1
|
Klemke M, Veit N, Schmidt-Wolf I, Bundschuh RA, Essler M, Kreppel B. Regulation of PDL-1 expression in thyroid carcinoma cells by tumor cell derived cytokines activating STAT3. Immunol Res 2024; 73:20. [PMID: 39699782 DOI: 10.1007/s12026-024-09552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Matthias Klemke
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nadine Veit
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ingo Schmidt-Wolf
- Center for Integrated Oncology (CIO), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Barbara Kreppel
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
2
|
Attiq A, Afzal S, Wahab HA, Ahmad W, Kandeel M, Almofti YA, Alameen AO, Wu YS. Cytokine Storm-Induced Thyroid Dysfunction in COVID-19: Insights into Pathogenesis and Therapeutic Approaches. Drug Des Devel Ther 2024; 18:4215-4240. [PMID: 39319193 PMCID: PMC11421457 DOI: 10.2147/dddt.s475005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Angiotensin-converting enzyme 2 receptors (ACE2R) are requisite to enter the host cells for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ACE2R is constitutive and functions as a type I transmembrane metallo-carboxypeptidase in the renin-angiotensin system (RAS). On thyroid follicular cells, ACE2R allows SARS-CoV-2 to invade the thyroid gland, impose cytopathic effects and produce endocrine abnormalities, including stiff back, neck pain, muscle ache, lethargy, and enlarged, inflamed thyroid gland in COVID-19 patients. Further damage is perpetuated by the sudden bursts of pro-inflammatory cytokines, which is suggestive of a life-threatening syndrome known as a "cytokine storm". IL-1β, IL-6, IFN-γ, and TNF-α are identified as the key orchestrators of the cytokine storm. These inflammatory mediators upregulate transcriptional turnover of nuclear factor-kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK), paving the pathway for cytokine storm-induced thyroid dysfunctions including euthyroid sick syndrome, autoimmune thyroid diseases, and thyrotoxicosis in COVID-19 patients. Targeted therapies with corticosteroids (dexamethasone), JAK inhibitor (baricitinib), nucleotide analogue (remdesivir) and N-acetyl-cysteine have demonstrated effectiveness in terms of attenuating the severity and frequency of cytokine storm-induced thyroid dysfunctions, morbidity and mortality in severe COVID-19 patients. Here, we review the pathogenesis of cytokine storms and the mechanisms and pathways that establish the connection between thyroid disorder and COVID-19. Moreover, cross-talk interactions of signalling pathways and therapeutic strategies to address COVID-19-associated thyroid diseases are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrel Sheikh, 6860404, Egypt
| | - Yassir A Almofti
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Biochemistry, Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum, 12217, Sudan
| | - Ahmed O Alameen
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Sudan
| | - Yuan Seng Wu
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, 47500, Malaysia
| |
Collapse
|
3
|
Zhang J, Xu S. High aggressiveness of papillary thyroid cancer: from clinical evidence to regulatory cellular networks. Cell Death Discov 2024; 10:378. [PMID: 39187514 PMCID: PMC11347646 DOI: 10.1038/s41420-024-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
The global incidence of thyroid cancer has increased over recent decades. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer and accounts for nearly 90% of all cases. Typically, PTC has a good prognosis. However, some PTC variants exhibit more aggressive behaviour, which significantly increases the risk of postoperative recurrence. Over the past decade, the high metastatic potential of PTC has drawn the attention of many researchers and these studies have provided useful molecular markers for improved diagnosis, risk stratification and clinical approaches. The aim of this review is to discuss the progress in epidemiology, metastatic features, risk factors and molecular mechanisms associated with PTC aggressiveness. We present a detailed picture showing that epithelial-to-mesenchymal transition, cancer metabolic reprogramming, alterations in important signalling pathways, epigenetic aberrations and the tumour microenvironment are crucial drivers of PTC metastasis. Further research is needed to more fully elucidate the pathogenesis and biological behaviour underlying the aggressiveness of PTC.
Collapse
Affiliation(s)
- Junsi Zhang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou, China.
| |
Collapse
|
4
|
Dong Y, Tan H, Wang L, Liu Z. Progranulin promoted the proliferation, metastasis, and suppressed apoptosis via JAK2-STAT3/4 signaling pathway in papillary thyroid carcinoma. Cancer Cell Int 2023; 23:191. [PMID: 37660003 PMCID: PMC10475200 DOI: 10.1186/s12935-023-03033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Progranulin (PGRN), a glycoprotein secreted by a wide range of epithelial cells and plays an important role in inflammatory mechanisms and tumor progression. In this study, the expression, and functions of PGRN in papillary thyroid carcinoma (PTC) was examined to explore the potential pathogenesis of PTC. METHODS Western blotting and qRT-PCR were used to detect the relationship between PGRN expression and clinicopathological characteristics of patients with PTC. PTC cell lines with PGRN overexpression and with PGRN knockdown were established to explore their effects on the biological behavior. Western blotting was used to detect the changes of relevant molecules and JAK2-STAT3/4 signaling pathway. Moreover, rescue experiments validated the involvement of the JAK2-STAT3/4 signaling pathway. And statistical analyses were analyzed using SPASS 21.0 and graph generation were performed using GraphPad Prism 8.0. RESULTS PGRN was overexpressed in PTC tissue and increased by 75% at mRNA level and 161% at relative protein level in the patients with lymph node metastasis compared to without lymph node metastasis. Besides, PGRN regulated and promoted PTC cell proliferation, migration, invasion, and inhibited cell apoptosis. With PGRN overexpressed, relevant molecules including the expression of BCL2/BAX, BCL2/BAD, CyclinD1, MMP2, vimentin and N-cadherin were increased, the expression level of E-cadherin was decreased, and the phosphorylation of JAK2 and STAT3/4 were increased. JAK inhibitor (JSI-124) rescued these changes of PTC cells induced by overexpressed PGRN. CONCLUSIONS These findings revealed that PGRN promote the progression of PTC through the JAK2-STAT3/4 pathway, and PGRN could be served as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Yanxu Dong
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Hao Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
5
|
Jiang Q, Guan Y, Zheng J, Lu H. TBK1 promotes thyroid cancer progress by activating the PI3K/Akt/mTOR signaling pathway. Immun Inflamm Dis 2023; 11:e796. [PMID: 36988258 PMCID: PMC10013413 DOI: 10.1002/iid3.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/17/2023] Open
