10.18632/oncotarget.11784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM.
Collapse
|
36
|
Ferenczi EA, Saadi A, Bhattacharyya S, Berkowitz AL. Glioblastoma arising within sites of encephalomalacia from cerebrovascular insult: two cases and a review of the literature. J Clin Neurosci 2018; 50:110-115. [PMID: 29422364 DOI: 10.1016/j.jocn.2018.01.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common primary parenchymal brain malignancy, with median survival of less than one year. While there are likely multiple predisposing genetic and environmental factors in glioblastoma formation, chronic inflammation resulting from non-traumatic vascular brain injury is one proposed risk factor for oncogenesis. Here, we report two instances of glioblastoma arising within areas of encephalomalacia caused by remote vascular insults (one following aneurysmal subarachnoid hemorrhage and one following ischemic infarction), review the literature associating glioblastoma with prior brain injury, and discuss potential mechanisms for malignant transformation in injured brain tissue.
Collapse
Affiliation(s)
- Emily A Ferenczi
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Altaf Saadi
- National Clinical Scholars Program, University of California Los Angeles, 10940 Wilshire Blvd, Los Angeles, CA 90045, USA
| | - Shamik Bhattacharyya
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Aaron L Berkowitz
- Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
37
|
Overexpression of transient receptor potential mucolipin-2 ion channels in gliomas: role in tumor growth and progression. Oncotarget 2017; 7:43654-43668. [PMID: 27248469 PMCID: PMC5190050 DOI: 10.18632/oncotarget.9661] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/01/2016] [Indexed: 11/25/2022] Open
Abstract
The Transient Receptor Potential (TRP) superfamily consists of cation-selective and non-selective ion channels playing an important role both in sensory physiology and in physiopathology in several complex diseases including cancers. Among TRP family, the mucolipin (TRPML1, −2, and −3) channels represent a distinct subfamily of endosome/lysosome Ca2+ channel proteins. Loss-of-function mutations in human TRPML-1 gene cause a neurodegenerative disease, Mucolipidosis Type IV, whereas at present no pathology has been associated to human TRPML-2 channels. Herein we found that human TRPML-2 is expressed both in normal astrocytes and neural stem/progenitor cells. By quantitative RT-PCR, western blot, cytofluorimetric and immunohistochemistry analysis we also demonstrated that TRPML-2 mRNA and protein are expressed at different levels in glioma tissues and high-grade glioma cell lines of astrocytic origin. TRPML-2 mRNA and protein levels increased with the pathological grade, starting from pylocitic astrocytoma (grade I) to glioblastoma (grade IV). Moreover, by RNA interference, we demonstrated a role played by TRPML-2 in survival and proliferation of glioma cell lines. In fact, knock-down of TRPML-2 inhibited the viability, altered the cell cycle, reduced the proliferation and induced apoptotic cell death in glioma cell lines. The DNA damage and apoptosis induced by TRPML-2 loss increased Ser139 H2AX phosphorylation and induced caspase-3 activation; furthermore, knock-down of TRPML-2 in T98 and U251 glioma cell lines completely abrogated Akt and Erk1/2 phosphorylation, as compared to untreated cells. Overall, the high TRPML-2 expression in glioma cells resulted in increased survival and proliferation signaling, suggesting a pro-tumorigenic role played by TRPML-2 in glioma progression.
Collapse
|
38
|
mTOR-Dependent Cell Proliferation in the Brain. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7082696. [PMID: 29259984 PMCID: PMC5702949 DOI: 10.1155/2017/7082696] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/22/2017] [Indexed: 02/08/2023]
Abstract
The mammalian Target of Rapamycin (mTOR) is a molecular complex equipped with kinase activity which controls cell viability being key in the PI3K/PTEN/Akt pathway. mTOR acts by integrating a number of environmental stimuli to regulate cell growth, proliferation, autophagy, and protein synthesis. These effects are based on the modulation of different metabolic pathways. Upregulation of mTOR associates with various pathological conditions, such as obesity, neurodegeneration, and brain tumors. This is the case of high-grade gliomas with a high propensity to proliferation and tissue invasion. Glioblastoma Multiforme (GBM) is a WHO grade IV malignant, aggressive, and lethal glioma. To date, a few treatments are available although the outcome of GBM patients remains poor. Experimental and pathological findings suggest that mTOR upregulation plays a major role in determining an aggressive phenotype, thus determining relapse and chemoresistance. Among several activities, mTOR-induced autophagy suppression is key in GBM malignancy. In this article, we discuss recent evidence about mTOR signaling and its role in normal brain development and pathological conditions, with a special emphasis on its role in GBM.
