1
|
Kubiak A, Zalas M, Cegłowski M. Innovative microwave in situ approach for crystallizing TiO 2 nanoparticles with enhanced activity in photocatalytic and photovoltaic applications. Sci Rep 2024; 14:12617. [PMID: 38824155 PMCID: PMC11144198 DOI: 10.1038/s41598-024-63614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
This investigation introduces an innovative approach to microwave-assisted crystallization of titania nanoparticles, leveraging an in situ process to expedite anatase crystallization during microwave treatment. Notably, this technique enables the attainment of crystalline material at temperatures below 100 °C. The physicochemical properties, including crystallinity, morphology, and textural properties, of the synthesized TiO2 nanomaterials show a clear dependence on the microwave crystallization temperature. The presented microwave crystallization methodology is environmentally sustainable, owing to heightened energy efficiency and remarkably brief processing durations. The synthesized TiO2 nanoparticles exhibit significant effectiveness in removing formic acid, confirming their practical utility. The highest efficiency of formic acid photodegradation was demonstrated by the T_200 material, reaching almost 100% efficiency after 30 min of irradiation. Furthermore, these materials find impactful application in dye-sensitized solar cells, illustrating a secondary avenue for the utilization of the synthesized nanomaterials. Photovoltaic characterization of assembled DSSC devices reveals that the T_100 material, synthesized at a higher temperature, exhibits the highest photoconversion efficiency attributed to its outstanding photocurrent density. This study underscores the critical importance of environmental sustainability in the realm of materials science, highlighting that through judicious management of the synthesis method, it becomes feasible to advance towards the creation of multifunctional materials.
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland.
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland
| |
Collapse
|
2
|
Kubiak A. Comparative study of TiO 2-Fe 3O 4 photocatalysts synthesized by conventional and microwave methods for metronidazole removal. Sci Rep 2023; 13:12075. [PMID: 37495674 PMCID: PMC10371990 DOI: 10.1038/s41598-023-39342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
This study focused on a direct comparison of conventional hydrothermal and microwave treatment during the synthesis of TiO2-Fe3O4 photocatalyst, which is an effective catalyst for decomposing metronidazole. The photocatalyst underwent various characterization analyses, including X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray, and diffuse reflectance spectroscopy. The Raman spectroscopy analysis revealed that the materials obtained through the conventional hydrothermal treatment consisted of separate phases of anatase and magnetite. On the other hand, the materials synthesized using the microwave process showed a noticeable shift in the Eg band (143 cm-1) and its half-width towards higher wavenumbers. This shift is likely due to the introduction of Fe ions into the TiO2 lattice. Additionally, both conventional hydrothermal and microwave synthesis routes produced TiO2-Fe3O4 systems with superparamagnetic properties, as demonstrated by SQUID magnetic measurements. The TEM analysis revealed that the materials synthesized using the microwave process exhibited higher homogeneity, with no noticeable large aggregates observed. Finally, this work proposed a convenient LED photoreactor that effectively utilized the photo-oxidative properties of TiO2-Fe3O4 photocatalysts to remove metronidazole. Combining photoactive TiO2-Fe3O4 catalysts with an energy-efficient LED reactor resulted in a low electrical energy per order (EEO).
Collapse
Affiliation(s)
- Adam Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61614, Poznan, Poland.
| |
Collapse
|
3
|
Kubiak A, Varma N, Sikorski M. Insight into the LED-assisted deposition of platinum nanoparticles on the titania surface: understanding the effect of LEDs. Sci Rep 2022; 12:22572. [PMID: 36581762 PMCID: PMC9800554 DOI: 10.1038/s41598-022-27232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
This paper proposes a novel LED-assisted deposition of platinum nanoparticles on the titania surface. For the first time, this process was supported by a UV-LED solution. We used two light sources with different wavelengths (λmax = 365 and 395 nm), and power (P = 1, 5, and 10 W) because the photodeposition process based on LEDs has not been defined. The TiO2-Pt material was discovered to be nano-crystalline anatase particles with nano-platinum particles deposited on the surface of titanium dioxide. Furthermore, the luminescence intensity decreased when Pt was added to TiO2, indicating that charge carrier recombination was reduced. The spectra matching of the photocatalyst and LED reactor was performed for the first time in this work. We proposed a convenient LED reactor that focused light in the range of 350-450 nm, allowing us to effectively use photo-oxidative properties of TiO2-Pt materials in the process of removing 4-chlorophenol. In the presented work, the LED light source plays a dual role. They first induce the platinum photodeposition process, before becoming an important component of tailored photoreactors, which is an important innovative aspect of this research.