Abstract
INTRODUCTION Thyroid cancer has received increasing attention; however, its detailed pathogenesis and pathological processes remain unclear. We investigated the role of TANK-binding kinase 1 (TBK1) in the progression of thyroid cancer. METHODS The expression of TBK1 in thyroid cancer and normal control tissues was analyzed using real-time quantitative polymerase chain reaction. The function of TBK1 on thyroid cancer cells was detected using MTT, colony formation, wound healing, and Transwell assays. The xenograft assay was carried out to check on the role of TBK1 in thyroid cancer. RESULTS TBK1 was highly expressed in thyroid tumors. High expression of TBK1 raised viability, proliferation, migration, and invasion of thyroid cancer cells. Gene set enrichment analysis revealed that TBK1 activated the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway. In addition, Myc-associated zinc finger protein (MAZ) was overexpressed in thyroid cancer and transcriptionally activated BK1. MAZ silence reversed the effects of TBK1 overexpression on thyroid cancer progression. Cotransfection with MAZ small-interfering RNA(siRNA) and TBK1 siRNA did not strengthen the inhibitory effect of TBK1 silencing on the thyroid cancer cells. The xenograft tumor assay showed that TBK1 short hairpinRNA inhibited tumor growth. CONCLUSION MAZ silencing inhibited tumor progress of thyroid cancer cells, whereas this inhibitory effect was reversed by TBK1 overexpression.
Collapse
Affiliation(s)
- Qiuli Jiang
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| | - Yingying Guan
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| | - Jingmei Zheng
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| | - Huadong Lu
- Department of Pathology, Xiamen Branch, Zhongshan HospitalFudan UniversityXiamenFujianP. R. China
| |
Collapse
|
6
|
Role of IL-6/STAT3 Axis in Resistance to Cisplatin in Gastric Cancers. Biomedicines 2023; 11:biomedicines11030694. [PMID: 36979673 PMCID: PMC10044743 DOI: 10.3390/biomedicines11030694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gastric cancer, the second most common cause of death worldwide, is characterized by poor prognosis and low responsiveness to chemotherapy. Indeed, multidrug resistance, based mainly on cellular and molecular factors, remains one of the most limiting factors of the current approach to gastric cancer (GC) therapy. We employed a comprehensive gene expression analysis through data mining of publicly available databases to assess the role of the signal transducer and activator of transcription 3 (STAT3) in gastric cancer drug efficiency. It has been proposed that gastric cancer cells are less sensitive to these drugs because they develop resistance to these agents through activating alternative signalling pathways responsible for overcoming pharmacological inhibition. Our study evaluated the hypothesis that activating STAT3 signalling in response to cisplatin reduces the reaction to the drug. Consistent with this hypothesis, inhibition of interleukin 6 (IL-6)/STAT3 in combination therapy with cisplatin prevented both STAT3 activation and more lethality than induction by a single agent. The data suggest that the IL-6/STAT3 axis block associated with cisplatin treatment may represent a strategy to overcome resistance.
Collapse
|
7
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
8
|
Zhou M, Hua W, Sun Y. Cell migration inducing hyaluronidase 1 promotes growth and metastasis of papillary thyroid carcinoma. Bioengineered 2022; 13:11822-11831. [PMID: 35543351 PMCID: PMC9276010 DOI: 10.1080/21655979.2022.2074110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell migration inducing hyaluronidase 1 (CEMIP) mediates catabolism of hyaluronan, and participates in the cell metastasis, invasion, and motility. Dysregulated CEMIP expression was associated with progression and prognosis of tumors. The role of CEMIP in papillary thyroid carcinoma (PTC) remains unknown. Our study showed that CEMIP was upregulated in both tissues and cells of PTC. Silencing of CEMIP reduced cell proliferation and suppressed migration and invasion of PTC. Protein expression of phosphorylated STAT3 (Signal Transducer And Activator Of Transcription 3) (p-STAT3), AKT (p-AKT) and p65 (p-p65) were decreased by CEMIP silencing in PTC cells. Pyruvate dehydrogenase kinase 4 (PDK4) over-expression attenuated CEMIP silencing-induced decrease in p-STAT3, p-AKT and p-p65. Silencing of CEMIP-induced decrease in cell proliferation and metastasis in PTC were restored by over-expression of STAT3. CEMIP functioned as an oncogenic gene in PTC through PDK4-mediated activation of STAT3/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Marques IJ, Gomes I, Pojo M, Pires C, Moura MM, Cabrera R, Santos C, van IJcken WFJ, Teixeira MR, Ramalho JS, Leite V, Cavaco BM. Identification of SPRY4 as a Novel Candidate Susceptibility Gene for Familial Nonmedullary Thyroid Cancer. Thyroid 2021; 31:1366-1375. [PMID: 33906393 DOI: 10.1089/thy.2020.0290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: The molecular basis of familial nonmedullary thyroid cancer (FNMTC) is still poorly understood, representing a limitation for molecular diagnosis and clinical management. In this study, we aimed to identify new susceptibility genes for FNMTC through whole-exome sequencing (WES) analysis of leukocyte DNA of patients from a highly informative FNMTC family. Methods: We selected six affected family members to conduct WES analysis. Bioinformatic analyses were undertaken to filter and select the genetic variants shared by the affected members, which were subsequently validated by Sanger sequencing. To select the most likely pathogenic variants, several studies were performed, including family segregation analysis, in silico impact characterization, and gene expression (messenger RNA and protein) depiction in databases. For the most promising variant identified, we performed in vitro studies to validate its pathogenicity. Results: Several potentially pathogenic variants were identified in different candidate genes. After filtering with appropriate criteria, the variant c.701C>T, p.Thr234Met in the SPRY4 gene was prioritized for in vitro functional characterization. This SPRY4 variant led to an increase in cell viability and colony formation, indicating that it confers a proliferative advantage and potentiates clonogenic capacity. Phosphokinase array and Western blot analyses suggested that the effects of the SPRY4 variant were mediated through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, which was further supported by a higher responsiveness of thyroid cancer cells with the SPRY4 variant to a MEK inhibitor. Conclusions: WES analysis in one family identified SPRY4 as a likely novel candidate susceptibility gene for FNMTC, allowing a better understanding of the cellular and molecular mechanisms underlying thyroid cancer development.
