1
|
Mahoney MW, Helander J, Kooner AS, Norman M, Damalanka VC, De Bona P, Kasperkiewicz P, Rut W, Poreba M, Kashipathy MM, Battaile KP, Lovell S, O'Donoghue AJ, Craik CS, Drag M, Janetka JW. Use of protease substrate specificity screening in the rational design of selective protease inhibitors with unnatural amino acids: Application to HGFA, matriptase, and hepsin. Protein Sci 2024; 33:e5110. [PMID: 39073183 PMCID: PMC11284329 DOI: 10.1002/pro.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Inhibition of the proteolytic processing of hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) is an attractive approach for the drug discovery of novel anticancer therapeutics which prevent tumor progression and metastasis. Here, we utilized an improved and expanded version of positional scanning of substrate combinatorial libraries (PS-SCL) technique called HyCoSuL to optimize peptidomimetic inhibitors of the HGF/MSP activating serine proteases, HGFA, matriptase, and hepsin. These inhibitors have an electrophilic ketone serine trapping warhead and thus form a reversible covalent bond to the protease. We demonstrate that by varying the P2, P3, and P4 positions of the inhibitor with unnatural amino acids based on the protease substrate preferences learned from HyCoSuL, we can predictably modify the potency and selectivity of the inhibitor. We identified the tetrapeptide JH-1144 (8) as a single digit nM inhibitor of HGFA, matriptase and hepsin with excellent selectivity over Factor Xa and thrombin. These unnatural peptides have increased metabolic stability relative to natural peptides of similar structure. The tripeptide inhibitor PK-1-89 (2) has excellent pharmacokinetics in mice with good compound exposure out to 24 h. In addition, we obtained an X-ray structure of the inhibitor MM1132 (15) bound to matriptase revealing an interesting binding conformation useful for future inhibitor design.
Collapse
Affiliation(s)
- Matthew W. Mahoney
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Jonathan Helander
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Anoopjit S. Kooner
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Mariah Norman
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Vishnu C. Damalanka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paolo De Bona
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paulina Kasperkiewicz
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Wioletta Rut
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Marcin Poreba
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | | | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaSan DiegoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marcin Drag
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - James W. Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
2
|
Contreras-Zentella ML, Alatriste-Contreras MG, Suárez-Cuenca JA, Hernández-Muñoz R. Gender effect of glucose, insulin/glucagon ratio, lipids, and nitrogen-metabolites on serum HGF and EGF levels in patients with diabetes type 2. Front Mol Biosci 2024; 11:1362305. [PMID: 38654922 PMCID: PMC11035728 DOI: 10.3389/fmolb.2024.1362305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocyte growth factor (HGF) exhibits potent growth-inducing properties across various tissues, while epidermal growth factor (EGF) acts as a molecular integration point for diverse stimuli. HGF plays a crucial role in hepatic metabolism, tissue repair, and offers protective effects on epithelial and non-epithelial organs, in addition to its involvement in reducing apoptosis and inflammation, underscoring its anti-inflammatory capabilities. The HGF-Met system is instrumental in hepatic metabolism and enhancing insulin sensitivity in animal diabetes models. Similarly, the EGF and its receptor tyrosine kinase family (EGFR) are critical in regulating cell growth, proliferation, migration, and differentiation in both healthy and diseased states, with EGF also contributing to insulin sensitivity. In this observational study, we aimed to identify correlations between serum levels of HGF and EGF, insulin, glucagon, glucose, and primary serum lipids in patients with type 2 diabetes mellitus (DM), taking into account the impact of gender. We noted differences in the management of glucose, insulin, and glucagon between healthy men and women, potentially due to the distinct influences of sexual hormones on the development of type 2 DM. Additionally, metabolites such as glucose, albumin, direct bilirubin, nitrites, and ammonia might influence serum levels of growth factors and hormones. In summary, our results highlight the regulatory role of insulin and glucagon in serum glucose and lipids, along with variations in HGF and EGF levels, which are affected by gender. This link is especially significant in DM, where impaired cell proliferation or repair mechanisms lead to metabolic changes. The gender-based differences in growth factors point to their involvement in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Martha Lucinda Contreras-Zentella
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Gabriela Alatriste-Contreras
- Departamento de Métodos Cuantitativos, División de Estudios Profesionales, Facultad de Economía, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Juan Antonio Suárez-Cuenca
- Departamento de Medicina Interna, Hospital General “Xoco”, Secretaría de Salud (SS), Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
3
|
Li J, Yu C, Yu K, Chen Z, Xing D, Zha B, Xie W, Ouyang H. SPINT2 is involved in the proliferation, migration and phenotypic switching of aortic smooth muscle cells: Implications for the pathogenesis of thoracic aortic dissection. Exp Ther Med 2023; 26:546. [PMID: 37928510 PMCID: PMC10623238 DOI: 10.3892/etm.2023.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
Thoracic aortic dissection (TAD) is a severe and extremely dangerous cardiovascular disease. Proliferation, migration and phenotypic switching of vascular smooth muscle cells (SMCs) are major pathogenetic mechanisms involved in the development of TAD. The present study was designed to investigate the expression and potential function of serine peptidase inhibitor Kunitz type 2 (SPINT2) in TAD. The gene expression profile data for ascending aorta from patients with TAD were downloaded from the GEO database with the accession number GSE52093. Bioinformatics analysis using GEO2R indicated that the differentially expressed SPINT2 was prominently decreased in TAD. The expression levels of SPINT2 mRNA and protein in aortic dissection specimens and normal aorta tissues were measured using reverse transcription-quantitative PCR and western blotting. SPINT2 expression was downregulated in clinical samples from aortic dissection specimens of patients with TAD compared with the corresponding expression noted in tissues derived from patients without TAD. In vitro, platelet-derived growth factor BB (PDGF-BB) was applied to induce the isolated primary mouse aortic SMC phenotypic modulation (a significant upregulation in the expression levels of synthetic markers), and the SMCs were infected with the adenoviral vector, Ad-SPINT2, to construct SPINT2-overexpressed cell lines. SMC viability was detected by an MTT assay and SMC proliferation was detected via the presence of Ki-67-positive cells (immunofluorescence staining). To explore the effects of SPINT2 on SMC migration, a wound healing assay was conducted. ELISA and western blotting assays were used to measure the content and expression levels of MMP-2 and MMP-9. The expression levels of vimentin, collagen I, α-SMA and SM22α were measured using western blotting. The PDGF-BB-induced proliferation and migration of SMCs were recovered by SPINT2 overexpression. The increase in the expression levels of SPINT2 reduced the expression levels of active matrix metalloproteinases (MMPs), MMP-2 and MMP-9. Overexpression of SPINT2 suppressed SMC switching from a contractile to a synthetic type, as evidenced by decreased vimentin and collagen I expression levels along with increased α-smooth muscle actin and smooth muscle protein 22-α expression levels. Furthermore, activation of ERK was inhibited in SPINT2-overexpressing SMCs. A specific ERK agonist, 12-O-tetradecanoylphorbol-13-acetate, reversed the SPINT2-mediated inhibition of SMC migration and the phenotypic switching. Collectively, the data indicated that SPINT2 was implicated in the proliferation, migration and phenotypic switching of aortic SMCs, suggesting that it may be involved in TAD progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kangmin Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhiyong Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dan Xing
- Department of Medical Record Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Binshan Zha
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wentao Xie
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huan Ouyang
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
4
|
Du Y, Sun H, Shi Z, Sui X, Liu B, Zheng Z, Liu Y, Xuan Z, Zhong M, Fu M, Bai Y, Zhang Q, Shao C. Targeting the hedgehog pathway in MET mutation cancers and its effects on cells associated with cancer development. Cell Commun Signal 2023; 21:313. [PMID: 37919751 PMCID: PMC10623711 DOI: 10.1186/s12964-023-01333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
The mutation of MET plays a crucial role in the initiation of cancer, while the Hedgehog (Hh) pathway also plays a significant role in cell differentiation and the maintenance of tumor stem cells. Conventional chemotherapy drugs are primarily designed to target the majority of cell populations within tumors rather than tumor stem cells. Consequently, after a brief period of remission, tumors often relapse. Moreover, the exclusive targeting of tumor stemness cell disregards the potential for other tumor cells to regain stemness and acquire drug resistance. As a result, current drugs that solely target the HGF/c-MET axis and the Hh pathway demonstrate only moderate efficacy in specific types of cancer. Mounting evidence indicates that these two pathways not only play important roles in cancer but also exert significant influence on the development of resistance to single-target therapies through the secretion of their own ligands. In this comprehensive review, we analyze and compare the potential impact of the Hh pathway on the tumor microenvironment (TME) in HGF/c-MET-driven tumor models, as well as the interplay between different cell types. Additionally, we further substantiate the potential and necessity of dual-pathway combination therapy as a critical target in MET addicted cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Yifan Du
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Huimin Sun
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zhiyuan Shi
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Xiuyuan Sui
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Bin Liu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zeyuan Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Yankuo Liu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zuodong Xuan
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Min Zhong
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Yang Bai
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Qian Zhang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
5
|
Heydt C, Ihle MA, Merkelbach-Bruse S. Overview of Molecular Detection Technologies for MET in Lung Cancer. Cancers (Basel) 2023; 15:cancers15112932. [PMID: 37296895 DOI: 10.3390/cancers15112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
MET tyrosine kinase receptor pathway activation has become an important actionable target in solid tumors. Aberrations in the MET proto-oncogene, including MET overexpression, the activation of MET mutations, MET mutations that lead to MET exon 14 skipping, MET gene amplifications, and MET fusions, are known to be primary and secondary oncogenic drivers in cancer; these aberrations have evolved as predictive biomarkers in clinical diagnostics. Thus, the detection of all known MET aberrations in daily clinical care is essential. In this review, current molecular technologies for the detection of the different MET aberrations are highlighted, including the benefits and drawbacks. In the future, another focus will be on the standardization of detection technologies for the delivery of reliable, quick, and affordable tests in clinical molecular diagnostics.