Collapse
|
39
|
Pediatric glioblastoma cells inhibit neurogenesis and promote astrogenesis, phenotypic transformation and migration of human neural progenitor cells within cocultures. Exp Cell Res 2017; 362:159-171. [PMID: 29129566 DOI: 10.1016/j.yexcr.2017.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022]
Abstract
Neural progenitor cell (NPC) fate is influenced by a variety of biological cues elicited from the surrounding microenvironment and recent studies suggest their possible role in pediatric glioblastoma multiforme (GBM) development. Since a few GBM cells also display NPC characteristics, it is not clear whether NPCs transform to tumor cell phenotype leading to the onset of GBM formation, or NPCs migrate to developing tumor sites in response to paracrine signaling from GBM cells. Elucidating the paracrine interactions between GBM cells and NPCs in vivo is challenging due to the inherent complexity of the CNS. Here, we investigated the interactions between human NPCs (ReNcell) and human pediatric GBM-derived cells (SJ-GBM2) using a Transwell® coculture setup to assess the effects of GBM cells on ReNcells (cytokine and chemokine release, viability, phenotype, differentiation, migration). Standalone ReNcell or GBM cultures served as controls. Qualitative and quantitative results from ELISA®, Live/Dead® and BrdU assays, immunofluorescence labeling, western blot analysis, and scratch test suggests that although ReNcell viability remained unaffected in the presence of pediatric GBM cells, their morphology, phenotype, differentiation patterns, neurite outgrowth, migration patterns (average speed, distance, number of cells) and GSK-3β expression were significantly influenced. The cumulative distance migrated by the cells in each condition was fit to Furth's formula, derived formally from Ornstein-Uhlenbeck process. ReNcell differentiation into neural lineage was compromised and astrogenesis promoted within cocultures. Such coculture platform could be extended to identify the specific molecules contributing to the observed phenomena, to investigate whether NPCs could be transplanted to replace lesions of excised tumor sites, and to elucidate the underlying molecular pathways involved in GBM-NPC interactions within the tumor microenvironment.
Collapse
|
40
|
Raysi Dehcordi S, Ricci A, Di Vitantonio H, De Paulis D, Luzzi S, Palumbo P, Cinque B, Tempesta D, Coletti G, Cipolloni G, Cifone MG, Galzio R. Stemness Marker Detection in the Periphery of Glioblastoma and Ability of Glioblastoma to Generate Glioma Stem Cells: Clinical Correlations. World Neurosurg 2017; 105:895-905. [PMID: 28559081 DOI: 10.1016/j.wneu.2017.05.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recent studies suggested glioma stem cells (GSCs) are key contributors to therapeutic resistance of glioblastoma multiforme (GBM) and are responsible for GBM recurrence. METHODS We characterized the phenotype of cancer cells in the core and periphery of 20 GBM tumors, correlating clinical outcome to the ability to form GSCs and distinguishing survival based on Ki-67 staining. RESULTS Similar levels of methylguanine-deoxyribonucleic acid methyltransferase were found in the core and periphery of GBM tumors, whereas Ki-67 was reduced in the periphery. Similar levels of stemness markers in the periphery and in the core of all GBM cultures were found. Only cells expressing >30% SOX2 levels were able to produce neurospheres. Immunophenotypic analysis showed higher levels of stemness markers in GSC cultures than in all GBM primary cultures. GSC in vitro production and coexpression of Ki-67 >5% negatively correlated with outcome. CONCLUSIONS Not all GBM cultures can generate GSCs, and this capacity is linked to >30% SOX2 levels. The ability to form spheres negatively correlated to survival, and the detection of >5% Ki-67 levels may be useful to identify patients at risk of disease progression. The presence of GSC-/SOX-2-/Ki-67- cells may be regarded as a new prognostic factor. The presence of stemness markers and methylguanine-deoxyribonucleic acid methyltransferase in the periphery of GBM tumors may be the reason for treatment failure and recurrence. Development of stem cell-targeted therapies and elaboration of more aggressive treatments represent an opportunity to eliminate the GBM source and the nidus of recurrence.
