1
|
Baran T, Aresta M, Comparelli R, Dibenedetto A. Gas-Phase Photocatalytic Coprocessing of CO 2 - H 2O (v) to Energy Products Promoted by the n,n-Junction In 2O 3@g-C 3N 4 under VIS-Light. CHEMSUSCHEM 2024; 17:e202400661. [PMID: 38787340 DOI: 10.1002/cssc.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Carbon dioxide capture and utilization is a strategic technology for moving away from fossil-C. The conversion of CO2 into fuels demands energy and hydrogen that cannot be sourced from fossil-C. Co-processing of CO2 and water under solar irradiation will have a key role in the long-term for carbon-recycling and energy products production. This article discusses the synthesis, characterization and application of the two-phase composite photocatalyst, In2O3@g-C3N4, formed by thermal condensation of melamine in the presence of indium(III)nitrate. The composite exhibits a n,n-heterojunction between two n-type semiconductors, g-C3N4 and In2O3, leading to a more efficient charge separation. The composite has a flat band potential enabling it to effectively catalyze the reduction of CO2 in the gas phase to produce CO, CH4 and CH3OH. While the composite's overall photocatalytic efficiency is comparable to that of neat g-C3N4, its ability to promote multielectron-transfer and Proton Coupled to Electron Transfer (PCET) suggests that there is a potential for further optimization of its properties. The use of labelled 13CO2 has allowed us to clearly exclude that the reduced species are derived from the photocatalyst decomposition or the degradation of contaminants.
Collapse
Affiliation(s)
- Tomasz Baran
- Innovative Catalysis for Carbon Recycling-IC2R, Tecnopolis, Lab 019-020, via Casamassima km 3, 70010, Valenzano-BA, Italy
| | - Michele Aresta
- Innovative Catalysis for Carbon Recycling-IC2R, Tecnopolis, Lab 019-020, via Casamassima km 3, 70010, Valenzano-BA, Italy
| | - Roberto Comparelli
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, S. S. Bari, c/o Dipartimento di Chimica, Via Orabona 4, 70126, Bari, Italy
| | - Angela Dibenedetto
- CIRCC, via Celso Ulpiani 27, 70126, Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Campus Universitario, Bari, 70125, Italy
| |
Collapse
|
2
|
Cani D, Cuyvers T, Pescarmona PP. Indium-Iron Oxide Nanosized Solid Solutions as Photocatalysts for the Degradation of Pollutants under Visible Radiation. CHEMSUSCHEM 2024:e202401180. [PMID: 39255251 DOI: 10.1002/cssc.202401180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
A series of solid solutions of indium and iron oxides with different In/Fe ratios (InxFeyO3, with x + y = 2) were synthesized in the form of nanoparticles (diameter of ca. 30-40 nm) with the purpose of generating enhanced photocatalysts with an intermediate band gap compared to those of the monometallic oxides, In2O3 and Fe2O3. The materials were prepared by co-precipitation from an aqueous solution of iron and indium nitrates and extensively characterized with a combination of techniques. XRD analysis proved the formation of the desired InxFeyO3 solid solutions for Fe content in the range 5-25 mol%. UV-Vis absorption analysis showed that the substitution of In with Fe in the crystalline structure led to the anticipated gradual decrease of the band gap values compared to In2O3. The obtained semiconductors were tested as photocatalysts for the degradation of model organic pollutants (phenol and methylene blue) in water. Among the InxFeyO3 solid solutions, In1.7Fe0.3O3 displayed the highest photocatalytic activity in the degradation of the selected probe molecules under UV and visible radiation. Remarkably, In1.7Fe0.3O3 showed a significantly enhanced activity under visible light compared to monometallic indium oxide and iron oxide, and to the benchmark TiO2 P25. This demonstrates that our strategy consisting in engineering the band gap by tuning the composition of InxFeyO3 solid solutions was successful in improving the photocatalytic performance under visible light. Additionally, In1.7Fe0.3O3 fully retained its photocatalytic activity upon reuse in four consecutive cycles.