Collapse
Affiliation(s)
- Carina Heydt
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Michaela Angelika Ihle
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Faculty of Medicine, Institute of Pathology, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
6
|
Warashina S, Sato H, Zouda M, Takahashi M, Wada Y, Passioura T, Suga H, Watanabe Y, Matsumoto K, Mukai H. Two-Chain Mature Hepatocyte Growth Factor-Specific Positron Emission Tomography Imaging in Tumors Using 64Cu-Labeled HiP-8, a Nonstandard Macrocyclic Peptide Probe. Mol Pharm 2023; 20:2029-2038. [PMID: 36862642 DOI: 10.1021/acs.molpharmaceut.2c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Two-chain hepatocyte growth factor (tcHGF), the mature form of HGF, is associated with malignancy and anticancer drug resistance; therefore, its quantification is an important indicator for cancer diagnosis. In tumors, activated tcHGF hardly discharges into the systemic circulation, indicating that tcHGF is an excellent target for molecular imaging using positron emission tomography (PET). We recently discovered HGF-inhibitory peptide-8 (HiP-8) that binds specifically to human tcHGF with nanomolar affinity. The purpose of this study was to investigate the usefulness of HiP-8-based PET probes in human HGF knock-in humanized mice. 64Cu-labeled HiP-8 molecules were synthesized using a cross-bridged cyclam chelator, CB-TE1K1P. Radio-high-performance liquid chromatography-based metabolic stability analyses showed that more than 90% of the probes existed in intact form in blood at least for 15 min. In PET studies, significantly selective visualization of hHGF-overexpressing tumors versus hHGF-negative tumors was observed in double-tumor-bearing mice. The accumulation of labeled HiP-8 into the hHGF-overexpressing tumors was significantly reduced by competitive inhibition. In addition, the radioactivity and distribution of phosphorylated MET/HGF receptor were colocalized in tissues. These results demonstrate that the 64Cu-labeled HiP-8 probes are suitable for tcHGF imaging in vivo, and secretory proteins like tcHGF can be a target for PET imaging.
Collapse
Affiliation(s)
- Shota Warashina
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Maki Zouda
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maiko Takahashi
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Pharmaceutical Informatics, Graduate School of Biomedical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
7
|
Takumi Y, Arai S, Suzuki C, Fukuda K, Nishiyama A, Takeuchi S, Sato H, Matsumoto K, Sugio K, Yano S. MET kinase inhibitor reverses resistance to entrectinib induced by hepatocyte growth factor in tumors with NTRK1 or ROS1 rearrangements. Cancer Med 2023; 12:5809-5820. [PMID: 36416133 PMCID: PMC10028024 DOI: 10.1002/cam4.5342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Entrectinib is an effective drug for treating solid tumors with NTRK gene rearrangement and non-small cell lung cancer (NSCLC) with ROS1 gene rearrangement. However, its efficacy is limited by tolerance and acquired resistance, the mechanisms of which are not fully understood. The growth factors produced by the tumor microenvironment, including hepatocyte growth factor (HGF) produced by tumor-associated fibroblasts, critically affect the sensitivity to targeted drugs. METHODS We investigated whether growth factors that can be produced by the microenvironment affect sensitivity of NTRK1-rearranged colon cancer KM12SM cells and ROS1-rearranged NSCLC HCC78 cells to entrectinib both in vitro and in vivo. RESULTS Among the growth factors assessed, HGF most potently induced entrectinib resistance in KM12SM and HCC78 cells by activating its receptor MET. HGF-induced entrectinib resistance was reversed by the active-HGF-specific macrocyclic peptide HiP-8 and the MET kinase inhibitor capmatinib in vitro. In addition, HGF-producing fibroblasts promoted entrectinib resistance in vitro (culture model) and in vivo (subcutaneous tumor model). The use of capmatinib circumvented entrectinib resistance in a subcutaneous tumor model inoculated with KM12SM and HGF-producing fibroblasts. CONCLUSION Our findings suggest that growth factors in the tumor microenvironment, such as HGF, may induce resistance to entrectinib in tumors with NTRK1 or ROS1 rearrangements. Our results further suggest that optimally co-administering inhibitors of resistance-inducing growth factors may maximize the therapeutic efficacy of entrectinib.
Collapse
Affiliation(s)
- Yohei Takumi
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
- Department of Thoracic and Breast SurgeryFaculty of MedicineOita UniversityYufuJapan
| | - Sachiko Arai
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Chiaki Suzuki
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Koji Fukuda
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Akihiro Nishiyama
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Shinji Takeuchi
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Hiroki Sato
- Division of Tumor Dynamics and RegulationCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Kunio Matsumoto
- Division of Tumor Dynamics and RegulationCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Kenji Sugio
- Department of Thoracic and Breast SurgeryFaculty of MedicineOita UniversityYufuJapan
| | - Seiji Yano
- Division of Medical OncologyCancer Research Institute, Kanazawa UniversityKanazawaJapan
- Department of Respiratory MedicineFaculty of MedicineInstitute of Medical, Pharmaceutical, and Health SciencesKanazawaJapan
- WPI‐Nano Life Science Institute (WPI‐Nano LSI)Kanazawa UniversityKanazawaJapan
| |
Collapse
|
8
|
Liao AH, Chen YC, Chen CY, Chang SC, Chuang HC, Lin DL, Chiang CP, Wang CH, Wang JK. Mechanisms of ultrasound-microbubble cavitation for inducing the permeability of human skin. J Control Release 2022; 349:388-400. [PMID: 35787912 DOI: 10.1016/j.jconrel.2022.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
We have previously reported that ultrasound (US)-mediated microbubble (MB) cavitation (US-MB) changed the permeability of the skin and significantly enhanced transdermal drug delivery (TDD) without changing the structure of the skin. In this study we found that US-MB enhanced TDD via disruption of epidermal cell-cell junctions and increased matriptase activity. Matriptase is a membrane-bound serine protease regulated by its inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1), and it is expressed in most epithelial tissues under physiologic conditions. Matriptase is expressed in mice after chronic exposure to UV radiation. This study found that US-MB can be used to monitor active matriptase, which rapidly formed the canonical 120-kDa matriptase-HAI-1 complex. These processes were observed in HaCaT human keratinocytes when matriptase activation was induced by US-MB. The results of immunoblot analysis indicated that the matriptase-HAI-1 complex can be detected from 10 min to 3 h after US-MB. Immunohistochemistry (IHC) of human skin revealed that US-MB rapidly increased the activated matriptase, which was observed in the basal layer, with this elevation lasting 3 h. After 3 h, the activated matriptase extended from the basal layer to the granular layer, and then gradually decayed from 6 to 12 h. Moreover, prostasin expression was observed in the epidermal granular layer to the spinous layer, and became more obvious in the granular layer after 3 h. Prostasin was also detected in the cytoplasm or on the cell membrane after 6 h. These results suggest that matriptase plays an important role in recovering from US-MB-induced epidermal cell-cell junction disruption within 6 h. US-MB is therefore a potentially effective method for noninvasive TDD in humans.
Collapse
Affiliation(s)
- Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Chen Chen
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chen
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shun-Cheng Chang
- Division of Plastic Surgery, Integrated Burn and Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City 235, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Dao-Lung Lin
- Spirit Scientific Co., Ltd. Taiwan Branch (Cayman), 12F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221416, Taiwan
| | - Chien-Ping Chiang
- Department of Dermatology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Jehng-Kang Wang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan.
| |
Collapse
|
9
|
Therapeutic Strategies for Ovarian Cancer in Point of HGF/c-MET Targeting. Medicina (B Aires) 2022; 58:medicina58050649. [PMID: 35630066 PMCID: PMC9147666 DOI: 10.3390/medicina58050649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer deaths in women and is regarded as one of the most difficult cancers to treat. Currently, studies are being conducted to develop therapeutic agents for effective treatment of ovarian cancer. In this review, we explain the properties of the hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) and how the signaling pathway of HGF/c-MET is activated in different cancers and involved in tumorigenesis and metastasis of ovarian cancer. We present the findings of clinical studies using small chemicals or antibodies targeting HGF/c-MET signaling in various cancer types, particularly in ovarian cancer. We also discuss that HGF/c-MET-targeted therapy, when combined with chemo drugs, could be an effective strategy for ovarian cancer therapeutics.