Collapse
Affiliation(s)
- Inês J Marques
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
- Chronic Diseases Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
- Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Inês Gomes
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Carolina Pires
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Margarida M Moura
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Rafael Cabrera
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Catarina Santos
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manuel R Teixeira
- Serviço de Genética, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José S Ramalho
- Chronic Diseases Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
- Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Valeriano Leite
- Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Serviço de Endocrinologia, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal
| |
Collapse
|
10
|
Allegri L, Capriglione F, Maggisano V, Damante G, Baldan F. Effects of Dihydrotanshinone I on Proliferation and Invasiveness of Paclitaxel-Resistant Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2021; 22:ijms22158083. [PMID: 34360846 PMCID: PMC8347033 DOI: 10.3390/ijms22158083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
ATC is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. In patients without known genetic aberrations, the current treatment is still represented by palliative surgery and systemic mono- or combined chemotherapy, which is often not fully effective for the appearance of drug resistance. Comprehension of the mechanisms involved in the development of the resistance is therefore an urgent issue to suggest novel therapeutic approaches for this very aggressive malignancy. In this study, we created a model of anaplastic thyroid cancer (ATC) cells resistant to paclitaxel and investigated the characteristics of these cells by analyzing the profile of gene expression and comparing it with that of paclitaxel-sensitive original ATC cell lines. In addition, we evaluated the effects of Dihydrotanshinone I (DHT) on the viability and invasiveness of paclitaxel-resistant cells. ATC paclitaxel-resistant cells highlighted an overexpression of ABCB1 and a hyper-activation of the NF-κB compared to sensitive cells. DHT treatment resulted in a reduction of viability and clonogenic ability of resistant cells. Moreover, DHT induces a decrement of NF-κB activity in SW1736-PTX and 8505C-PTX cells. In conclusion, to the best of our knowledge, the results of the present study are the first to demonstrate the antitumor effects of DHT on ATC cells resistant to Paclitaxel in vitro.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
| | - Francesca Capriglione
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Valentina Maggisano
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Giuseppe Damante
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
- Correspondence:
| | - Federica Baldan
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
| |
Collapse
|
11
|
EGR1/GADD45α Activation by ROS of Non-Thermal Plasma Mediates Cell Death in Thyroid Carcinoma. Cancers (Basel) 2021; 13:cancers13020351. [PMID: 33477921 PMCID: PMC7833439 DOI: 10.3390/cancers13020351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent studies have identified new anti-cancer mechanisms of nonthermal plasma (NTP) in several cancers. However, the molecular mechanisms underlying its therapeutic effect on thyroid cancer have not been elucidated. The objective of this study was to understand the anticancer effects of NTP-activated medium (NTPAM) on thyroid cancer cells and elucidate the signaling mechanisms responsible for NTPAM-induced thyroid cancer cell death. Abstract (1) Background: Nonthermal plasma (NTP) induces cell death in various types of cancer cells, providing a promising alternative treatment strategy. Although recent studies have identified new mechanisms of NTP in several cancers, the molecular mechanisms underlying its therapeutic effect on thyroid cancer (THCA) have not been elucidated. (2) Methods: To investigate the mechanism of NTP-induced cell death, THCA cell lines were treated with NTP-activated medium -(NTPAM), and gene expression profiles were evaluated using RNA sequencing. (3) Results: NTPAM upregulated the gene expression of early growth response 1 (EGR1). NTPAM-induced THCA cell death was enhanced by EGR1 overexpression, whereas EGR1 small interfering RNA had the opposite effect. NTPAM-derived reactive oxygen species (ROS) affected EGR1 expression and apoptotic cell death in THCA. NTPAM also induced the gene expression of growth arrest and regulation of DNA damage-inducible 45α (GADD45A) gene, and EGR1 regulated GADD45A through direct binding to its promoter. In xenograft in vivo tumor models, NTPAM inhibited tumor progression of THCA by increasing EGR1 levels. (4) Conclusions: Our findings suggest that NTPAM induces apoptotic cell death in THCA through a novel mechanism by which NTPAM-induced ROS activates EGR1/GADD45α signaling. Furthermore, our data provide evidence that the regulation of the EGR1/GADD45α axis can be a novel strategy for the treatment of THCA.