Collapse
Affiliation(s)
- Adam Kubiak
- Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| | - Naisargi Varma
- Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Marek Sikorski
- Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| |
Collapse
|
4
|
Kubiak A, Grzegórska A, Gabała E, Zembrzuska J, Szybowicz M, Fuks H, Szymczyk A, Zielińska-Jurek A, Sikorski M, Jesionowski T. TiO2-C nanocomposite synthesized via facile surfactant-assisted method as a part of less energy-consuming LED-based photocatalytic system for environmental applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Kumar S, Sharma R, Gupta A, Dubey KK, Khan AM, Singhal R, Kumar R, Bharti A, Singh P, Kant R, Kumar V. TiO 2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157221. [PMID: 35809739 DOI: 10.1016/j.scitotenv.2022.157221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Among the various emerging contaminants, pharmaceuticals (PhACs) seem to have adverse effects on the quality of water. Even the smallest concentration of PhACs in ground water and drinking water is harmful to humans and aquatic species. Among all the deaths reported due to COVID-19, the mortality rate was higher for those patients who consumed antibiotics. Consequently, PhAC in water is a serious concern and their removal needs immediate attention. This study has focused on the PhACs' degradation by collaborating photocatalysis with membrane filtration. TiO2-based photocatalytic membrane is an innovative strategy which demonstrates mineralization of PhACs as a safer option. To highlight the same, an emphasis on the preparation and reinforcing properties of TiO2-based nanomembranes has been elaborated in this review. Further, mineralization of antibiotics or cytostatic compounds and their degradation mechanisms is also highlighted using TiO2 assisted membrane photocatalysis. Experimental reactor configurations have been discussed for commercial implementation of photoreactors for PhAC degradation anchored photocatalytic nanomembranes. Challenges and future perspectives are emphasized in order to design a nanomembrane based prototype in future for wastewater management.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Akanksha Gupta
- Department of Chemistry, Sri Venkateswara College, University of Delhi, India.
| | | | - A M Khan
- Department of Chemistry, Motilal Nehru College, India
| | - Rahul Singhal
- Department of Chemistry, Shivaji College, Delhi, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Akhilesh Bharti
- Department of Chemistry, Kirori Mal College, University of Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, Delhi, India
| | - Ravi Kant
- Department of Chemistry, Zakir Hussain Delhi College, Delhi, India
| | - Vinod Kumar
- Special Centre for Nano Sciences, Jawaharlal Nehru University, Delhi, India.
| |
Collapse
|
6
|
Zhu J, Liu Z, Wang H, Jian Y, Long D, Pu S. Preparation of a Z-Type g-C 3N 4/(A-R)TiO 2 Composite Catalyst and Its Mechanism for Degradation of Gaseous and Liquid Ammonia. Int J Mol Sci 2022; 23:13131. [PMID: 36361920 PMCID: PMC9657263 DOI: 10.3390/ijms232113131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
In this study, an (A-R)TiO2 catalyst (ART) was prepared via the sol-gel method, and g-C3N4 (CN) was used as an amendment to prepare the g-C3N4/(A-R)TiO2 composite catalyst (ARTCN). X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, N2 adsorption-desorption curves (BET), UV-Vis diffuse absorption spectroscopy (UV-Vis DRS), and fluorescence spectroscopy (PL) were used to evaluate the structure, morphology, specific surface area, optical properties, and photocarrier separation ability of the catalysts. The results showed that when the modifier CN content was 0.5 g, the dispersion of the ARTCN composite catalyst was better, with stronger light absorption performance, and the forbidden band width was smaller. Moreover, the photogenerated electrons in the conduction band of ART transferred to the valence band of CN and combined with the holes in the valence band of CN, forming Z-type heterostructures that significantly improved the efficiency of the photogenerated electron-hole migration and separation, thus increasing the reaction rate. Gaseous and liquid ammonia were used as the target pollutants to investigate the activity of the prepared catalysts, and the results showed that the air wetness and initial concentration of ammonia had a great influence on the degradation of gaseous ammonia. When the initial concentration of ammonia was 50 mg/m3 and the flow rate of the moist air was 0.9 mL/min, the degradation rate of gaseous ammonia by ARTCN-0.5 reached 88.86%, and it had good repeatability. When the catalytic dose was 50 mg and the initial concentration of NH4+ was 100 mg/L, the degradation rate of liquid ammonia by ARTCN-0.5 was 71.60% after 3 h of reaction, and small amounts of NO3- and NO2- were generated. The superoxide anion radical (·O2-) and hydroxyl radical (·OH) were the main active components in the photocatalytic reaction process.
Collapse
Affiliation(s)
- Jiaming Zhu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| | - Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture, Chongqing 402460, China
| |
Collapse
|