Collapse
Affiliation(s)
- Soheila Raysi Dehcordi
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alessandro Ricci
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy
| | | | - Danilo De Paulis
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy
| | - Sabino Luzzi
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gino Coletti
- Operative Unit of Pathology, San Salvatore Hospital, L'Aquila, Italy
| | | | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Renato Galzio
- Operative Unit of Neurosurgery, San Salvatore Hospital, L'Aquila, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
41
|
Schwartzbaum J, Edlinger M, Zigmont V, Stattin P, Rempala GA, Nagel G, Hammar N, Ulmer H, Föger B, Walldius G, Manjer J, Malmström H, Feychting M. Associations between prediagnostic blood glucose levels, diabetes, and glioma. Sci Rep 2017; 7:1436. [PMID: 28469238 PMCID: PMC5431098 DOI: 10.1038/s41598-017-01553-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
Previous literature indicates that pre-diagnostic diabetes and blood glucose levels are inversely related to glioma risk. To replicate these findings and determine whether they could be attributed to excess glucose consumption by the preclinical tumour, we used data from the Apolipoprotein MOrtality RISk (AMORIS) (n = 528,580) and the Metabolic syndrome and Cancer project (Me-Can) cohorts (n = 269,365). We identified individuals who were followed for a maximum of 15 years after their first blood glucose test until glioma diagnosis, death, emigration or the end of follow-up. Hazard ratios (HRs), 95% confidence intervals (CIs) and their interactions with time were estimated using Cox time-dependent regression. As expected, pre-diagnostic blood glucose levels were inversely related to glioma risk (AMORIS, Ptrend = 0.002; Me-Can, Ptrend = 0.04) and pre-diagnostic diabetes (AMORIS, HR = 0.30, 95% CI 0.17 to 0.53). During the year before diagnosis, blood glucose was inversely associated with glioma in the AMORIS (HR = 0.78, 95% CI 0.66 to 0.93) but not the Me-Can cohort (HR = 0.99, 95% CI 0.63 to 1.56). This AMORIS result is consistent with our hypothesis that excess glucose consumption by the preclinical tumour accounts for the inverse association between blood glucose and glioma. We discuss additional hypothetical mechanisms that may explain our paradoxical findings.
Collapse
Affiliation(s)
- Judith Schwartzbaum
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America. .,Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, 43210, United States of America.
| | - Michael Edlinger
- Department of Medical Statistics, Informatics, and Health Economics, Medical University, Innsbruck, Austria.
| | - Victoria Zigmont
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America.,Department of Public Health, Southern Connecticut State University, New Haven, CT, 06515, United States of America
| | - Pär Stattin
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Grzegorz A Rempala
- Division of Epidemiology, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America.,Division of Biostatistics, College of Public Health, Ohio State University, Columbus, Ohio, 43210, United States of America.,Mathematical Biosciences Institute, Columbus, Ohio, 43210, United States of America
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.,Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Niklas Hammar
- Medical Evidence & Observational Research, Global Medical Affairs, Astra Zeneca R&D, Mölndal, 43150, Sweden.,Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics, and Health Economics, Medical University, Innsbruck, Austria
| | - Bernhard Föger
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Göran Walldius
- Unit of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Jonas Manjer
- Department of Surgery, Skåne University Hospital, Malmö, Sweden
| | - Håkan Malmström
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
| |
Collapse
|
42
|
Association of MRI-classified subventricular regions with survival outcomes in patients with anaplastic glioma. Clin Radiol 2017; 72:426.e1-426.e6. [DOI: 10.1016/j.crad.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/17/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022]
|
43
|
Abstract
Macrophage migration inhibitory factor (MIF) plays an important role in supporting the proliferation and/or survival of murine neural stem/progenitor cells (NSPCs); however, the downstream effectors of this factor remain unknown. Here, we show that MIF increases the expression of Pax6 and Chd7 in NSPCs in vitro. During neural development, the chromatin remodeling factor Chd7 (chromatin helicase-DNA-binding protein 7) is expressed in the ventricular zone of the telencephalon of mouse brain at embryonic day 14.5, as well as in cultured NSPCs. Retroviral overexpression of Pax6 in NSPCs increased Chd7 gene expression. Lentivirally-expressed Chd7 shRNA suppressed cell proliferation and neurosphere formation, and inhibited neurogenesis in vitro, while decreasing gene expression of Hes5 and N-myc. In addition, CHD7 overexpression increased cell proliferation in human embryonic stem cell-derived NSPCs (ES-NSPCs). In Chd7 mutant fetal mouse brains, there were fewer intermediate progenitor cells (IPCs) compared to wildtype littermates, indicating that Chd7 contributes to neurogenesis in the early developmental mouse brain. Furthermore, in silico database analysis showed that, among members of the CHD family, CHD7 is highly expressed in human gliomas. Interestingly, high levels of CHD7 gene expression in human glioma initiating cells (GICs) compared to normal astrocytes were revealed and gene silencing of CHD7 decreased GIC proliferation. Collectively, our data demonstrate that CHD7 is an important factor in the proliferation and stemness maintenance of NSPCs, and CHD7 is a promising therapeutic target for the treatment of gliomas.