Collapse
|
10
|
Zhao Y, Ye W, Wang YD, Chen WD. HGF/c-Met: A Key Promoter in Liver Regeneration. Front Pharmacol 2022; 13:808855. [PMID: 35370682 PMCID: PMC8968572 DOI: 10.3389/fphar.2022.808855] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/11/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a peptide-containing multifunctional cytokine that acts on various epithelial cells to regulate cell growth, movement and morphogenesis, and tissue regeneration of injured organs. HGF is sequestered by heparin-like protein in its inactive form and is widespread in the extracellular matrix of most tissues. When the liver loses its average mass, volume, or physiological and biochemical functions due to various reasons, HGF binds to its specific receptor c-Met (cellular mesenchymal-epithelial transition) and transmits the signals into the cells, and triggers the intrinsic kinase activity of c-Met. The downstream cascades of HGF/c-Met include JAK/STAT3, PI3K/Akt/NF-κB, and Ras/Raf pathways, affecting cell proliferation, growth, and survival. HGF has important clinical significance for liver fibrosis, hepatocyte regeneration after inflammation, and liver regeneration after transplantation. And the development of HGF as a biological drug for regenerative therapy of diseases, that is, using recombinant human HGF protein to treat disorders in clinical trials, is underway. This review summarizes the recent findings of the HGF/c-Met signaling functions in liver regeneration.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, The People's Hospital of Hebi, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
11
|
Floresta G, Abbate V. Recent progress in the imaging of c-Met aberrant cancers with positron emission tomography. Med Res Rev 2022; 42:1588-1606. [PMID: 35292998 PMCID: PMC9314990 DOI: 10.1002/med.21885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Tyrosine-protein kinase Met-also known as c-Met or HGFR-is a membrane receptor protein with associated tyrosine kinase activity physiologically stimulated by its natural ligand, the hepatocyte growth factor (HGF), and is involved in different ways in cancer progression and tumourigenesis. Targeting c-Met with pharmaceuticals has been preclinically proved to have significant benefits for cancer treatment. Recently, evaluating the protein status during and before c-Met targeted therapy has been shown of relevant importance by different studies, demonstrating that there is a correlation between the status (e.g., aberrant activation and overexpression) of the HGFR with therapy response and clinical prognosis. Currently, clinical imaging based on positron emission tomography (PET) appears as one of the most promising tools for the in vivo real-time scanning of irregular alterations of the tyrosine-protein kinase Met and for the diagnosis of c-Met related cancers. In this study, we review the recent progress in the imaging of c-Met aberrant cancers with PET. Particular attention is directed on the development of PET probes with a range of different sizes (HGF, antibodies, anticalines, peptides, and small molecules), and radiolabeled with different radionuclides. The goal of this review is to report all the preclinical imaging studies based on PET imaging reported until now for in vivo diagnosis of c-Met in oncology to support the design of novel and more effective PET probes for in vivo evaluation of c-Met.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Zhang Y, Lin Y, Lv D, Wu X, Li W, Wang X, Jiang D. Identification and validation of a novel signature for prediction the prognosis and immunotherapy benefit in bladder cancer. PeerJ 2022; 10:e12843. [PMID: 35127296 PMCID: PMC8796709 DOI: 10.7717/peerj.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is a common urinary tract system tumor with high recurrence rate and different populations show distinct response to immunotherapy. Novel biomarkers that can accurately predict prognosis and therapeutic responses are urgently needed. Here, we aim to identify a novel prognostic and therapeutic responses immune-related gene signature of BC through a comprehensive bioinformatics analysis. METHODS The robust rank aggregation was conducted to integrate differently expressed genes (DEGs) in datasets of the Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO). Lasso and Cox regression analyses were performed to formulate a novel mRNA signature that could predict prognosis of BC patients. Subsequently, the prognostic value and predictive value of the signature was validated with two independent cohorts GSE13507 and IMvigor210. Finally, quantitative Real-time PCR (qRT-PCR) analysis was conducted to determine the expression of mRNAs in BC cell lines (UM-UC-3, EJ-1, SW780 and T24). RESULTS We built a signature comprised the eight mRNAs: CNKSR1, COPZ2, CXorf57, FASN, PCOLCE2, RGS1, SPINT1 and TPST1. Our prognostic signature could be used to stratify BC population into two risk groups with distinct immune profile and responsiveness to immunotherapy. The results of qRT-PCR demonstrated that the eight mRNAs exhibited different expression levels in BC cell lines. CONCLUSION Our study constructed a convenient and reliable 8-mRNA gene signature, which might provide prognostic prediction and aid treatment decision making of BC patients in clinical practice.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Nanshan School, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yifeng Lin
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,Department of Urology, Meizhou Hospital of Traditional Chinese Medicine, Meizhou, China
| | - Daojun Lv
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangkun Wu
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xueqing Wang
- Department of Ultrasound, Shantou Central Hospital, Shantou, Guangdong, China
| | - Dongmei Jiang
- Department of Pathology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangzhou, China
| |
Collapse
|
13
|
Damalanka VC, Voss JJLP, Mahoney MW, Primeau T, Li S, Klampfer L, Janetka JW. Macrocyclic Inhibitors of HGF-Activating Serine Proteases Overcome Resistance to Receptor Tyrosine Kinase Inhibitors and Block Lung Cancer Progression. J Med Chem 2021; 64:18158-18174. [PMID: 34902246 DOI: 10.1021/acs.jmedchem.1c01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors. The new series of cyclic tripeptides has superior metabolic stability and significantly improved pharmacokinetics in mice relative to the corresponding linear peptides. We identified the lead compound VD2173 that potently inhibits matriptase and hepsin, which was tested in parallel alongside the acyclic inhibitor ZFH7116 using both in vitro and in vivo models of lung cancer. We demonstrated that both compounds block pro-HGF activation, abrogate HGF-mediated wound healing, and overcome resistance to EGFR- and MET-targeted therapy in lung cancer models. Furthermore, VD2173 inhibited HGF-dependent growth of lung cancer tumors in mice.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jorine J L P Voss
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew W Mahoney
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - Tina Primeau
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lidija Klampfer
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States.,ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| |
Collapse
|
14
|
The role of pro-domains in human growth factors and cytokines. Biochem Soc Trans 2021; 49:1963-1973. [PMID: 34495310 PMCID: PMC8589418 DOI: 10.1042/bst20200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Many growth factors and cytokines are produced as larger precursors, containing pro-domains, that require proteolytic processing to release the bioactive ligand. These pro-domains can be significantly larger than the mature domains and can play an active role in the regulation of the ligands. Mining the UniProt database, we identified almost one hundred human growth factors and cytokines with pro-domains. These are spread across several unrelated protein families and vary in both their size and composition. The precise role of each pro-domain varies significantly between the protein families. Typically they are critical for controlling bioactivity and protein localisation, and they facilitate diverse mechanisms of activation. Significant gaps in our understanding remain for pro-domain function — particularly their fate once the bioactive ligand has been released. Here we provide an overview of pro-domain roles in human growth factors and cytokines, their processing, regulation and activation, localisation as well as therapeutic potential.
Collapse
|
15
|
Gupta R, Kleinjans J, Caiment F. Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning. BMC Cancer 2021; 21:962. [PMID: 34445986 PMCID: PMC8394105 DOI: 10.1186/s12885-021-08704-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/09/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world owing to limitations in its prognosis. The current prognosis approaches include radiological examination and detection of serum biomarkers, however, both have limited efficiency and are ineffective in early prognosis. Due to such limitations, we propose to use RNA-Seq data for evaluating putative higher accuracy biomarkers at the transcript level that could help in early prognosis. METHODS To identify such potential transcript biomarkers, RNA-Seq data for healthy liver and various HCC cell models were subjected to five different machine learning algorithms: random forest, K-nearest neighbor, Naïve Bayes, support vector machine, and neural networks. Various metrics, namely sensitivity, specificity, MCC, informedness, and AUC-ROC (except for support vector machine) were evaluated. The algorithms that produced the highest values for all metrics were chosen to extract the top features that were subjected to recursive feature elimination. Through recursive feature elimination, the least number of features were obtained to differentiate between the healthy and HCC cell models. RESULTS From the metrics used, it is demonstrated that the efficiency of the known protein biomarkers for HCC is comparatively lower than complete transcriptomics data. Among the different machine learning algorithms, random forest and support vector machine demonstrated the best performance. Using recursive feature elimination on top features of random forest and support vector machine three transcripts were selected that had an accuracy of 0.97 and kappa of 0.93. Of the three transcripts, two were protein coding (PARP2-202 and SPON2-203) and one was a non-coding transcript (CYREN-211). Lastly, we demonstrated that these three selected transcripts outperformed randomly taken three transcripts (15,000 combinations), hence were not chance findings, and could then be an interesting candidate for new HCC biomarker development. CONCLUSION Using RNA-Seq data combined with machine learning approaches can aid in finding novel transcript biomarkers. The three biomarkers identified: PARP2-202, SPON2-203, and CYREN-211, presented the highest accuracy among all other transcripts in differentiating the healthy and HCC cell models. The machine learning pipeline developed in this study can be used for any RNA-Seq dataset to find novel transcript biomarkers. Code: www.github.com/rajinder4489/ML_biomarkers.
Collapse
Affiliation(s)
- Rajinder Gupta
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
16
|
Han TTY, Walker JT, Grant A, Dekaban GA, Flynn LE. Preconditioning Human Adipose-Derived Stromal Cells on Decellularized Adipose Tissue Scaffolds Within a Perfusion Bioreactor Modulates Cell Phenotype and Promotes a Pro-regenerative Host Response. Front Bioeng Biotechnol 2021; 9:642465. [PMID: 33816453 PMCID: PMC8012684 DOI: 10.3389/fbioe.2021.642465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-based therapies involving the delivery of adipose-derived stromal cells (ASCs) on decellularized adipose tissue (DAT) scaffolds are a promising approach for soft tissue augmentation and reconstruction. Our lab has recently shown that culturing human ASCs on DAT scaffolds within a perfusion bioreactor prior to implantation can enhance their capacity to stimulate in vivo adipose tissue regeneration. Building from this previous work, the current study investigated the effects of bioreactor preconditioning on the ASC phenotype and secretory profile in vitro, as well as host cell recruitment following implantation in an athymic nude mouse model. Immunohistochemical analyses indicated that culturing within the bioreactor increased the percentage of ASCs co-expressing inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1), as well as tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10), within the peripheral regions of the DAT relative to statically cultured controls. In addition, bioreactor culture altered the expression levels of a range of immunomodulatory factors in the ASC-seeded DAT. In vivo testing revealed that culturing the ASCs on the DAT within the perfusion bioreactor prior to implantation enhanced the infiltration of host CD31+ endothelial cells and CD26+ cells into the DAT implants, but did not alter CD45+F4/80+CD68+ macrophage recruitment. However, a higher fraction of the CD45+ cell population expressed the pro-regenerative macrophage marker CD163 in the bioreactor group, which may have contributed to enhanced remodeling of the scaffolds into host-derived adipose tissue. Overall, the findings support that bioreactor preconditioning can augment the capacity of human ASCs to stimulate regeneration through paracrine-mediated mechanisms.