Collapse
|
12
|
Dong A, Zhang J, Sun W, Hua H, Sun Y. Upregulation of miR-421 predicts poor prognosis and promotes proliferation, migration, and invasion of papillary thyroid cancer cells. J Chin Med Assoc 2020; 83:991-996. [PMID: 32881717 PMCID: PMC7647428 DOI: 10.1097/jcma.0000000000000426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) represents the most frequent subtype of thyroid cancer (TC) with poor prognosis mainly due to the severe invasion and metastasis. As an oncogene, microRNA-421 (miR-421) is involved in the development of various cancers. This study was to investigate the clinical significance of miR-421 in PTC and its effects on the biological function of PTC cells. METHODS The expression level of miR-421 in all tissues and PTC cell lines was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, the relationship between miR-421 expression and the clinicopathological feature was detected by chi-square analysis in 106 patients with PTC. In addition, Kaplan-Meier and multivariate Cox regression analysis were used to detect the survival time and the prognostic value of miR-421. Finally, the regulatory effect of miR-421 on the proliferation, migration, and invasion ability of PTC cells was detected by Cell Counting Kit (CCK-8) and Transwell assay. RESULTS Compared with all control groups, the expression of miR-421 was significantly increased in 106 patients tissues and PTC cell lines (p < 0.001). In addition, patients with miR-421 upregulated in PTC showed more positive lymph node metastasis (p = 0.011), positive tumor infiltration (p = 0.031), and TNM stage III/IV (p = 0.019), and when miR-421 expression level was elevated, the survival rate of PTC patients was poor (log-rank test, p = 0.023). Furthermore, miR-421 might be an independent prognostic biomarker for PTC (hazard ratio [HR] = 3.172, 95% CI = 1.071-9.393, p = 0.037). Finally, increased levels of miR-421 can significantly promote cell proliferation, migration, and invasion (p < 0.01). CONCLUSION miR-421 is a novel oncogene of PTC and is a valuable prognostic biomarker. Moreover, the upregulation of miR-421 enhances the proliferation, migration, and invasion of PTC cells.
Collapse
Affiliation(s)
- Anbing Dong
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jianhua Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenhai Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yinghe Sun
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Address correspondence. Dr. Yinghe Sun, Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, 16, Jiangsu Road, Qingdao, Shandong 266071, China. E-mail address: (Y. Sun)
| |
Collapse
|
13
|
Jung SN, Kang YE, Lee GH, Liu L, Oh C, Jin YL, Lim MA, Lee K, Oh T, Won HR, Chang JW, Koo BS. Brn3a/Pou4f1 Functions as a Tumor Suppressor by Targeting c-MET/STAT3 Signaling in Thyroid Cancer. J Clin Endocrinol Metab 2020; 105:5849340. [PMID: 32474599 DOI: 10.1210/clinem/dgaa316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Brn3a/Pou4f1 is a class IV POU domain-containing transcription factor and has been found to be expressed in a variety of cancers. However, the mechanism and action of Brn3a in thyroid cancer has not been investigated. PURPOSE To investigate the role of Brn3a in thyroid cancer progression and its clinical implication. METHODS We examined Brn3a expression status in patients with thyroid cancer and analyzed relationships between Brn3a expression and clinicopathological findings using The Cancer Genome Atlas (TCGA) database. For functional in vitro analysis, proliferation, migration, invasion assay, and Western blotting were performed after overexpression or suppression of Brn3a. RESULTS The promoter hypermethylation of Brn3a was found in patients with aggressive thyroid cancer and Brn3a was downregulated in tissues of patients with thyroid cancer. In TCGA database, the low-Brn3a-expression group revealed a more aggressive phenotype, including T stage and extrathyroid extension when compared with the high-Brn3a-expression group. Overexpression of Brn3a suppressed cell migration and invasion via regulation of epithelial-mesenchymal transition (EMT)-associated proteins in thyroid cancer cell lines. Brn3a overexpression also downregulated signal transducer and activator of transcription 3 (STAT3) signaling through suppression of tyrosine-protein kinase Met (c-MET). In contrast, knockdown of Brn3a by small interfering ribonucleic acid (siRNA) significantly increased cell migration and invasion through upregulation of c-MET/STAT3. These results imply that Brn3a suppresses tumor metastasis via c-MET/STAT3 inhibition and EMT suppression in thyroid cancer. CONCLUSIONS Our findings show that Brn3a is a potential tumor suppressor that leads to reduced cancer cell migration and invasion in thyroid cancer. Elucidation of the Brn3a-regulated cancer pathways may therefore provide novel therapeutic strategies to control thyroid cancer metastasis.
Collapse
Affiliation(s)
- Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Yea Eun Kang
- Department of Endocrinology and Metabolism, Chungnam National University College of Medicine, Daejeon, Korea
| | - Gun Ho Lee
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Chan Oh
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Yan Li Jin
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Mi Ae Lim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Kyungmin Lee
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Taejeong Oh
- Research and Development Center, Genomictree Inc., Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
14
|
Khan AQ, Mohamed EAN, Hakeem I, Nazeer A, Kuttikrishnan S, Prabhu KS, Siveen KS, Nawaz Z, Ahmad A, Zayed H, Uddin S. Sanguinarine Induces Apoptosis in Papillary Thyroid Cancer Cells via Generation of Reactive Oxygen Species. Molecules 2020; 25:E1229. [PMID: 32182833 PMCID: PMC7179475 DOI: 10.3390/molecules25051229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Sanguinarine (SNG), a natural compound with an array of pharmacological activities, has promising therapeutic potential against a number of pathological conditions, including malignancies. In the present study, we have investigated the antiproliferative potential of SNG against two well-characterized papillary thyroid cancer (PTC) cell lines, BCPAP and TPC-1. SNG significantly inhibited cell proliferation of PTC cells in a dose and time-dependent manner. Western blot analysis revealed that SNG markedly attenuated deregulated expression of p-STAT3, without affecting total STAT3, and inhibited growth of PTC via activation of apoptotic and autophagy signaling cascade, as SNG treatment of PTC cells led to the activation of caspase-3 and caspase-8; cleavage of PARP and activation of autophagy markers. Further, SNG-mediated anticancer effects in PTC cells involved the generation of reactive oxygen species (ROS) as N-acetyl cysteine (NAC), an inhibitor of ROS, prevented SNG-mediated antiproliferative, apoptosis and autophagy inducing action. Interestingly, SNG also sensitized PTC cells to chemotherapeutic drug cisplatin, which was inhibited by NAC. Finally, SNG suppressed the growth of PTC thyrospheres and downregulated stemness markers ALDH2 and SOX2. Altogether, the findings of the current study suggest that SNG has anticancer potential against PTC cells as well its derived cancer stem-like cells, most likely via inactivation of STAT3 and its associated signaling molecules.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Elham A. N. Mohamed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
- Department of Lab Medicine and Pathology, Hamad Medical Corporation, Doha 3050, Qatar;
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 3050, Qatar;
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Aneeza Nazeer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| | - Zafar Nawaz
- Department of Lab Medicine and Pathology, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 3050, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.A.N.M.); (I.H.); (A.N.); (S.K.); (K.S.P.); (K.S.S.)