Collapse
Affiliation(s)
- Damiano Cani
- Centre for Surface Chemistry and Catalysis, University of Leuven (KU Leuven), Kasteelpark Arenberg 23, 3001, Heverlee, Belgium
| | - Timo Cuyvers
- Centre for Surface Chemistry and Catalysis, University of Leuven (KU Leuven), Kasteelpark Arenberg 23, 3001, Heverlee, Belgium
| | - Paolo P Pescarmona
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
3
|
Araújo ES, Pereira MFG, da Silva GMG, Tavares GF, Oliveira CYB, Faia PM. A Review on the Use of Metal Oxide-Based Nanocomposites for the Remediation of Organics-Contaminated Water via Photocatalysis: Fundamentals, Bibliometric Study and Recent Advances. TOXICS 2023; 11:658. [PMID: 37624163 PMCID: PMC10458580 DOI: 10.3390/toxics11080658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
The improper disposal of toxic and carcinogenic organic substances resulting from the manufacture of dyes, drugs and pesticides can contaminate aquatic environments and potable water resources and cause serious damage to animal and human health and to the ecosystem. In this sense, heterogeneous photocatalysis stand out as one effective and cost-effective water depollution technique. The use of metal oxide nanocomposites (MON), from the mixture of two or more oxides or between these oxides and other functional semiconductor materials, have gained increasing attention from researchers and industrial developers as a potential alternative to produce efficient and environmentally friendly photocatalysts for the remediation of water contamination by organic compounds. Thus, this work presents an updated review of the main advances in the use of metal oxide nanocomposites-based photocatalysts for decontamination of water polluted by these substances. A bibliometric analysis allowed to show the evolution of the importance of this research topic in the literature over the last decade. The results of the study also showed that hierarchical and heterogeneous nanostructures of metal oxides, as well as conducting polymers and carbon materials, currently stand out as the main materials for the synthesis of MON, with better photocatalysis performance in the degradation of dyes, pharmaceuticals and pesticides.
Collapse
Affiliation(s)
- Evando S. Araújo
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Michel F. G. Pereira
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, Brazil;
| | - Georgenes M. G. da Silva
- Federal Institute of Education, Science and Technology of the Sertão Pernambucano, Petrolina 56314-520, Brazil;
| | - Ginetton F. Tavares
- Research and Extension Center, Laboratory of Fuels and Materials (NPE/LACOM), Department of Chemistry, Federal University of Paraíba, Campus I, João Pessoa 58051-900, Brazil;
| | - Carlos Y. B. Oliveira
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-535, Brazil;
| | - Pedro M. Faia
- Electrical and Computer Engineering Department, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), FCTUC, University of Coimbra, Polo 2, Pinhal de Marrocos, 3030-290 Coimbra, Portugal;
| |
Collapse
|
4
|
Nazir A, Huo P, Wang H, Weiqiang Z, Wan Y. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. JOURNAL OF MATERIALS SCIENCE 2023; 58:6474-6515. [PMID: 37065680 PMCID: PMC10039801 DOI: 10.1007/s10853-023-08391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Organic pollutants in wastewater are the biggest problem facing the world today due to population growth, rapid increase in industrialization, urbanization, and technological advancement. There have been numerous attempts to use conventional wastewater treatment techniques to address the issue of worldwide water contamination. However, conventional wastewater treatment has a number of shortcomings, including high operating costs, low efficiency, difficult preparation, fast recombination of charge carriers, generation of secondary waste, and limited light absorption. Therefore, plasmonic-based heterojunction photocatalysts have attracted much attention as a promising method to reduce organic pollutant problems in water due to their excellent efficiency, low operating cost, ease of fabrication, and environmental friendliness. In addition, plasmonic-based heterojunction photocatalysts contain a local surface plasmon resonance that enhances the performance of photocatalysts by improving light absorption and separation of photoexcited charge carriers. This review summarizes the major plasmonic effects in photocatalysts, including hot electron, local field effect, and photothermal effect, and explains the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants. Recent work on the development of plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater is also discussed. Lastly, the conclusions and challenges are briefly described and the direction of future development of heterojunction photocatalysts with plasmonic materials is explored. This review could serve as a guide for the understanding, investigation, and construction of plasmonic-based heterojunction photocatalysts for various organic pollutants degradation. GRAPHICAL ABSTRACT Herein, the plasmonic effects in photocatalysts, such as hot electrons, local field effect, and photothermal effect, as well as the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants are explained. Recent work on plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater such as dyes, pesticides, phenols, and antibiotics is discussed. Challenges and future developments are also described.