Collapse
Affiliation(s)
- Tim Tian Y. Han
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - John T. Walker
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aaron Grant
- Division of Plastic and Reconstructive Surgery, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn,
| |
Collapse
|
17
|
Wu Q, Yin G, Luo J, Zhang Y, Ai T, Tian J, Jin Y, Lei J, Liu S. Comprehensive Analysis of the Expression and Prognostic Value of SPINT1/2 in Breast Carcinoma. Front Endocrinol (Lausanne) 2021; 12:665666. [PMID: 34381422 PMCID: PMC8351597 DOI: 10.3389/fendo.2021.665666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) signaling plays a plethora of roles in tumorigenesis and progression in many cancer types. As HGF activator inhibitors, serine protease inhibitor, Kunitz types 1 and 2 (SPINT1 and SPINT2) have been reported to be differentially expressed in breast cancer, but their prognostic significance and functioning mechanism remain unclear. METHODS In our study, multiple databases and bioinformatics tools were used to investigate SPINT1/2 expression profiles, prognostic significance, genetic alteration, methylation, and regulatory network in breast carcinoma. RESULTS SPINT1/2 expression was upregulated in breast cancer, and was relatively higher in human epidermal growth factor receptor 2 (HER2) and node positive patients. Elevated SPINT1/2 expression was significantly correlated with a poorer prognosis. Genetic alterations and SPINT1/2 hypomethylation were observed. In breast carcinoma, SPINT1/2 were reciprocally correlated and shared common co-expressed genes. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that their common co-expressed genes were primarily involved in regulating cell attachment and migration. CONCLUSIONS Our study identified the expression profiles, prognostic significance and potential roles of SPINT1/2 in breast carcinoma. These study results showed that the SPINT1/2 were potential prognostic biomarker for patients with breast cancer.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guobing Yin
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Yingzi Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tiantian Ai
- Department of Cardiovascular Sciences, Chongqing Kangxin Hospital, Chongqing, China
| | - Jiao Tian
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yudi Jin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinwei Lei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Shengchun Liu,
| |
Collapse
|
18
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
19
|
Ong D, Ismail MN, Shahrudin S. Protein Composition and Biomedical Potential of the Skin Secretion of Hylarana erythraea (Schlegel, 1837) (Anura: Ranidae) from Langkawi Archipelago, Kedah, Peninsular Malaysia. Int J Pept Res Ther 2021; 27:2125-2133. [PMID: 34177403 PMCID: PMC8215483 DOI: 10.1007/s10989-021-10240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
The skin secretion of amphibians is known for its high content of bioactive compounds. These bioactive compounds are essential for the advancement of biomedical industries. Four wild green paddy frogs, Hylarana erythraea, were collected from various habitat types within the Langkawi Archipelago. These frogs' skin secretions were collected, extracted, and analysed for their protein compounds together with biomedical potentials using liquid chromatography-mass spectrometry (LC-MS). The total protein concentration of H. erythraea skin secretions was determined as 0.269 mg/mL. Based on the UniProt (Anura) database, we identified 29 proteins. These proteins were categorised as antimicrobial (AMP) (38%), followed by hormone (17%), enzyme (17%), unreviewed proteins (17%), structural proteins (7%), and regulatory proteins (4%). The AMPs identified were from the family of esculentin-1, esculentin-2, brevinin-1, and frenatin-4, while the hormones belonged to the cholecystokinin group. The enzymes detected were adenylate cyclase 9, the suppressor of tumorigenicity 14 protein homolog, and the HGF activator. The structural proteins belonged to toe pad keratin 2 and Krt5.7 proteins, while the single regulatory protein is CCR4-NOT transcription complex subunit 6-like. These proteins have a wide range of biomedical importance, such as wound healings, facilitate digestions, anti-tumours, and anti-cancer effect.
Collapse
Affiliation(s)
- Dasi Ong
- School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), 11800 Gelugor, Penang Malaysia ,Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11800 Gelugor, Penang Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11800 Gelugor, Penang Malaysia
| | - Shahriza Shahrudin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), 11800 Gelugor, Penang Malaysia
| |
Collapse
|
20
|
Kwon H, Ha H, Jeon H, Jang J, Son SH, Lee K, Park SK, Byun Y. Structure-activity relationship studies of dipeptide-based hepsin inhibitors with Arg bioisosteres. Bioorg Chem 2020; 107:104521. [PMID: 33334587 DOI: 10.1016/j.bioorg.2020.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/09/2023]
Abstract
Hepsin is a type II transmembrane serine protease (TTSP) associated with cell proliferation and overexpressed in several types of cancer including prostate cancer (PCa). Because of its significant role in cancer progression and metastasis, hepsin is an attractive protein as a potential therapeutic and diagnostic biomarker for PCa. Based on the reported Leu-Arg dipeptide-based hepsin inhibitors, we performed structural modification and determined in vitro hepsin- and matriptase-inhibitory activities. Comprehensive structure-activity relationship studies identified that the p-guanidinophenylalanine-based dipeptide analog 22a exhibited a strong hepsin-inhibitory activity (Ki = 50.5 nM) and 22-fold hepsin selectivity over matriptase. Compound 22a could be a prototype molecule for structural optimization of dipeptide-based hepsin inhibitors.
Collapse
Affiliation(s)
- Hongmok Kwon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hayoung Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Sang-Hyun Son
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| |
Collapse
|
21
|
Sato H, Imamura R, Suga H, Matsumoto K, Sakai K. Cyclic Peptide-Based Biologics Regulating HGF-MET. Int J Mol Sci 2020; 21:ijms21217977. [PMID: 33121208 PMCID: PMC7662982 DOI: 10.3390/ijms21217977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Using a random non-standard peptide integrated discovery system, we obtained cyclic peptides that bind to hepatocyte growth factor (HGF) or mesenchymal-epithelial transition factor. (MET) HGF-inhibitory peptide-8 (HiP-8) selectively bound to two-chain active HGF, but not to single-chain precursor HGF. HGF showed a dynamic change in its molecular shape in atomic force microscopy, but HiP-8 inhibited dynamic change in the molecular shape into a static status. The inhibition of the molecular dynamics of HGF by HiP-8 was associated with the loss of the ability to bind MET. HiP-8 could selectively detect active HGF in cancer tissues, and active HGF probed by HiP-8 showed co-localization with activated MET. Using HiP-8, cancer tissues with active HGF could be detected by positron emission tomography. HiP-8 seems to be applicable for the diagnosis and treatment of cancers. In contrast, based on the receptor dimerization as an essential process for activation, the cross-linking of the cyclic peptides that bind to the extracellular region of MET successfully generated an artificial ligand to MET. The synthetic MET agonists activated MET and exhibited biological activities which were indistinguishable from the effects of HGF. MET agonists composed of cyclic peptides can be manufactured by chemical synthesis but not recombinant protein expression, and thus are expected to be new biologics that are applicable to therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Tumor Microenvironment Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (H.S.); (R.I.); (K.M.)
- WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Correspondence:
| |
Collapse
|
22
|
Robertson MJ, Kent K, Tharp N, Nozawa K, Dean L, Mathew M, Grimm SL, Yu Z, Légaré C, Fujihara Y, Ikawa M, Sullivan R, Coarfa C, Matzuk MM, Garcia TX. Large-scale discovery of male reproductive tract-specific genes through analysis of RNA-seq datasets. BMC Biol 2020; 18:103. [PMID: 32814578 PMCID: PMC7436996 DOI: 10.1186/s12915-020-00826-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background The development of a safe, effective, reversible, non-hormonal contraceptive method for men has been an ongoing effort for the past few decades. However, despite significant progress on elucidating the function of key proteins involved in reproduction, understanding male reproductive physiology is limited by incomplete information on the genes expressed in reproductive tissues, and no contraceptive targets have so far reached clinical trials. To advance product development, further identification of novel reproductive tract-specific genes leading to potentially druggable protein targets is imperative. Results In this study, we expand on previous single tissue, single species studies by integrating analysis of publicly available human and mouse RNA-seq datasets whose initial published purpose was not focused on identifying male reproductive tract-specific targets. We also incorporate analysis of additional newly acquired human and mouse testis and epididymis samples to increase the number of targets identified. We detected a combined total of 1178 genes for which no previous evidence of male reproductive tract-specific expression was annotated, many of which are potentially druggable targets. Through RT-PCR, we confirmed the reproductive tract-specific expression of 51 novel orthologous human and mouse genes without a reported mouse model. Of these, we ablated four epididymis-specific genes (Spint3, Spint4, Spint5, and Ces5a) and two testis-specific genes (Pp2d1 and Saxo1) in individual or double knockout mice generated through the CRISPR/Cas9 system. Our results validate a functional requirement for Spint4/5 and Ces5a in male mouse fertility, while demonstrating that Spint3, Pp2d1, and Saxo1 are each individually dispensable for male mouse fertility. Conclusions Our work provides a plethora of novel testis- and epididymis-specific genes and elucidates the functional requirement of several of these genes, which is essential towards understanding the etiology of male infertility and the development of male contraceptives.