| |
Collapse
|
15
|
Khan AQ, Ahmed EI, Elareer N, Fathima H, Prabhu KS, Siveen KS, Kulinski M, Azizi F, Dermime S, Ahmad A, Steinhoff M, Uddin S. Curcumin-Mediated Apoptotic Cell Death in Papillary Thyroid Cancer and Cancer Stem-Like Cells through Targeting of the JAK/STAT3 Signaling Pathway. Int J Mol Sci 2020; 21:ijms21020438. [PMID: 31936675 PMCID: PMC7014270 DOI: 10.3390/ijms21020438] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The constitutive activation of Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signal transduction is well elucidated in STAT3-mediated oncogenesis related to thyroid cancer and is considered to be a plausible therapeutic target. Hence, we investigated whether curcumin, a natural compound, can target the JAK/STAT3 signaling pathway to induce cytotoxic effects in papillary thyroid cancer (PTC) cell lines (BCPAP and TPC-1) and derived thyroid cancer stem-like cells (thyrospheres). Curcumin suppressed PTC cell survival in a dose-dependent manner via the induction of caspase-mediated apoptosis and caused the attenuation of constitutively active STAT3 (the dephosphorylation of Tyr705-STAT3) without affecting STAT3. Gene silencing with STAT3-specific siRNA showed the modulation of genes associated with cell growth and proliferation. The cotreatment of PTC cell lines with curcumin and cisplatin synergistically potentiated cytotoxic effects via the suppression of JAK/STAT3 activity along with the inhibition of antiapoptotic genes and the induction of proapoptotic genes, and it also suppressed the migration of PTC cells by downregulating matrix metalloproteinases and the inhibition of colony formation. Finally, thyrospheres treated with curcumin and cisplatin showed suppressed STAT3 phosphorylation, a reduced formation of thyrospheres, and the downregulated expression of stemness markers, in addition to apoptosis. The current study's findings suggest that curcumin synergistically enhances the anticancer activity of cisplatin in PTC cells as well as in cancer stem-like cells by targeting STAT3, which suggests that curcumin combined with chemotherapeutic agents may provide better therapeutic outcomes.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Eiman I. Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Noor Elareer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Hamna Fathima
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Fouad Azizi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
| | - Said Dermime
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Aamir Ahmad
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
- Correspondence: (A.A.); (S.U.); Tel.: +1-24-8982-2566 (A.A.); +974-4025-3220 (S.U.)
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- College of Medicine, Qatar University, Doha 2713, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (E.I.A.); (N.E.); (H.F.); (K.S.P.); (K.S.S.); (M.K.); (F.A.); (M.S.)
- Correspondence: (A.A.); (S.U.); Tel.: +1-24-8982-2566 (A.A.); +974-4025-3220 (S.U.)
| |
Collapse
|
16
|
Shang H, Zhao J, Yao J, Wang H, Wang S, Dong J, Liao L. Nevirapine inhibits migration and invasion in dedifferentiated thyroid cancer cells. Thorac Cancer 2019; 10:2243-2252. [PMID: 31631580 PMCID: PMC6885442 DOI: 10.1111/1759-7714.13211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Background Metastatic or recurrent thyroid cancer often behaves aggressively, and approximately two‐thirds of patients present with radioiodine resistance. Effective therapies to suppress thyroid cancer metastasis are urgently needed. Nevirapine has been proved to suppress tumor growth and induce differentiation in several tumor cells, but has not previously been evaluated in metastasis of thyroid cancer. The present study aimed to investigate the effect of nevirapine on migration and invasion in dedifferentiated thyroid cancer cells. Methods Human dedifferentiated thyroid cancer cell line (WRO 82‐1) was subject to real‐time quantitative PCR, western blot and transwell migration/invasion assays. The liver metastasis in tumor xenografts of nude mice was subject to hematoxylin‐eosin (HE) staining. Results Nevirapine significantly repressed cell migration and invasion in WRO 82‐1 cells, and surprisingly significantly decreased liver metastatic tumor in the nude mouse model of dedifferentiated thyroid cancer compared with that of the control. Moreover, nevirapine significantly decreased the expression of IL‐6 mRNA and phosphorylation of JAK2 (Y1007+Y1008) and STAT3 (Tyr 705) in WRO 82‐1 cells compared with those in control cells. Conclusion Our findings suggest that nevirapine significantly repressed migration and invasion/metastasis in WRO 82‐1 cells and tumor xenografts, which may be related to inhibition of IL‐6/STAT3 signaling pathway. It promises great potential as a novel therapy for thyroid cancer, especially for those patients with metastasis.