Collapse
|
44
|
Denicolaï E, Tabouret E, Colin C, Metellus P, Nanni I, Boucard C, Tchoghandjian A, Meyronet D, Baeza-Kallee N, Chinot O, Figarella-Branger D. Molecular heterogeneity of glioblastomas: does location matter? Oncotarget 2016; 7:902-13. [PMID: 26637806 PMCID: PMC4808041 DOI: 10.18632/oncotarget.6433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/20/2015] [Indexed: 02/03/2023] Open
Abstract
Glioblastomas in adults are highly heterogeneous tumors that can develop throughout the brain. To date no predictive-location marker has been identified. We previously derived two glioblastoma cell lines from cortical and periventricular locations and demonstrated distinct transcriptomic profiles. Based on these preliminary results, the aim of this study was to correlate glioblastoma locations with the expression of ten selected genes (VEGFC, FLT4, MET, HGF, CHI3L1, PROM1, NOTCH1, DLL3, PDGFRA, BCAN). Fifty nine patients with newly diagnosed glioblastomas were retrospectively included. Tumors were classified into cortical and periventricular locations, which were subsequently segregated according to cerebral lobes involved: cortical fronto-parietal (C-FP), cortical temporal (C-T), periventricular fronto-parietal (PV-FP), periventricular temporal (PV-T), and periventricular occipital (PV-O). Gene expression levels were determined using RT-qPCR. Compared to cortical glioblastomas, periventricular glioblastomas were characterized by a higher expression of two mesenchymal genes, VEGFC (p = 0.001) and HGF (p = 0.001). Among cortical locations, gene expressions were homogeneous. In contrast, periventricular locations exhibited distinct expression profiles. PV-T tumors were associated with higher expression of two proneural and cancer stem cell genes, NOTCH1 (p = 0.028) and PROM1 (p = 0.033) while PV-FP tumors were characterized by high expression of a mesenchymal gene, CHI3L1 (p = 0.006). Protein expression of NOTCH1 was correlated with RNA expression levels. PV-O glioblastomas were associated with lower expression of VEGFC (p = 0.032) than other periventricular locations, whereas MET overexpression remained exceptional. These data suggest a differential gene expression profile according to initial glioblastoma location.
Collapse
Affiliation(s)
- Emilie Denicolaï
- Aix-Marseille University, CRO2 UMR 911, Inserm UMR_S 911, Marseille, 13385, France
| | - Emeline Tabouret
- Aix-Marseille University, CRO2 UMR 911, Inserm UMR_S 911, Marseille, 13385, France.,AP-HM, Timone Hospital, Department of Neuro-Oncology, Marseille, 13385, France
| | - Carole Colin
- Aix-Marseille University, CRO2 UMR 911, Inserm UMR_S 911, Marseille, 13385, France
| | - Philippe Metellus
- AP-HM, Timone Hospital, Department of Neuro-Surgery, Marseille, 13385, France
| | - Isabelle Nanni
- AP-HM, North Hospital, Transfer Laboratory, Marseille, 13915, France
| | - Celine Boucard
- AP-HM, Timone Hospital, Department of Neuro-Oncology, Marseille, 13385, France
| | | | - David Meyronet
- Hospices Civils de Lyon, Centre de Pathologie et de Neuropathologie Est, Lyon, 69677, France
| | | | - Olivier Chinot
- Aix-Marseille University, CRO2 UMR 911, Inserm UMR_S 911, Marseille, 13385, France.,AP-HM, Timone Hospital, Department of Neuro-Oncology, Marseille, 13385, France
| | - Dominique Figarella-Branger
- Aix-Marseille University, CRO2 UMR 911, Inserm UMR_S 911, Marseille, 13385, France.,AP-HM, Timone Hospital, Department of Anatomopathology, Marseille, 13385, France
| |
Collapse
|
45
|
Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. Tumour Biol 2016; 37:14949-14960. [PMID: 27651158 DOI: 10.1007/s13277-016-5314-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.