Collapse
Affiliation(s)
- Matthew J Robertson
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Katarzyna Kent
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Nathan Tharp
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Kaori Nozawa
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Laura Dean
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Michelle Mathew
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Sandra L Grimm
- Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Zhifeng Yu
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Christine Légaré
- Department Obstetrics, Gynecology and Reproduction, Faculty Medicine, Université Laval, Quebec, QC, Canada.,Reproduction, Mother and Youth Health Division, Centre de recherche du CHU de Québec-Université Laval, 2705 boul Laurier, Quebec, QC, G1V 4G2, Canada
| | - Yoshitaka Fujihara
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Experimental Genome Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita, Osaka, 564-8565, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Robert Sullivan
- Department Obstetrics, Gynecology and Reproduction, Faculty Medicine, Université Laval, Quebec, QC, Canada.,Reproduction, Mother and Youth Health Division, Centre de recherche du CHU de Québec-Université Laval, 2705 boul Laurier, Quebec, QC, G1V 4G2, Canada
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Center for Precision Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Martin M Matzuk
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Thomas X Garcia
- Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Department of Biology and Biotechnology, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX, 77058, USA. .,Center for Drug Discovery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. Oncogene 2020; 39:5950-5963. [PMID: 32778768 PMCID: PMC7416816 DOI: 10.1038/s41388-020-01413-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
TMPRSS2 is an important membrane-anchored serine protease involved in human prostate cancer progression and metastasis. A serine protease physiologically often comes together with a cognate inhibitor for execution of proteolytically biologic function; however, TMPRSS2's cognate inhibitor is still elusive. To identify the cognate inhibitor of TMPRSS2, in this study, we applied co-immunoprecipitation and LC/MS/MS analysis and isolated hepatocyte growth factor activator inhibitors (HAIs) to be potential inhibitor candidates for TMPRSS2. Moreover, the recombinant HAI-2 proteins exhibited a better inhibitory effect on TMPRSS2 proteolytic activity than HAI-1, and recombinant HAI-2 proteins had a high affinity to form a complex with TMPRSS2. The immunofluorescence images further showed that TMPRSS2 was co-localized to HAI-2. Both KD1 and KD2 domain of HAI-2 showed comparable inhibitory effects on TMPRSS2 proteolytic activity. In addition, HAI-2 overexpression could suppress the induction effect of TMPRSS2 on pro-HGF activation, extracellular matrix degradation and prostate cancer cell invasion. We further determined that the expression levels of TMPRSS2 were inversely correlated with HAI-2 levels during prostate cancer progression. In orthotopic xenograft animal model, TMPRSS2 overexpression promoted prostate cancer metastasis, and HAI-2 overexpression efficiently blocked TMPRSS2-induced metastasis. In summary, the results together indicate that HAI-2 can function as a cognate inhibitor for TMPRSS2 in human prostate cancer cells and may serve as a potential factor to suppress TMPRSS2-mediated malignancy.
Collapse
|
24
|
Hu X, Tang F, Liu P, Zhong T, Yuan F, He Q, von Itzstein M, Li H, Weng L, Yu X. Structural and Functional Insight Into the Glycosylation Impact Upon the HGF/c-Met Signaling Pathway. Front Cell Dev Biol 2020; 8:490. [PMID: 32626713 PMCID: PMC7314907 DOI: 10.3389/fcell.2020.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Upon interactions with its specific ligand hepatocyte growth factor (HGF), the c-Met signal is relayed to series of downstream pathways, exerting essential biological roles. Dysregulation of the HGF-c-Met signaling pathway has been implicated in the onset, progression and metastasis of various cancers, making the HGF-c-Met axis a promising therapeutic target. Both c-Met and HGF undergo glycosylation, which appears to be biologically relevant to their function and structural integrity. Different types of glycoconjugates in the local cellular environment can also regulate HGF/c-Met signaling by distinct mechanisms. However, detailed knowledge pertaining to the glycosylation machinery of the HGF-c-Met axis as well as its potential applications in oncology research is yet to be established. This mini review highlights the significance of the HGF-c-Met signaling pathway in physiological and pathological context, and discusses the molecular mechanisms by which affect the glycosylation of the HGF-c-Met axis. Owing to the crucial role played by glycosylation in the regulation of HGF/c-Met activity, better understanding of this less exploited field may contribute to the development of novel therapeutics targeting glycoepitopes.
Collapse
Affiliation(s)
- Xinyue Hu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Feiyu Tang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peilin Liu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Taowei Zhong
- College of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liang Weng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology in Hunan Province, Central South University, Changsha, China
| | - Xing Yu
- College of Medicine, Hunan Normal University, Changsha, China.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
25
|
Kim ST, Hong JY, Park SH, Park JO, Park YW, Park N, Lee H, Hong SH, Lee SJ, Song SW, Kim K, Park YS, Lim HY, Kang WK, Nam DH, Lee JW, Park K, Kim KM, Lee J. First-in-human phase I trial of anti-hepatocyte growth factor antibody (YYB101) in refractory solid tumor patients. Ther Adv Med Oncol 2020; 12:1758835920926796. [PMID: 32536979 PMCID: PMC7268171 DOI: 10.1177/1758835920926796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background YYB101, a humanized monoclonal antibody against hepatocyte growth factor (HGF), has shown safety and efficacy in vitro and in vivo. This is a first-in-human trial of this antibody. Materials and Methods YYB101 was administered intravenously to refractory cancer patients once every 4 weeks for 1 month, and then once every 2 weeks until disease progression or intolerable toxicity, at doses of 0.3, 1, 3, 5, 10, 20, 30 mg/kg, according to a 3+3 dose escalation design. Maximum tolerated dose, safety, pharmacokinetics, and pharmacodynamics were studied. HGF, MET, PD-L1, and ERK expression was evaluated for 9 of 17 patients of the expansion cohort (20 mg/kg). Results In 39 patients enrolled, no dose-limiting toxicity was observed at 0.3 mg/kg, and the most commonly detected toxicity was generalized edema (n = 7, 18.9%) followed by pruritis and nausea (n = 5, 13.5%, each), fatigue, anemia, and decreased appetite (n = 4, 10.8%, each). No patient discontinued treatment because of adverse events. YYB101 showed dose-proportional pharmacokinetics up to 30 mg/kg. Partial response in 1 (2.5%) and stable disease in 17 (43.5%) were observed. HGF, MET, PD-L1, and ERK proteins were not significant predictors for treatment response. However, serum HGF level was significantly lowered in responders upon drug administration. RNA sequencing revealed a mesenchymal signature in two long-term responders. Conclusion YYB101 showed favorable safety and efficacy in patients with refractory solid tumors. Based on this phase I trial, a phase II study on the YYB101 + irinotecan combination in refractory metastatic colorectal cancer patients is planned. Conclusion ClinicalTrials.gov Identifier: NCT02499224.
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Young Whan Park
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Neunggyu Park
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Hukeun Lee
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Sung Hee Hong
- National OncoVenture, National Cancer Center, Goyang, Korea, Republic of (South)
| | - Song-Jae Lee
- CellabMED Inc, Guro-gu, Seoul, Korea, Republic of (South)
| | - Seong-Won Song
- CellabMED Inc, Guro-gu, Seoul, Korea, Republic of (South)
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Korea, Republic of (South)
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, Republic of (South)
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine Seoul, Korea, Republic of (South)
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
26
|
Isabella AJ, Barsh GR, Stonick JA, Dubrulle J, Moens CB. Retinoic Acid Organizes the Zebrafish Vagus Motor Topographic Map via Spatiotemporal Coordination of Hgf/Met Signaling. Dev Cell 2020; 53:344-357.e5. [PMID: 32302545 PMCID: PMC7237105 DOI: 10.1016/j.devcel.2020.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/14/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Information flow through neural circuits often requires their organization into topographic maps in which the positions of cell bodies and synaptic targets correspond. To understand how topographic map development is controlled, we examine the mechanism underlying targeting of vagus motor axons to the pharyngeal arches in zebrafish. We reveal that retinoic acid organizes topography by specifying anterior-posterior identity in vagus motor neurons. We then show that chemoattractant signaling between Hgf and Met is required for vagus innervation of the pharyngeal arches. Finally, we find that retinoic acid controls the spatiotemporal dynamics of Hgf/Met signaling to coordinate axon targeting with the developmental progression of the pharyngeal arches and show that experimentally altering the timing of Hgf/Met signaling is sufficient to redirect axon targeting and disrupt the topographic map. These findings establish a mechanism of topographic map development in which the regulation of chemoattractant signaling in space and time guides axon targeting.
Collapse
Affiliation(s)
- Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gabrielle R Barsh
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jason A Stonick
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
Mukai S, Yamasaki K, Fujii M, Nagai T, Terada N, Kataoka H, Kamoto T. Dysregulation of Type II Transmembrane Serine Proteases and Ligand-Dependent Activation of MET in Urological Cancers. Int J Mol Sci 2020; 21:ijms21082663. [PMID: 32290402 PMCID: PMC7215454 DOI: 10.3390/ijms21082663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Unlike in normal epithelium, dysregulated overactivation of various proteases have been reported in cancers. Degradation of pericancerous extracellular matrix leading to cancer cell invasion by matrix metalloproteases is well known evidence. On the other hand, several cell-surface proteases, including type II transmembrane serine proteases (TTSPs), also induce progression through activation of growth factors, protease activating receptors and other proteases. Hepatocyte growth factor (HGF) known as a multifunctional growth factor that upregulates cancer cell motility, invasiveness, proliferative, and anti-apoptotic activities through phosphorylation of MET (a specific receptor of HGF). HGF secreted as inactive zymogen (pro-HGF) from cancer associated stromal fibroblasts, and the proteolytic activation by several TTSPs including matriptase and hepsin is required. The activation is strictly regulated by HGF activator inhibitors (HAIs) in physiological condition. However, downregulation is frequently observed in cancers. Indeed, overactivation of MET by upregulation of matriptase and hepsin accompanied by the downregulation of HAIs in urological cancers (prostate cancer, renal cell carcinoma, and bladder cancer) are also reported, a phenomenon observed in cancer cells with malignant phenotype, and correlated with poor prognosis. In this review, we summarized current reports focusing on TTSPs, HAIs, and MET signaling axis in urological cancers.