Collapse
Affiliation(s)
- Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Zhou Weiqiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
5
|
Aresta M. The Contribution of CIRCC Partners to the Birth and Growth of CO
2
Chemistry. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michele Aresta
- Consorzio Interuniversitario Reattività Chimica e Catalisi-CIRCC and Innovative Catalysis for Carbon Recycling-IC2R, JL-CCE Via Celso Ulpiani 27 70126 Bari
| |
Collapse
|
6
|
Ibrahim Q, Creedon L, Gharbia S. A Literature Review of Modelling and Experimental Studies of Water Treatment by Adsorption Processes on Nanomaterials. MEMBRANES 2022; 12:360. [PMID: 35448329 PMCID: PMC9029349 DOI: 10.3390/membranes12040360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
A significant growth in the future demand for water resources is expected. Hence researchers have focused on finding new technologies to develop water filtration systems by using experimental and simulation methods. These developments were mainly on membrane-based separation technology, and photocatalytic degradation of organic pollutants which play an important role in wastewater treatment by means of adsorption technology. In this work, we provide valuable critical review of the latest experimental and simulation methods on wastewater treatment by adsorption on nanomaterials for the removal of pollutants. First, we review the wastewater treatment processes that were carried out using membranes and nanoparticles. These processes are highlighted and discussed in detail according to the rate of pollutant expulsion, the adsorption capacity, and the effect of adsorption on nanoscale surfaces. Then we review the role of the adsorption process in the photocatalytic degradation of pollutants in wastewater. We summarise the comparison based on decomposition ratios and degradation efficiency of pollutants. Therefore, the present article gives an evidence-based review of the rapid development of experimental and theoretical studies on wastewater treatment by adsorption processes. Lastly, the future direction of adsorption methods on water filtration processes is indicated.
Collapse
Affiliation(s)
| | | | - Salem Gharbia
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland; (Q.I.); (L.C.)
| |
Collapse
|
7
|
Sulaiman S, Ahmad S, Naz SS, Qaisar S, Muhammad S, Alotaibi A, Ullah R. Synthesis of Copper Oxide-Based Nanoformulations of Etoricoxib and Montelukast and Their Evaluation through Analgesic, Anti-Inflammatory, Anti-Pyretic, and Acute Toxicity Activities. Molecules 2022; 27:1433. [PMID: 35209221 PMCID: PMC8875186 DOI: 10.3390/molecules27041433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Copper oxide nanoparticles (CuO NPs) were synthesized through the coprecipitation method and used as nanocarriers for etoricoxib (selective COX-2 inhibitor drug) and montelukast (leukotriene product inhibitor drug) in combination therapy. The CuO NPs, free drugs, and nanoformulations were investigated through UV/Vis spectroscopy, FTIR spectroscopy, XRD, SEM, and DLS. SEM imaging showed agglomerated nanorods of CuO NPs of about 87 nm size. The CE1, CE2, and CE6 nanoformulations were investigated through DLS, and their particle sizes were 271, 258, and 254 nm, respectively. The nanoformulations were evaluated through in vitro anti-inflammatory activity, in vivo anti-inflammatory activity, in vivo analgesic activity, in vivo anti-pyretic activity, and in vivo acute toxicity activity. In vivo activities were performed on albino mice. BSA denaturation was highly inhibited by CE1, CE2, and CE6 as compared to other nanoformulations in the in vitro anti-inflammatory activity. The in vivo bioactivities showed that low doses (5 mg/kg) of nanoformulations were more potent than high doses (10 and 20 mg/kg) of free drugs in the inhibition of pain, fever, and inflammation. Lastly, CE2 was more potent than that of other nanoformulations.
Collapse
Affiliation(s)
- Sulaiman Sulaiman
- Department of Chemistry, Islamia College University, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (S.S.); (S.A.); (S.M.)
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Punjab, Pakistan; (S.S.N.); (S.Q.)
| | - Shabir Ahmad
- Department of Chemistry, Islamia College University, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (S.S.); (S.A.); (S.M.)
| | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Punjab, Pakistan; (S.S.N.); (S.Q.)
| | - Sara Qaisar
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Punjab, Pakistan; (S.S.N.); (S.Q.)
| | - Sayyar Muhammad
- Department of Chemistry, Islamia College University, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (S.S.); (S.A.); (S.M.)
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|