Collapse
|
46
|
Ferreyra Solari NE, Belforte FS, Canedo L, Videla-Richardson GA, Espinosa JM, Rossi M, Serna E, Riudavets MA, Martinetto H, Sevlever G, Perez-Castro C. The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis. Cancer Res 2016; 76:5383-94. [PMID: 27406830 DOI: 10.1158/0008-5472.can-15-3159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/24/2016] [Indexed: 12/17/2022]
Abstract
KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR.
Collapse
Affiliation(s)
- Nazarena E Ferreyra Solari
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Fiorella S Belforte
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lucía Canedo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Guillermo A Videla-Richardson
- Laboratorio de Investigación aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eva Serna
- Servicio Análisis Multigénico, Unidad Central de Investigación, Facultad de Medicina, Universidad de Valencia, Valencia, España
| | - Miguel A Riudavets
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina. Laboratorio de Histopatología, Cuerpo Médico Forense, Tribunal Supremo de Justicia, Buenos Aires, Argentina
| | - Horacio Martinetto
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
47
|
Ghosh D, Ulasov IV, Chen L, Harkins LE, Wallenborg K, Hothi P, Rostad S, Hood L, Cobbs CS. TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme. Stem Cells 2016; 34:2276-89. [PMID: 27354342 DOI: 10.1002/stem.2411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/09/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date, no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations, justifying the needs for additional CSC markers for better characterization. Employing targeted mass spectrometry, here we present five cell-surface markers HMOX1, SLC16A1, CADM1, SCAMP3, and CLCC1 which were found to be elevated in CSCs relative to healthy neural stem cells (NSCs). Transcriptomic analyses of REMBRANDT and TCGA compendiums also indicated elevated expression of these markers in GBM relative to controls and non-GBM diseases. Two markers SLC16A1 and HMOX1 were found to be expressed among pseudopalisading cells that reside in the hypoxic region of GBM, substantiating the histopathological hallmarks of GBM. In a prospective study (N = 8) we confirmed the surface expression of HMOX1 on freshly isolated primary GBM cells (P0). Employing functional assays that are known to evaluate stemness, we demonstrate that elevated HMOX1 expression is associated with stemness in GBM and can be modulated through TGFβ. siRNA-mediated silencing of HMOX1 impaired GBM invasion-a phenomenon related to poor prognosis. In addition, surgical resection of GBM tumors caused declines (18% ± 5.1SEM) in the level of plasma HMOX1 as measured by ELISA, in 8/10 GBM patients. These findings indicate that HMOX1 is a robust predictor of GBM CSC stemness and pathogenesis. Further understanding of the role of HMOX1 in GBM may uncover novel therapeutic approaches. Stem Cells 2016;34:2276-2289.
Collapse
Affiliation(s)
- Dhiman Ghosh
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle. .,Institute for Systems Biology, Seattle.
| | - Ilya V Ulasov
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - LiPing Chen
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - Lualhati E Harkins
- Department of Pathology and Laboratory Medicine, Birmingham Veterans Hospital, Birmingham
| | | | - Parvinder Hothi
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle
| | - Steven Rostad
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle.,CellNetix Pathology and Laboratories, Seattle
| | | | - Charles S Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle. .,Institute for Systems Biology, Seattle.