Collapse
Affiliation(s)
- Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
- Correspondence: ; Tel.: +81-985-85-2968
| | - Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Masato Fujii
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Hiroaki Kataoka
- Oncopathology and Regenerative Biology Section, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| |
Collapse
|
28
|
Abstract
Introduction: The HGF/MET axis is a key therapeutic pathway in cancer; it is aberrantly activated because of mutations, fusions, amplification or aberrant ligand production. Extensive efforts have been made to discover predictive factors of anti-MET therapeutic efficacy, but they have mostly unsuccessful. An understanding of the intrinsic and acquired mechanism of MET resistance will be fundamental for the development of new therapeutic interventions.Areas covered: This article provides a systematic review of phase II randomized and phase III clinical trials investigating the use of MET inhibitors in the treatment of cancer. We discuss preliminary findings on efficacy and methodologic design flaws in these trials.Expert opinion: MET inhibitors showed poor activity in unselected patients or patients selected by MET expression, p-MET or high HGF basal levels. The efficacy in advanced solid tumors is very modest and in phase III clinical trials, survival differences did not fulfill the stringent requirements of ESMO-Magnitude Clinical Benefit Score (MCBS). Prospective novel liquid biomarker-driven studies and novel trial designs such as Umbrella and Basket trials are necessary to progress MET inhibitor development.
Collapse
Affiliation(s)
- Helena Oliveres
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| | - Estela Pineda
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| | - Joan Maurel
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapeutics in Solid Tumors Group, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Susen RM, Bauer R, Olesch C, Fuhrmann DC, Fink AF, Dehne N, Jain A, Ebersberger I, Schmid T, Brüne B. Macrophage HIF-2α regulates tumor-suppressive Spint1 in the tumor microenvironment. Mol Carcinog 2019; 58:2127-2138. [PMID: 31436357 DOI: 10.1002/mc.23103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
In solid tumors, tumor-associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia-inducible factors (HIFs). While HIF-1α is ubiquitously expressed, HIF-2α appears tissue-specific with consequences of HIF-2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF-2α knockout (HIF-2αLysM-/- ) compared with wildtype (wt) mice. In an RNA-sequencing approach of FACS sorted wt and HIF-2α LysM-/- TAMs, serine protease inhibitor, Kunitz type-1 ( Spint1) emerged as a promising candidate for HIF-2α-dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF-2α-deficient bone marrow-derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF-2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro-HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor-suppressive function of HIF-2α in TAMs in breast tumor development.
Collapse
Affiliation(s)
- Rosa M Susen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Annika F Fink
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nathalie Dehne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Arpit Jain
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt, Frankfurt, Germany.,Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany
| |
Collapse
|
30
|
Distinct Localization of Mature HGF from its Precursor Form in Developing and Repairing the Stomach. Int J Mol Sci 2019; 20:ijms20122955. [PMID: 31212972 PMCID: PMC6628191 DOI: 10.3390/ijms20122955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 01/23/2023] Open
Abstract
Hepatocyte growth factor (HGF) is secreted as an inactive single-chain HGF (scHGF); however, only proteolytically processed two-chain HGF (tcHGF) can activate the MET receptor. We investigated the localization of tcHGF and activated/phosphorylated MET (pMET) using a tcHGF-specific antibody. In day 16.5 mouse embryos, total HGF (scHGF + tcHGF) was mainly localized in smooth muscle cells close to, but separate from, MET-positive epithelial cells in endodermal organs, including the stomach. In the adult stomach, total HGF was localized in smooth muscle cells, and tcHGF was mainly localized in the glandular base region. Immunostaining for pMET and Lgr5-driven green fluorescent protein (GFP) indicated that pMET localization overlapped with Lgr5+ gastric stem cells. HGF promoted organoid formation similar to EGF, indicating the potential for HGF to promote the survival and growth of gastric stem cells. pMET and tcHGF localizations changed during regeneration following gastric injury. These results indicate that MET is constantly activated in gastric stem cells and that the localization of pMET differs from the primary localization of precursor HGF but has a close relationship to tcHGF. Our results suggest the importance of the microenvironmental generation of tcHGF in the regulation of development, regeneration, and stem cell behavior.
Collapse
|
31
|
Macrocyclic peptide-based inhibition and imaging of hepatocyte growth factor. Nat Chem Biol 2019; 15:598-606. [DOI: 10.1038/s41589-019-0285-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/03/2019] [Indexed: 11/08/2022]
|
32
|
Recent progress on inhibitors of the type II transmembrane serine proteases, hepsin, matriptase and matriptase-2. Future Med Chem 2019; 11:743-769. [DOI: 10.4155/fmc-2018-0446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the type II transmembrane serine proteases (TTSP) family play a vital role in cell growth and development but many are also implicated in disease. Two of the well-studied TTSPs, matriptase and hepsin proteolytically process multiple protein substrates such as the inactive single-chain zymogens pro-HGF and pro-macrophage stimulating protein into the active heterodimeric forms, HGF and macrophage stimulating protein. These two proteases also have many other substrates which are associated with cancer and tumor progression. Another related TTSP, matriptase-2 is expressed in the liver and functions by regulating iron homoeostasis through the cleavage of hemojuvelin and thus is implicated in iron overload diseases. In the present review, we will discuss inhibitor design strategy and Structure activity relationships of TTSP inhibitors, which have been reported in the literature.
Collapse
|
33
|
Yin L, Mu Y, Lin Y, Xia Q. HGFAC expression decreased in liver cancer and its low expression correlated with DNA hypermethylation and poor prognosis. J Cell Biochem 2019; 120:9692-9699. [PMID: 30635948 DOI: 10.1002/jcb.28247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/16/2018] [Indexed: 01/13/2023]
Abstract
As the activator of hepatocyte growth factor (HGF), hepatocyte growth factor activator (HGFAC) has been previously reported to involve in liver, kidney, and stomach regeneration in response to injury and several types of cancers. This study aimed to explore the expression of HGFAC and the correlation between decreased HGFAC and DNA methylation in liver cancer and its clinical significance. The molecular profiling of HGFAC in liver cancer was analyzed using genomic, transcriptomic, immunohistochemistry, and patient survival information from databases, including oncomine, HPA, COSMIC, UCSC Xena, MPRESS, and Kaplan-Meier plotter. It was found that HGFAC expression at transcriptional and translational level decreased in liver cancer compared with normal tissues. There is a negative correlation between the HGFAC expression and methylation around the promoter region which indicated that HGFAC expression might be controlled by DNA methylation. Moreover, the decreased HGFAC is associated with significantly short over survival time in liver cancer patients. In conclusion, decreased HGFAC expression in liver cancer associated with poor survival outcome. Hypermethylation around the promoter region contributed to the decreased expression of HGFAC. HGFAC may be a useful and predictive biomarker for the prognosis of liver cancer patients. To the best of our knowledge, this is the first report describing the relationship between HGFAC DNA methylation and its expression.
Collapse
Affiliation(s)
- Li Yin
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Yudong Mu
- Department of Clinical Laboratory, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingzi Lin
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Qianfeng Xia
- Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
34
|
Ye F, Chen S, Liu X, Ye X, Wang K, Zeng Z, Su Y, Zhang X, Zhou H. 3-Cl-AHPC inhibits pro-HGF maturation by inducing matriptase/HAI-1 complex formation. J Cell Mol Med 2019; 23:155-166. [PMID: 30370662 PMCID: PMC6307790 DOI: 10.1111/jcmm.13900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022] Open
Abstract
Matriptase is an epithelia-specific membrane-anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor-1 (HAI-1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI-1 complex formation determines the intensity and duration of matriptase activity. 3-Cl-AHPC, 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid, is an adamantly substituted retinoid-related molecule and a ligand of retinoic acid receptor γ (RARγ). 3-Cl-AHPC is of strong anti-cancer effect but with elusive mechanisms. In our current study, we show that 3-Cl-AHPC time- and dose- dependently induces matriptase/HAI-1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3-Cl-AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3-Cl-AHPC inhibits matriptase-mediated cleavage of pro-HGF through matriptase/HAI-1 complex induction, resulting in the suppression of pro-HGF-stimulated signalling and cell scattering. Although 3-Cl-AHPC binds to RARγ, its induction of matriptase/HAI-1 complex is not RARγ dependent. Together, our data demonstrates that 3-Cl-AHPC down-regulates matriptase activity through induction of matriptase/HAI-1 complex formation in a RARγ-independent manner, providing a mechanism of 3-Cl-AHPC anti-cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI-1 complex induction using small molecules.