Collapse
Affiliation(s)
- Hongxia Shang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Junyu Zhao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Jinming Yao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Huanjun Wang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shengnan Wang
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
18
|
Telomerase and Telomeres Biology in Thyroid Cancer. Int J Mol Sci 2019; 20:ijms20122887. [PMID: 31200515 PMCID: PMC6627113 DOI: 10.3390/ijms20122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere and telomerase regulation contributes to the onset and evolution of several tumors, including highly aggressive thyroid cancers (TCs). TCs are the most common endocrine malignancies and are generally characterized by a high rate of curability. However, a small but significant percentage develops distant metastasis or progresses into undifferentiated forms associated with bad prognosis and for which poor therapeutic options are available. Mutations in telomerase reverse transcriptase (TERT) promoter are among the most credited prognostic marker of aggressiveness in TCs. Indeed, their frequency progressively increases passing from indolent lesions to aggressive and anaplastic forms. TERT promoter mutations create binding sites for transcription factors, increasing TERT expression and telomerase activity. Furthermore, aggressiveness of TCs is associated with TERT locus amplification. These data encourage investigating telomerase regulating pathways as relevant drivers of TC development and progression to foster the identification of new therapeutics targets. Here, we summarize the current knowledge about telomere regulation and TCs, exploring both canonical and less conventional pathways. We discuss the possible role of telomere homeostasis in mediating response to cancer therapies and the possibility of using epigenetic drugs to re-evaluate the use of telomerase inhibitors. Combined treatments could be of support to currently used therapies still presenting weaknesses.
Collapse
|
19
|
Notarangelo T, Sisinni L, Trino S, Calice G, Simeon V, Landriscina M. IL6/STAT3 axis mediates resistance to BRAF inhibitors in thyroid carcinoma cells. Cancer Lett 2018; 433:147-155. [PMID: 29969659 DOI: 10.1016/j.canlet.2018.06.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/17/2022]
Abstract
Thyroid carcinomas (TCs) bearing BRAF mutations represent approximately 26-53% of human thyroid malignancies and, differently from melanomas, are poorly sensitive to BRAF inhibitors (BRAFi), and develop acquired resistance through activation of alternative signaling pathways. A whole-genome gene expression analysis of TC BRAF V600E cells exposed to PLX4032 identified JAK/STAT among the most significantly modulated signaling pathways. Interestingly, both transient exposure and chronic adaptation to PLX4032 resulted in upregulation of IL6/STAT3 axis and this impaired the cytostatic activity of PLX4032. Mechanistically, exposure to PLX4032 enhanced IL6 secretion and this, in turn, was responsible for STAT3 upregulation, activation of ERK signaling and poor sensitivity to BRAF inhibition. Consistently, the dual blockade of STAT3 (by siRNA or pharmacological inhibition) or IL6 signaling (by the humanized anti-human IL6 receptor antibody, tocilizumab) and BRAF (by PLX4032) improved the inhibition of cell cycle progression compared to PLX4032 single agent. These data support the role of IL6/STAT3 signaling pathway in modulating TC cell response to PLX4032 and candidate IL6 targeting as a strategy to improve the activity of PLX4032 in BRAF V600E TC cells.
Collapse
Affiliation(s)
- Tiziana Notarangelo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Stefania Trino
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Giovanni Calice
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy; Medical Statistics Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy; Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
20
|
Jung SN, Lim HS, Liu L, Chang JW, Lim YC, Rha KS, Koo BS. LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals. Sci Rep 2018; 8:2718. [PMID: 29426928 PMCID: PMC5807368 DOI: 10.1038/s41598-018-21216-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/01/2018] [Indexed: 01/22/2023] Open
Abstract
Laminin subunit beta-3 (LAMB3) encodes one of the three subunits of LM-332, a protein of the extracellular matrix secreted by cultured human keratinocytes. While LAMB3 is involved in the invasive and metastatic abilities of several tumor types, including those found in the colon, pancreas, lung, cervix, stomach, and prostate, its mechanism of action in thyroid cancer has not been investigated previously. Our results show that LAMB3 is up-regulated in papillary thyroid cancer, and that its suppression reduces cell migration/invasion via down-regulation of epithelial‒mesenchymal transition-associated proteins (N-cadherin, vimentin, slug) and inhibition of matrix metalloproteinase 9. LAMB3 suppression also significantly decreases Akt phosphorylation and inhibits the transcription of c-MET, reducing its activation. These results suggest that LAMB3 leads to tumor invasion via Akt activation induced by the HGF/c-MET axis in papillary thyroid cancer cells. Our findings reveal a novel mechanism of action for LAMB3 in papillary thyroid cancer cells.
Collapse
Affiliation(s)
- Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun Sil Lim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Chang Lim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Ki Sang Rha
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
21
|
MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene 2018; 37:3369-3383. [PMID: 29353884 DOI: 10.1038/s41388-017-0088-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/29/2022]
Abstract
Recent studies have shown that miR-146b is the most upregulated microRNA in thyroid cancer and has a central role in cancer progression through mechanisms that remain largely unidentified. As phosphoinositide 3-kinase/protein kinase-B (PI3K/AKT) signaling is a fundamental oncogenic driver in many thyroid cancers, we explored a potential role for miR-146b and its target genes in PI3K/AKT activation. Among the predicted target genes of miR-146b, we found the tumor-suppressor phosphatase and tensin homolog (PTEN). Constitutive overexpression of miR-146b in thyroid epithelial cell lines significantly decreased PTEN mRNA and protein levels by direct binding to its 3'-UTR. This was accompanied by PI3K/AKT hyperactivation, leading to the exclusion of FOXO1 and p27 from the nucleus and a corresponding increase in cellular proliferation. Moreover, miR-146b overexpression led to protection from apoptosis and an increased migration and invasion potential, regulating genes involved in epithelial-mesenchymal transition. Notably, with the single exception of E-cadherin expression, all of these outcomes could be reversed by PTEN coexpression. Further analysis showed that miR-146b directly inhibits E-cadherin expression through binding to its 3'-UTR. Interestingly, miR-146b inhibition in human thyroid tumor xenografts, using a synthetic and clinically amenable molecule, blocked tumor growth when delivered intratumorally. Importantly, this inhibition increased PTEN protein levels. In conclusion, our data define a novel mechanism of PI3K/AKT hyperactivation and outline a regulatory role for miR-146b in suppressing PTEN expression, a frequent observation in thyroid cancer. Both events are related to a more aggressive tumoral phenotype. Targeting miR-146b therefore represents a promising therapeutic strategy for the treatment of this disease.