| |
Collapse
|
48
|
Goffart N, Lombard A, Lallemand F, Kroonen J, Nassen J, Di Valentin E, Berendsen S, Dedobbeleer M, Willems E, Robe P, Bours V, Martin D, Martinive P, Maquet P, Rogister B. CXCL12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro Oncol 2016; 19:66-77. [PMID: 27370398 DOI: 10.1093/neuonc/now136] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Patients with glioblastoma (GBM) have an overall median survival of 15 months despite multimodal therapy. These catastrophic survival rates are to be correlated to systematic relapses that might arise from remaining glioblastoma stem cells (GSCs) left behind after surgery. In this line, it has recently been demonstrated that GSCs are able to escape the tumor mass and preferentially colonize the adult subventricular zone (SVZ). At a distance from the initial tumor site, these GSCs might therefore represent a high-quality model of clinical resilience to therapy and cancer relapses as they specifically retain tumor-initiating abilities. METHOD While relying on recent findings that have validated the existence of GSCs in the human SVZ, we questioned the role of the SVZ niche as a potential GSC reservoir involved in therapeutic failure. RESULTS Our results demonstrate that (i) GSCs located in the SVZ are specifically resistant to radiation in vivo, (ii) these cells display enhanced mesenchymal roots that are known to be associated with cancer radioresistance, (iii) these mesenchymal traits are specifically upregulated by CXCL12 (stromal cell-derived factor-1) both in vitro and in the SVZ environment, (iv) the amount of SVZ-released CXCL12 mediates GBM resistance to radiation in vitro, and (v) interferes with the CXCL12/CXCR4 signalling system, allowing weakening of the tumor mesenchymal roots and radiosensitizing SVZ-nested GBM cells. CONCLUSION Together, these data provide evidence on how the adult SVZ environment, through the release of CXCL12, supports GBM therapeutic failure and potential tumor relapse.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Arnaud Lombard
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - François Lallemand
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Jérôme Kroonen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Jessica Nassen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Emmanuel Di Valentin
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Sharon Berendsen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Estelle Willems
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Pierre Robe
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Vincent Bours
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Didier Martin
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Philippe Martinive
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Pierre Maquet
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium (N.G., A.L., J.N., M.D., E.W., B.R.); Department of Neurosurgery, CHU and University of Liège, Liège, Belgium (A.L., D.M.); Department of Radiotherapy and Oncology, CHU and University of Liège, Liège, Belgium (F.L., P.M.); Laboratory of Tumor and Development Biology, GIGA-Cancer Research Center, University of Liège, Liège, Belgium (F.L.); Cyclotron Research Centre, University of Liège, Liège, Belgium (F.L.); Human Genetics, CHU and University of Liège, Liège, Belgium (N.G., J.K., V.B.); Department of Neurosurgery, Brain Center Rudolf Magnus Institute of Neurosciences and the T&P Bohnenn Laboratory for Neuro-Oncology University Medical Center, Utrecht, The Netherlands (N.G., J.K., S.B., P.R.); GIGA-Viral Vector Plateform, University of Liège, Liège, Belgium (E.D.V.); Department of Neurology, CHU and University of Liège, Liège, Belgium (P.M., B.R.)
| |
Collapse
|
49
|
Anatomical Involvement of the Subventricular Zone Predicts Poor Survival Outcome in Low-Grade Astrocytomas. PLoS One 2016; 11:e0154539. [PMID: 27120204 PMCID: PMC4847798 DOI: 10.1371/journal.pone.0154539] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/14/2016] [Indexed: 01/01/2023] Open
Abstract
The subventricular zone (SVZ) has been implicated in the origination, development, and biological behavior of gliomas. Tumor-SVZ contact is also postulated to be a poor prognostic factor in glioblastomas. We aimed to evaluate the prognostic consequence of the anatomical involvement of low-grade gliomas with the SVZ. To that end, we reviewed 143 patients with diffuse astrocytomas, and tumor lesions were manually delineated on magnetic resonance images. We initially investigated the prognostic role of SVZ contact in all patients. Additionally, we investigated the influence of the anatomical proximity of the tumor lesion centroids to the SVZ in the SVZ-involved patient cohorts, as well as location within the SVZ. We found SVZ contact with tumors to be a significant prognostic factor of overall survival in all patients with diffuse astrocytomas (p = 0.027). In the SVZ-involved cohort, a shorter distance from the tumor centroid to the SVZ (≤30 mm) correlated with shorter overall survival (p = 0.022) on univariate analysis. However, there was no significant difference in overall survival with respect to the SVZ region involved with the tumor (p = 0.930). Multivariate analysis showed that a shorter distance between the tumor centroid and the SVZ (p = 0.039) was significantly associated with poor overall survival in SVZ-involved patients. Hence, this study helps establish the prognostic role of the anatomical interaction of tumors with the SVZ in low-grade astrocytomas.
Collapse
|
50
|
DUBOIS NADEGE, WILLEMS MARIE, NGUYEN-KHAC MINHTUAN, KROONEN JEROME, GOFFART NICOLAS, DEPREZ MANUEL, BOURS VINCENT, ROBE PIERREA. Constitutive activation of casein kinase 2 in glioblastomas: Absence of class restriction and broad therapeutic potential. Int J Oncol 2016; 48:2445-52. [DOI: 10.3892/ijo.2016.3490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 11/06/2022] Open
|