Collapse
Affiliation(s)
- Fang Ye
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Shuang Chen
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Xingxing Liu
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Xiaohong Ye
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Keqi Wang
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Zhiping Zeng
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| | - Ying Su
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Xiao‐kun Zhang
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Hu Zhou
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujianChina
| |
Collapse
|
35
|
Damalanka VC, Han Z, Karmakar P, O’Donoghue AJ, La Greca F, Kim T, Pant SM, Helander J, Klefström J, Craik CS, Janetka JW. Discovery of Selective Matriptase and Hepsin Serine Protease Inhibitors: Useful Chemical Tools for Cancer Cell Biology. J Med Chem 2018; 62:480-490. [DOI: 10.1021/acs.jmedchem.8b01536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vishnu C. Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, 92093, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Florencia La Greca
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Shishir M. Pant
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jonathan Helander
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| |
Collapse
|
36
|
MET/HGF Co-Targeting in Pancreatic Cancer: A Tool to Provide Insight into the Tumor/Stroma Crosstalk. Int J Mol Sci 2018; 19:ijms19123920. [PMID: 30544501 PMCID: PMC6321305 DOI: 10.3390/ijms19123920] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
The ‘onco-receptor’ MET (Hepatocyte Growth Factor Receptor) is involved in the activation of the invasive growth program that is essential during embryonic development and critical for wound healing and organ regeneration during adult life. When aberrantly activated, MET and its stroma-secreted ligand HGF (Hepatocyte Growth Factor) concur to tumor onset, progression, and metastasis in solid tumors, thus representing a relevant target for cancer precision medicine. In the vast majority of tumors, wild-type MET behaves as a ‘stress-response’ gene, and relies on ligand stimulation to sustain cancer cell ‘scattering’, invasion, and protection form apoptosis. Moreover, the MET/HGF axis is involved in the crosstalk between cancer cells and the surrounding microenvironment. Pancreatic cancer (namely, pancreatic ductal adenocarcinoma, PDAC) is an aggressive malignancy characterized by an abundant stromal compartment that is associated with early metastases and resistance to conventional and targeted therapies. Here, we discuss the role of the MET/HGF axis in tumor progression and dissemination considering as a model pancreatic cancer, and provide a proof of concept for the application of dual MET/HGF inhibition as an adjuvant therapy in pancreatic cancer patients.
Collapse
|
37
|
Mahdi A, Darvishi B, Majidzadeh-A K, Salehi M, Farahmand L. Challenges facing antiangiogenesis therapy: The significant role of hypoxia-inducible factor and MET in development of resistance to anti-vascular endothelial growth factor-targeted therapies. J Cell Physiol 2018; 234:5655-5663. [PMID: 30515806 DOI: 10.1002/jcp.27414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
Abstract
It is now fully recognized that along with multiple physiological functions, angiogenesis is also involved in the fundamental process and pathobiology of several disorders including cancer. Recent studies have fully established the role of angiogenesis in cancer progression as well as invasion and metastasis. Consequently, many therapeutic agents such as monoclonal antibodies targeting angiogenesis pathway have been introduced in clinic with the hope for improving the outcomes of cancer therapy. Bevacizumab (Avastin®) was the first anti-vascular endothelial growth factor (VEGF) targeting monoclonal antibody developed with this purpose and soon received its accelerated US Food and Drug Administration (FDA) approval for treatment of patients with metastatic breast cancer in 2008. However, the failure to meet expecting results in different follow-up studies, forced FDA to remove bevacizumab approval for metastatic breast cancer. Investigations have now revealed that while suppressing VEGF pathway initially decreases tumor progression rate and vasculature density, activation of several interrelated pathways and signaling molecules following VEGF blockade compensate the insufficiency of VEGF and initially blocked angiogenesis, explaining in part the failure observed with bevacizumab single therapy. In present review, we introduce some of the main pathways and signaling molecules involved in angiogenesis and then propose how their interconnection may result in development of resistance to bevacizumab.
Collapse
Affiliation(s)
- Ali Mahdi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Behrad Darvishi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.,Tasnim Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Malihe Salehi
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Department of Recombinant Proteins, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
38
|
Hepatocyte Growth Factor Activator: A Proteinase Linking Tissue Injury with Repair. Int J Mol Sci 2018; 19:ijms19113435. [PMID: 30388869 PMCID: PMC6275078 DOI: 10.3390/ijms19113435] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte growth factor (HGF) promotes pleiotropic signaling through its specific receptor tyrosine kinase, MET. As such, it has important roles in the regeneration of injured tissues. Since HGF is produced mainly by mesenchymal cells and MET is expressed in most epithelial, endothelial and somatic stem cells, HGF functions as a typical paracrine growth factor. HGF is secreted as an inactive precursor (proHGF) and requires proteolytic activation to initiate HGF-induced MET signaling. HGF activator (HGFAC) is a serum activator of proHGF and produces robust HGF activities in injured tissues. HGFAC is a coagulation factor XII-like serine endopeptidase that circulates in the plasma as a zymogen (proHGFAC). Thrombin, kallikrein-related peptidase (KLK)-4 or KLK-5 efficiently activates proHGFAC. The activated HGFAC cleaves proHGF at Arg494-Val495, resulting in the formation of the active disulfide-linked heterodimer HGF. Macrophage stimulating protein, a ligand of RON, is also activated by HGFAC in vivo. Although HGFAC functions primarily at the site of damaged tissue, a recent report has suggested that activated HGFAC relays a signal to stem cells in non-injured tissues via proHGF activation in the stem cell niche. This review focuses on current knowledge regarding HGFAC-mediated proHGF activation and its roles in tissue regeneration and repair.
Collapse
|
39
|
Noriega-Guerra H, Freitas VM. Extracellular Matrix Influencing HGF/c-MET Signaling Pathway: Impact on Cancer Progression. Int J Mol Sci 2018; 19:ijms19113300. [PMID: 30352967 PMCID: PMC6274944 DOI: 10.3390/ijms19113300] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix (ECM) is a crucial component of the tumor microenvironment involved in numerous cellular processes that contribute to cancer progression. It is acknowledged that tumor–stromal cell communication is driven by a complex and dynamic network of cytokines, growth factors and proteases. Thus, the ECM works as a reservoir for bioactive molecules that modulate tumor cell behavior. The hepatocyte growth factor (HGF) produced by tumor and stromal cells acts as a multifunctional cytokine and activates the c-MET receptor, which is expressed in different tumor cell types. The HGF/c-MET signaling pathway is associated with several cellular processes, such as proliferation, survival, motility, angiogenesis, invasion and metastasis. Moreover, c-MET activation can be promoted by several ECM components, including proteoglycans and glycoproteins that act as bridging molecules and/or signal co-receptors. In contrast, c-MET activation can be inhibited by proteoglycans, matricellular proteins and/or proteases that bind and sequester HGF away from the cell surface. Therefore, understanding the effects of ECM components on HGF and c-MET may provide opportunities for novel therapeutic strategies. Here, we give a short overview of how certain ECM components regulate the distribution and activation of HGF and c-MET.
Collapse
Affiliation(s)
- Heydi Noriega-Guerra
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| | - Vanessa Morais Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Prédio I, sala 428, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
García-Vilas JA, Medina MÁ. Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol 2018; 24:3695-3708. [PMID: 30197476 PMCID: PMC6127652 DOI: 10.3748/wjg.v24.i33.3695] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition receptor (c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microRNAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.
Collapse
Affiliation(s)
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Andalucía Tech, Universidad de Málaga, Málaga 29071, Spain
- Unidad 741 de CIBER “de Enfermedades Raras” (CIBERER), Málaga 29071, Spain
- Institute of Biomedical Research in Málaga, Málaga 29071, Spain
| |
Collapse
|
41
|
Fukushima T, Kawaguchi M, Yamamoto K, Yamashita F, Izumi A, Kaieda T, Takezaki Y, Itoh H, Takeshima H, Kataoka H. Aberrant methylation and silencing of the SPINT2 gene in high-grade gliomas. Cancer Sci 2018; 109:2970-2979. [PMID: 29987920 PMCID: PMC6125435 DOI: 10.1111/cas.13732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor type 2 (HAI‐2), encoded by the SPINT2 gene, is a membrane‐anchored protein that inhibits proteases involved in the activation of hepatocyte growth factor (HGF), a ligand of MET receptor. Epigenetic silencing of the SPINT2 gene has been reported in a human glioblastoma cell line (U87) and glioblastoma‐derived cancer stem cells. However, the incidence of SPINT2 methylation in tumor tissues obtained from glioma patients is unknown. In this study, we analyzed the methylation status of the SPINT2 gene of eight human glioblastoma cell lines and surgically resected glioma tissues of different grades (II, III, and IV) by bisulfite sequence analysis and methylation‐specific PCR. Most glioblastoma lines (7/8) showed methylation of the SPINT2 gene with a significantly reduced level of SPINT2mRNA compared to cultured astrocytes and normal brain tissues. However, all glioblastoma lines expressed mRNA for HGF activator (HGFAC), a target protease of HAI‐2/SPINT2. Forced expression of SPINT2 reduced MET phosphorylation of U87 glioblastoma cells both in vitro and in intracranial xenografts in nude mice. Methylation‐specific PCR analysis of the resected glioma tissues indicated notable methylation of the SPINT2 gene in 33.3% (2/6), 71.4% (10/14), and 74.3% (26/35) of grade II, III, and IV gliomas, respectively. Analysis of RNA sequencing data in a public database indicated an increased HGFAC/SPINT2 expression ratio in high‐grade compared to low‐grade gliomas (P = .01). In summary, aberrant methylation of the SPINT2 gene is frequently observed in high‐grade gliomas and might confer MET signaling in the glioma cells.
Collapse
Affiliation(s)
- Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Aya Izumi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Kaieda
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuka Takezaki
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Itoh
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hideo Takeshima
- Section of Neurosurgery, Department of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
42
|
Price LR, Lillycrop KA, Irvine NA, Hanson MA, Burdge GC. Transcriptome-wide analysis suggests that temporal changes in the relative contributions of hyperplasia, hypertrophy and apoptosis underlie liver growth in pregnant mice. Biol Reprod 2018; 97:762-771. [PMID: 29091992 DOI: 10.1093/biolre/iox136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
Maternal liver undergoes structural and metabolic changes during pregnancy to meet the demands of the developing fetus. In rodents, this involves increased liver weight, but the mechanism remains unclear. To address this, we analyzed the histology, gene expression, and DNA methylation of livers of nonpregnant and pregnant C57/BL6 mice. Gestational liver growth in pregnant mice was accompanied by increased hepatocyte area and lower cell density (days 14 and 18). Expression of cell proliferation markers was increased on days 14 and 18. A total of 115 genes were differentially expressed on day 14 and 123 genes on day 18 (79 on both days). Pathway analysis indicated that pregnancy involves progressive increase in cell proliferation and decreased apoptosis. This was confirmed using archived data from the FVB wild-type mouse liver transcriptome. Four differentially DNA methylated and two differentially DNA hydroxymethylated regions identified on days 14 and 18 by methylome-wide analysis, but were not associated with altered gene expression. Long interspersed nuclear element-1 hypomethylation on days 14 and 18 was accompanied by increased ten-eleven translocase-2 and decreased DNA methyltransferase 3a and 3b expression. These findings suggest that gestational liver growth involves increased mitosis and hypertrophy, and decreased apoptosis contingent on pregnancy stage. Such changes may involve repetitive sequence, but not gene specific, DNA methylation.