Collapse
|
22
|
Groner B, von Manstein V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol 2017; 451:1-14. [PMID: 28576744 DOI: 10.1016/j.mce.2017.05.033] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 05/27/2017] [Indexed: 02/06/2023]
Abstract
The effects of Jak Stat signaling and the persistent activation of Stat3 and Stat5 on tumor cell survival, proliferation and invasion have made the Jak Stat pathway a favorite target for drug development and cancer therapy. This notion was strengthened when additional biological functions of Stat signaling in cancer and their roles in the regulation of cytokine dependent inflammation and immunity in the tumor microenvironment were discovered. Stats act not only as transcriptional inducers, but affect gene expression via epigenetic modifications, induce epithelial mesenchymal transition, generate a pro-tumorigenic microenvironment, promote cancer stem cell self-renewal and differentiation, and help to establish the pre-metastatic niche formation. The effects of Jak Stat inhibition on the suppression of pro-inflammatory responses appears most promising and could become a strategy in the prevention of tumor progression. The direct and mediated mechanisms of Jak Stat signaling in and on tumors cells, the interactions with other signaling pathways and transcription factors and the targeting of the functionally crucial secondary modifications of Stat molecules suggest novel approaches to the future development of Jak Stat based cancer therapeutics.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany.
| | - Viktoria von Manstein
- Georg Speyer Haus, Institute for Tumor Biology and Experimental Therapy, Paul Ehrlich Str. 42, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
23
|
15-Deoxy-Δ(12,14)-prostaglandin J2 Induces Apoptosis and Upregulates SOCS3 in Human Thyroid Cancer Cells. PPAR Res 2016; 2016:4106297. [PMID: 27190500 PMCID: PMC4852108 DOI: 10.1155/2016/4106297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/01/2016] [Indexed: 12/31/2022] Open
Abstract
The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) is a natural ligand of peroxisome proliferator-activated receptor gamma (PPAR-γ) and a potential mediator of apoptosis in cancer cells. In the present study, we evaluated the effect of 15d-PGJ2 in human thyroid papillary carcinoma cells (TPC-1) using different doses of 15d-PGJ2 (0.6 to 20 μM) to determine IC50 (9.3 μM) via the MTT assay. The supernatant culture medium of the TPC-1 cells that was treated either with 15d-PGJ2 or with vehicle (control) for 24 hours was assessed for IL-6 secretion via CBA assay. RT-qPCR was used to evaluate mRNA expression of IL-6, SOCS1, SOCS3, and STAT3. TPC-1 cells treated with 15d-PGJ2 decreased the secretion and expression of IL-6 and STAT3, while it increased SOCS1 and SOCS3. Overall, we demonstrated that 15d-PGJ2 downregulated IL-6 signaling pathway and led TPC-1 cells into apoptosis. In conclusion, 15d-PGJ2 shows the potential to become a new therapeutic approach for thyroid tumors.
Collapse
|
24
|
Jin S, Borkhuu O, Bao W, Yang YT. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J Clin Med Res 2016; 8:284-96. [PMID: 26985248 PMCID: PMC4780491 DOI: 10.14740/jocmr2480w] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer is a common malignancy of endocrine system, and has now become the fastest increasing cancer among all the malignancies. The development, progression, invasion, and metastasis are closely associated with multiple signaling pathways and the functions of related molecules, such as Src, Janus kinase (JAK)-signal transducers and activators of transcription (STAT), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, NF-κB, thyroid stimulating hormone receptor (TSHR), Wnt-β-catenin and Notch signaling pathways. Each of the signaling pathways could exert its function singly or through network with other pathways. These pathways could cooperate, promote, antagonize, or interact with each other to form a complex network for the regulation. Dysfunction of this network could increase the development, progression, invasion, and metastasis of thyroid cancer. Inoperable thyroid cancer still has a poor prognosis. However, signaling pathway-related targeted therapies offer the hope of longer quality of meaningful life for this small group of patients. Signaling pathway-related targets provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. In the present work, the advances in these signaling pathways and targeted treatments of thyroid cancer were reviewed.