Collapse
Affiliation(s)
- Leonie R Price
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Nicola A Irvine
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark A Hanson
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
43
|
Wei W, Lv S, Zhang C, Tian Y. Potential role of HGF-PARP-1 signaling in invasion of ovarian cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3310-3317. [PMID: 31949706 PMCID: PMC6962858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/27/2018] [Indexed: 06/10/2023]
Abstract
We investigated the effects and signaling pathways involved in both HGF-mediated regulation of PARP-1 expression and the invasion ability of ovarian cancer cells. Using a transwell assay, the invasiveness of SKOV-3 cells was tested by incubating them with increasing concentrations of HGF. The relative expression levels of PARP-1 after HGF treatment were analyzed by Real-Time PCR and western blotting. SKOV3 cells were transfected with either negative control siRNA or PARP-1 siRNA, and were divided into different groups as follows: control group; HGF group; PARP-siRNA group; HGF+PARP-siRNA group; NC-siRNA group; and HGF+NC-siRNA group. Western blotting was employed to measure the expression of PARP-1 in the different groups. Transwell tests were used to examine invasiveness. ELISA was applied to measure MMP-2 expression. HGF promotes cell invasion in a concentration- and time-dependent manner in SKOV-3 cells. The expression levels of PARP-1 increased after administration of 40 ng/ml HGF for 24 h. The expression of PARP-1 in the PARP1-siRNA group was lower compared with that in the NC-siRNA group (P < 0.05); PARP1-siRNA transfection significantly reduced the impact of HGF on invasiveness and MMP-2 expression in SKOV-3 cells. HGF promotes the invasiveness and metastasis of ovarian cancer cells. This effect could be related to the induction of increased expression levels of MMP-2 mediated by PARP-1.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong, People's Republic of China
| | - Shuqing Lv
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong, People's Republic of China
| | - Cancan Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong, People's Republic of China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University Jinan, Shandong, People's Republic of China
| |
Collapse
|
44
|
Comoglio PM, Trusolino L, Boccaccio C. Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer 2018; 18:341-358. [PMID: 29674709 DOI: 10.1038/s41568-018-0002-y] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The MET oncogene encodes an unconventional receptor tyrosine kinase with pleiotropic functions: it initiates and sustains neoplastic transformation when genetically altered ('oncogene addiction') and fosters cancer cell survival and tumour dissemination when transcriptionally activated in the context of an adaptive response to adverse microenvironmental conditions ('oncogene expedience'). Moreover, MET is an intrinsic modulator of the self-renewal and clonogenic ability of cancer stem cells ('oncogene inherence'). Here, we provide the latest findings on MET function in cancer by focusing on newly identified genetic abnormalities in tumour cells and recently described non-mutational MET activities in stromal cells and cancer stem cells. We discuss how MET drives cancer clonal evolution and progression towards metastasis, both ab initio and under therapeutic pressure. We then elaborate on the use of MET inhibitors in the clinic with a critical appraisal of failures and successes. Ultimately, we advocate a rationale to improve the outcome of anti-MET therapies on the basis of thorough consideration of the entire spectrum of MET-mediated biological responses, which implicates adequate patient stratification, meaningful biomarkers and appropriate clinical end points.
Collapse
Affiliation(s)
- Paolo M Comoglio
- Exploratory Research and Molecular Cancer Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Livio Trusolino
- Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| | - Carla Boccaccio
- Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| |
Collapse
|
45
|
Basilico C, Modica C, Maione F, Vigna E, Comoglio PM. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy. Int J Cancer 2018; 143:1774-1785. [PMID: 29693242 DOI: 10.1002/ijc.31550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 12/18/2022]
Abstract
MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMETK842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMETK842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience."
Collapse
Affiliation(s)
| | - Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | - Federica Maione
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | | |
Collapse
|
46
|
Liu CL, Yang PS, Chien MN, Chang YC, Lin CH, Cheng SP. Expression of serine peptidase inhibitor Kunitz type 1 in differentiated thyroid cancer. Histochem Cell Biol 2018. [PMID: 29532159 DOI: 10.1007/s00418-018-1660-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SPINT1, also known as HAI-1, is a Kunitz-type serine protease inhibitor that inhibits multiple proteases including hepatocyte growth factor (HGF) activator and matriptase. SPINT1 has been shown to modulate HGF/MET activation in certain cancer types. In the present study, we analyzed microarray datasets and found that SPINT1 was consistently upregulated in differentiated thyroid cancer. SPINT1 protein expression was investigated using tissue microarrays and independent samples of our 143 patients. Strong SPINT1 expression was observed in 61-68% of papillary thyroid cancer and 41-50% of follicular thyroid cancer. The overexpression diminished in anaplastic thyroid cancer. The SPINT1 expression in normal thyroid tissues and benign thyroid lesions was low. Furthermore, we noted that the SPINT1 expression was associated with extrathyroidal invasion, lymphovascular invasion, lymph node metastasis, advanced TNM stage, and a higher risk of recurrence in differentiated thyroid cancer. The results were in accordance with our analysis of The Cancer Genome Atlas data. In conclusion, an overexpression of SPINT1 appears to be associated with an invasive phenotype in differentiated thyroid cancer.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, 92, Section 2, Chung-Shan North Road, Taipei, 10449, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, 92, Section 2, Chung-Shan North Road, Taipei, 10449, Taiwan
| | - Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, 92, Section 2, Chung-Shan North Road, Taipei, 10449, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, 92, Section 2, Chung-Shan North Road, Taipei, 10449, Taiwan. .,Department of Pharmacology, Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
47
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the Nervous System in Tumor Angiogenesis. CANCER MICROENVIRONMENT 2018; 11:1-11. [PMID: 29502307 DOI: 10.1007/s12307-018-0207-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the development of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have been reported to play an important role in tumor angiogenesis.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia.
| |
Collapse
|
48
|
Kawaguchi M, Yamamoto K, Kanemaru A, Tanaka H, Umezawa K, Fukushima T, Kataoka H. Inhibition of nuclear factor-κB signaling suppresses Spint1-deletion-induced tumor susceptibility in the ApcMin/+ model. Oncotarget 2018; 7:68614-68622. [PMID: 27612426 PMCID: PMC5356577 DOI: 10.18632/oncotarget.11863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1), encoded by the Spint1 gene, is a membrane-bound serine protease inhibitor expressed on the epithelial cell surface. We have previously reported that the intestine-specific Spint1-deleted ApcMin/+ mice showed accelerated formation of intestinal tumors. In this study, we focused on the role of nuclear factor-κB (NF-κB) signaling in the HAI-1 loss-induced tumor susceptibility. In the HAI-1-deficient intestine, inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, were upregulated in normal mucosa. Furthermore, increased nuclear translocation of NF-κB was observed in both normal mucosa and tumor tissues of HAI-1-deficient ApcMin/+ intestines, and an NF-κB target gene, such as urokinase-type plasminogen activator, was upregulated in the HAI-1-deficient tumor tissues. Thus, we investigated the effect of dehydroxymethylepoxyquinomicin (DHMEQ), a synthetic inhibitor of NF-κB, on intestinal HAI-1-deficient ApcMin/+ mice. Treatment with DHMEQ reduced the formation of intestinal tumors compared with vehicle control in the HAI-1-deficient ApcMin/+ mice. These results suggested that insufficient HAI-1 function promotes intestinal carcinogenesis by activating NF-κB signaling.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Kanemaru
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Aichi, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
49
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
50
|
Hepatocyte growth factor activator inhibitor type-2 (HAI-2)/ SPINT2 contributes to invasive growth of oral squamous cell carcinoma cells. Oncotarget 2018; 9:11691-11706. [PMID: 29545930 PMCID: PMC5837738 DOI: 10.18632/oncotarget.24450] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor (HAI)-1/SPINT1 and HAI-2/SPINT2 are membrane-anchored protease inhibitors having homologous Kunitz-type inhibitor domains. They regulate membrane-anchored serine proteases, such as matriptase and prostasin. Whereas HAI-1 suppresses the neoplastic progression of keratinocytes to invasive squamous cell carcinoma (SCC) through matriptase inhibition, the role of HAI-2 in keratinocytes is poorly understood. In vitro homozygous knockout of the SPINT2 gene suppressed the proliferation of two oral SCC (OSCC) lines (SAS and HSC3) but not the growth of a non-tumorigenic keratinocyte line (HaCaT). Reversion of HAI-2 abrogated the growth suppression. Matrigel invasion of both OSCC lines was also suppressed by the loss of HAI-2. The levels of prostasin protein were markedly increased in HAI-2-deficient cells, and knockdown of prostasin alleviated the HAI-2 loss-induced suppression of OSCC cell invasion. Therefore, HAI-2 has a pro-invasive role in OSCC cells through suppression of prostasin. In surgically resected OSCC tissues, HAI-2 immunoreactivity increased along with neoplastic progression, showing intense immunoreactivities in invasive OSCC cells. In summary, HAI-2 is required for invasive growth of OSCC cells and may contribute to OSCC progression.
Collapse
|