Collapse
Affiliation(s)
- Shan Jin
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Oyungerel Borkhuu
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Wuyuntu Bao
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yun-Tian Yang
- Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| |
Collapse
|
25
|
Aleskandarany MA, Agarwal D, Negm OH, Ball G, Elmouna A, Ashankyty I, Nuglozeh E, Fazaludeen MF, Diez-Rodriguez M, Nolan CC, Tighe PJ, Green AR, Ellis IO, Rakha EA. The prognostic significance of STAT3 in invasive breast cancer: analysis of protein and mRNA expressions in large cohorts. Breast Cancer Res Treat 2016; 156:9-20. [PMID: 26907764 DOI: 10.1007/s10549-016-3709-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 01/08/2023]
Abstract
Signal transducer and activator of transcription (STAT) transcription factors family are involved in diverse cellular biological functions. Reports regarding the prognostic impact of STAT3 expression in breast cancer (BC) are variable whether being a factor of poor or good prognosis. Immunohistochemical expression of phospho-STAT3 (pSTAT3) was studied in large series of invasive BC (n = 1270). pSTAT3 and STAT3 were quantified using reverse phase protein array (RPPA) on proteins extracted from macro-dissected FFPE tissues (n = 49 cases). STAT3 gene expression in the METABRIC cohort was also investigated. STAT3 gene expression prognostic impact was externally validated using the online BC gene expression data (n = 26 datasets, 4.177 patients). pSTAT3 was expressed in the nuclei and cytoplasm of invasive BC cells. Nuclear pSTAT3 overexpression was positively associated with smaller tumour size, lower grade, good NPI, negative lymphovascular invasion (LVI), ER+, PgR+, p53-, HER2-, and low Ki67LI and an improved breast cancer-specific survival (BCSS), independently of other factors. On RPPA, the mean pSTAT3 and STAT3 expressions were higher in ER+, PgR+, and smaller size tumours. Higher STAT3 transcripts in the METABRIC cohort were observed in cases with favourable prognostic criteria and as well as improved BCSS within the whole cohort, ER+ cohort with and without hormonal therapy, and ER- cohort including those who did not receive adjuvant chemotherapy. Pooled STAT3 gene expression data in the external validation cohort showed an association with improved patients' outcome (P < 0.001, HR = 0.84, 95 % CI 0.79-0.90). Results of this study suggest nuclear localisation of pSTAT3 as favourable prognostic marker in invasive BC, results re-enforced by analysis of STAT3 gene expression data. This good prognostic advantage was maintained in patients who received and who did not receive adjuvant therapy. Therefore, STAT3 could have context-dependent molecular roles of in BC, results which warrant further prospective verification in clinical trials.
Collapse
Affiliation(s)
- Mohammed A Aleskandarany
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK.
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| | - Devika Agarwal
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - Ola H Negm
- Division of Immunology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Graham Ball
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - Ahmed Elmouna
- Molecular Diagnostics and Personalised Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Ibraheem Ashankyty
- Molecular Diagnostics and Personalised Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Edem Nuglozeh
- Molecular Diagnostics and Personalised Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammad F Fazaludeen
- Molecular Diagnostics and Personalised Therapeutics Unit, University of Ha'il, Ha'il, Saudi Arabia
| | - Maria Diez-Rodriguez
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Christopher C Nolan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Patrick J Tighe
- Division of Immunology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Ian O Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
26
|
Lee J, Chang JY, Kang YE, Yi S, Lee MH, Joung KH, Kim KS, Shong M. Mitochondrial Energy Metabolism and Thyroid Cancers. Endocrinol Metab (Seoul) 2015; 30:117-23. [PMID: 26194071 PMCID: PMC4508255 DOI: 10.3803/enm.2015.30.2.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/13/2014] [Accepted: 12/21/2014] [Indexed: 11/27/2022] Open
Abstract
Primary thyroid cancers including papillary, follicular, poorly differentiated, and anaplastic carcinomas show substantial differences in biological and clinical behaviors. Even in the same pathological type, there is wide variability in the clinical course of disease progression. The molecular carcinogenesis of thyroid cancer has advanced tremendously in the last decade. However, specific inhibition of oncogenic pathways did not provide a significant survival benefit in advanced progressive thyroid cancer that is resistant to radioactive iodine therapy. Accumulating evidence clearly shows that cellular energy metabolism, which is controlled by oncogenes and other tumor-related factors, is a critical factor determining the clinical phenotypes of cancer. However, the role and nature of energy metabolism in thyroid cancer remain unclear. In this article, we discuss the role of cellular energy metabolism, particularly mitochondrial energy metabolism, in thyroid cancer. Determining the molecular nature of metabolic remodeling in thyroid cancer may provide new biomarkers and therapeutic targets that may be useful in the management of refractory thyroid cancers.
Collapse
Affiliation(s)
- Junguee Lee
- Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Shinae Yi
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kyong Hye Joung
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Kun Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
27
|
Starenki D, Hong SK, Lloyd RV, Park JI. Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene 2014; 34:4624-34. [PMID: 25435367 PMCID: PMC4451452 DOI: 10.1038/onc.2014.392] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/22/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022]
Abstract
Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. For therapy of advanced MTC, the Food and Drug Administration recently approved vandetanib and cabozantinib, the tyrosine kinase inhibitors targeting RET, vascular endothelial growth factor receptor, epidermal growth factor receptor and/or c-MET. Nevertheless, not all patients respond to these drugs, demanding additional therapeutic strategies. We found that mortalin (HSPA9/GRP75), a member of HSP70 family, is upregulated in human MTC tissues and that its depletion robustly induces cell death and growth arrest in MTC cell lines in culture and in mouse xenografts. These effects were accompanied by substantial downregulation of RET, induction of the tumor-suppressor TP53 and altered expression of cell cycle regulatory machinery and apoptosis markers, including E2F-1, p21(CIP1), p27(KIP1) and Bcl-2 family proteins. Our investigation of the molecular mechanisms underlying these effects revealed that mortalin depletion induces transient MEK/ERK (extracellular signal-regulated kinase) activation and altered mitochondrial bioenergetics in MTC cells, as indicated by depolarized mitochondrial membrane, decreased oxygen consumption and extracellular acidification and increased oxidative stress. Intriguingly, mortalin depletion induced growth arrest partly via the MEK/ERK pathway, whereas it induced cell death by causing mitochondrial dysfunction in a Bcl-2-dependent manner. However, TP53 was not necessary for these effects except for p21(CIP1) induction. Moreover, mortalin depletion downregulated RET expression independently of MEK/ERK and TP53. These data demonstrate that mortalin is a key regulator of multiple signaling and metabolic pathways pivotal to MTC cell survival and proliferation, proposing mortalin as a novel therapeutic target for MTC.
Collapse
Affiliation(s)
- D Starenki
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S-K Hong
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - R V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - J-I Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|